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Abstract

The timing of DNA synthesis, mitosis and cell division is regulated by a complex network of biochemical reactions that
control the activities of a family of cyclin-dependent kinases. The temporal dynamics of this reaction network is typically
modeled by nonlinear differential equations describing the rates of the component reactions. This approach provides
exquisite details about molecular regulatory processes but is hampered by the need to estimate realistic values for the
many kinetic constants that determine the reaction rates. It is difficult to estimate these kinetic constants from available
experimental data. To avoid this problem, modelers often resort to ‘qualitative’ modeling strategies, such as Boolean
switching networks, but these models describe only the coarsest features of cell cycle regulation. In this paper we describe a
hybrid approach that combines the best features of continuous differential equations and discrete Boolean networks. Cyclin
abundances are tracked by piecewise linear differential equations for cyclin synthesis and degradation. Cyclin synthesis is
regulated by transcription factors whose activities are represented by discrete variables (0 or 1) and likewise for the activities
of the ubiquitin-ligating enzyme complexes that govern cyclin degradation. The discrete variables change according to a
predetermined sequence, with the times between transitions determined in part by cyclin accumulation and degradation
and as well by exponentially distributed random variables. The model is evaluated in terms of flow cytometry
measurements of cyclin proteins in asynchronous populations of human cell lines. The few kinetic constants in the model
are easily estimated from the experimental data. Using this hybrid approach, modelers can quickly create quantitatively
accurate, computational models of protein regulatory networks in cells.
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Introduction

The cell division cycle is the fundamental physiological process

by which cells grow, replicate, and divide into two daughter cells

that receive all the information (genes) and machinery (proteins,

organelles, etc.) necessary to repeat the process under suitable

conditions [1]. This cycle of growth and division underlies all

biological expansion, development and reproduction. It is highly

regulated to promote genetic fidelity and meet the demands of an

organism for new cells. Altered systems of cell cycle control are

root causes of many severe health problems, such as cancer and

birth defects.

In eukaryotic cells, the processes of DNA replication and

nuclear/cell division occur sequentially in distinct phases (S and

M) separated by two gaps (G1 and G2). Mitosis (M phase) is

further subdivided into stages: prophase (chromatin condensation,

spindle formation, and nuclear envelope breakdown), prometa-

phase (chromosome attachment and congression), metaphase

(chromosome residence at the mid-plane of the spindle), anaphase

(sister chromatid separation and movement to opposite poles of the

spindle), telophase (re-formation of the nuclear envelopes), and

cytokinesis (cell division). G1 phase is subdivided into uncommit-

ted and committed sub-phases, often referred to as G1-pm

(postmitotic interval) and G1-ps (pre S phase interval), separated

by the ‘restriction point’ [2]. In this paper, we shall refer to the

sub-phases G1-pm and G1-ps as ‘G1a’ and ‘G1b’ respectively.

Progression through the correct sequence of cell-cycle events is

governed by a set of cyclin-dependent kinases (Cdk’s), whose

activities rise and fall during the cell cycle as determined by a

complex molecular regulatory network. For example, cyclin

synthesis and degradation are controlled, respectively, by tran-

scription factors and ubiquitin-ligating complexes whose activities

are, in turn, regulated by cyclin/Cdk complexes.

Current models of the Cdk control system can be classified as

either continuous or discrete. Continuous models track the

changes of protein concentrations, Cj(t) for j = 1, 2, …, N, by

solving a set of nonlinear ordinary differential equations (ODEs) of

the form:

dCj

dt
~
XR

r~1

njrrr C1,C2,:::,CNð Þ ð1Þ

where rr is the rate of the rth reaction and nir is the stoichiometric

coefficient of species i in reaction r. To each rate term is associated

one or more kinetic constants that determine exactly how fast the

reaction proceeds under specific conditions. These kinetic

constants must be estimated from experimental data, and often

there is insufficient kinetic data to determine their values.

Nonetheless, continuous models, based on rate equations, have

been used successfully to account for the properties of cell

proliferation in a variety of cell types: yeast [3,4,5], fruit fly [6],
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frog egg [7,8], and cultured mammalian cells [9,10,11]. They have

also proved successful in predicting novel cell-cycle characteristics

[12,13].

Discrete models, on the contrary, represent the state of each

regulatory protein as Bj(t ) = 0 or 1 (inactive or active), and the

state variables update from one discrete time step to the next

(t = 0, 1, 2, … = ticks of a metronome) according to the rule:

Bj tz1ð Þ~Yj B1 tð Þ, B2 tð Þ, . . . ,Bn tð Þð Þ, ð2Þ

where Yj(…) is a Boolean function (i.e., it equates to either 0 or 1)

determined by the topology of the reaction network. For Boolean

networks (BNs) there is no notion of reaction ‘rate’ and, hence, no

need to estimate kinetic constants. BN models of the Cdk

regulatory network have been proposed for yeast cells [14,15]

and for mammalian cells [16]. They have been used to study

notions of ‘robustness’ of the cell cycle, but they have not been

compared in detail to quantitative properties of cell cycle

progression, and they have not been used as predictive tools.

In this paper we propose to combine the strengths of both

continuous and discrete modeling, while avoiding the weaknesses

of each. Our ‘hybrid’ model is inspired by the work of Li et al.

[14], who proposed a BN for cell cycle controls. Their model

employs 11 state variables that move around in a space of

211 = 2048 possible states. Quite remarkably they found that 1764

of these states converge quickly onto a ‘super highway’ of 13

consecutive states that represent a typical cell cycle trajectory

(G1b—S—G2—M—G1a). The results of Li et al. indicate that the

cell cycle control network is ‘robustly designed’ in the sense that

even quite large perturbations away from the usual sequence of

cell cycle states are quickly restored to the super highway. In the

model of Li et al., G1a is a stable steady state; they do not address

the signals that drive cells past the restriction point (the G1a-to-

G1b transition).

Despite their intuitive appeal, Boolean models have severe

limitations. First of all, metronomic time in BN’s is unrelated to

clock time in the laboratory, so Boolean models cannot be

compared to even the most basic observations of time spent by

cells in the four phases of the division cycle [1]. Also, these models

do not incorporate cell size, so they cannot address the evident

importance of cell growth in driving events of the cell cycle

[17,18,19]. Lastly, cyclins are treated as either absent or present

(0 or 1), so Boolean models cannot simulate the continuous

accumulation and removal of cyclin molecules at different stages of

the cell cycle [20].

Our goal is to retain the elegance of the Boolean representation

of the switching network, while introducing continuous variables

for cell size, cell age, and cyclin composition, in order to create a

model that can be compared in quantitative detail to experimental

measurements with a minimal number of kinetic parameters that

must be estimated from the data. To this end, we keep the cyclin

regulators as Boolean variables but model the cyclins themselves as

continuous concentrations that increase and decrease due to

synthesis and degradation. Next, we replace the Boolean model’s

metronome with real clock time to account for realistic rates of

cyclin synthesis and degradation, and for stochastic variability in

the time spent in each Boolean state of the model. Finally, we

introduced a cell size variable, M(t), which affects progression

through late G1 phase. M(t) increases exponentially with time as

the cell grows and decreases by a factor of ,2 when the cell

divides. (The assumption of exponential growth is not crucial;

similar results are obtained assuming linear growth between cell

birth and division.)

Since the pioneering work of Leon Glass [21,22], hybrid

(discrete-continuous) models have been employed by systems

biologists in a variety of forms and contexts [23,24,25]. Engineers

have been modeling hybrid control systems for many years

[26,27,28], and they have created powerful simulation packages

for such systems [29]: SIMULINK [28], SHIFT [30,31] and

CHARON [32], to name a few. We have not used these

simulation packages because our model can be solved analytically.

Results

Hybrid modeling approach
The modeling approach we are proposing is hybrid in two

senses. First, we employ both continuous and discrete variables,

and second we allow for both deterministic and stochastic

processes. Concerning the components of the control system, we

track cyclin levels as continuous concentration variables, but we

use discrete Boolean variables to represent the activities (‘on’ or

‘off’) of the regulatory proteins (transcription factors and

ubiquitinating enzymes) that control cyclin synthesis and degra-

dation. This distinction is equivalent to a presumed ‘separation of

time scales’: the activities of the regulatory proteins change rapidly

between 0 and 1, while the concentrations of cyclins change more

slowly due to synthesis and degradation. The Boolean variables,

we assume, proceed from one state to the next according to a fixed

sequence corresponding roughly to the super highway of Li et al.

[14]. The time spent in each state, however, is not a ‘tick’ of the

metronome but rather the sum of a deterministic execution time

(which may be 0) plus a random, exponentially distributed waiting

time. In this sense, the model combines deterministic and

stochastic processes.

In its present version, our model is not fully autonomous. The

discrete variables do not update according to Boolean functions of

the current state of the network. Rather, they go through a fixed

sequence of states predetermined by the Boolean network model of

Li et al. [14]. The discrete variables determine the rates of

synthesis and degradation of the continuous variables (the cyclins),

and the cyclins feedback on the discrete variables by determining

how much time is spent in some of the Boolean states. This

strategy keeps the model simple and is appropriate for the cases,

considered in this paper, of unperturbed cycling of ‘wild type’ cells,

Author Summary

The physiological behaviors of cells (growth and division,
differentiation, movement, death, etc.) are controlled by
complex networks of interacting genes and proteins, and a
fundamental goal of computational cell biology is to
develop dynamical models of these regulatory networks
that are realistic, accurate and predictive. Historically, these
models have divided along two basic lines: deterministic or
stochastic, and continuous or discrete; with scattered
efforts to develop hybrid approaches that bridge these
divides. Using the cell cycle control system in eukaryotes
as an example, we propose a hybrid approach that
combines a continuous representation of slowly changing
protein concentrations with a discrete representation of
components that switch rapidly between ‘on’ and ‘off’
states, and that combines the deterministic causality of
network interactions with the stochastic uncertainty of
random events. The hybrid approach can be easily tailored
to the available knowledge of control systems, and it
provides both qualitative and quantitative results that can
be compared to experimental data to test the accuracy
and predictive power of the model.

A Hybrid Model of Mammalian Cell Cycle Regulation
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which travel serenely along the super highway of Li et al. To

consider more complicated cases, of mutant cells that travel a

different route through discrete state space or of cells that are

perturbed by drugs or radiation, we will have to elaborate on this

basic model with additional rules governing the interactions of the

discrete and continuous variables. We are currently working on

alternative strategies to adapt this basic modeling paradigm to

more complex situations.

Our model (Fig. 1) tracks three cyclin species (A, B and E), two

transcription factors (‘TFE’ and ‘TFB’) and two different E3

ubiquitin-ligase complexes (APC-C and SCF). TFE drives the

synthesis of cyclins E and A early in the cell cycle (comparable to

the E2F family of transcription factors) [33], and TFB drives the

synthesis of cyclins B and A late in the cell cycle (comparable to

FoxM1 and Myc) [34,35]. The Anaphase Promoting Complex—

Cyclosome (APC-C) is active during M phase and early G1, when

it combines with Cdc20 and Cdh1 to label cyclins A and B for

degradation by proteasomes. We make a further distinction

between Cdc20 activity on cyclin A (Cdc20A, active throughout

mitosis) from Cdc20 activity on cyclin B (Cdc20B, activated at

anaphase). The SCF labels cyclin E for degradation via

ubiquitination, but only when cyclin E is phosphorylated [36],

which we assume is correlated primarily with cyclin A/Cdk2

activity [37].

In our model, the two transcription factors and the four

ubiquitination factors are each represented by a Boolean variable,

BTFE, etc. For each cyclin component we write an ordinary

differential equation, d[CycX]/dt = ksx2kdx[CycX], where the

rate ‘constants’ for synthesis and degradation, ksx and kdx, depend

on the Boolean variables (see Table 1). Hence, each cyclin

concentration is governed by a piecewise linear ODE. The

parameters in the model (k
0
sx, ksx

00
, etc.) are assigned numerical

values (Table 1), chosen to fit observations of how fast cyclins

accumulate and disappear during different phases of the cell

cycle.

Next, we must assign rules for updating the Boolean variables in

the model. We assume that the Boolean variables follow a strict

sequence of states (see Table 1) that corresponds roughly to the

super highway discovered by Li et al. [14]. This sequence of states

conforms to current ideas of how the mammalian cell cycle is

regulated. Newborn cells are said to be in ‘G1a’ state, because they

are not yet committed to a new round of DNA synthesis and

mitosis. The transcription factors, TFE and TFB, are silent, and

Cdh1/APC-C is active, so the levels of cyclins A, B and E are low

in newborn cells. For a mammalian cell to leave the G1a state and

commit to a new round of DNA replication and division, it must

receive a specific set of extracellular signals (growth factors, matrix

binding factors, etc.), which up-regulate the activity of TFE. We

assume that these ‘proliferation signals’ are present and that our

(simulated) cell spends only a few hours in G1a before transiting

into G1b. In our model, the time spent in G1a is an exponentially

distributed random variable with mean = 2 h. When the cell passes

the ‘restriction point’ and enters G1b, TFE is activated and CycE

begins to accumulate. Among other chores, Cdk2/CycE inacti-

vates Cdh1/APC-C, allowing Cdk2/CycA dimers to accumulate.

In our model, the transition from early G1b to late G1b is weakly

size dependent, because the condition for this transition is that

[CycE]*Mass exceeds a certain threshold (hE). Because this

transition depends on cell mass, those cells that are larger than

average tend to make the transition sooner, and cells that are

smaller than average tend to make the transition later. This effect

allows the cell population to achieve a stable size distribution. In

the late G1b state, CycA/Cdk2 level rises to a certain threshold

(hA), when it triggers entry into S phase. Cdk2/CycA also

promotes the degradation of cyclin E by SCF during S phase. We

assume that DNA synthesis requires at least 7 h.

Cyclin B begins to accumulate in late G1 and S, after Cdh1 is

inactivated, but the major accumulation of cyclin B protein occurs

in G2 phase, after DNA synthesis is completed and TFB is

activated. The G2—M transition is delayed until enough Cdk1/

CycB dimer accumulates ([CycB].hB9) to promote entry into

prophase and the appearance Cdc20A/APC-C, which begins the

process of cyclin A degradation [38,39,40]. Cdc20B/APC-C is

activated at the metaphase—anaphase transition, where it

promotes three crucial tasks: (1) separation of sister chromatids

by the mitotic spindle, (2) partial degradation of cyclin B, and (3)

re-activation of Cdh1. Cdh1/APC-C degrades Cdc20 [41], and

then finishes the job of cyclin B degradation (telophase). When

[CycB] drops below the threshold hB0, the cell finishes telophase

and divides into two newborn daughter cells in G1 phase

(unreplicated chromosomes) with low levels of cyclins A, B and E.

We assume that cell division is symmetric, with some variability;

i.e., the mass of the two daughter cells at birth are dMdiv and

(12d)Mdiv, where Mdiv = mass of mother cell at division, and d is a

Gaussian-distributed random variable with mean = 0.5 and

standard deviation = 0.0167. In all simulations reported here we

assume that cells grow exponentially between birth and division.

However, we have also simulated linear growth, and the results are

not significantly different.

We introduce stochastic effects into the model by assuming that

the time spent in each state of the Boolean subsystem, as it moves

along the super highway, has a random component (T r
i ) as well as

a deterministic component (Td
i ): Ti~Td

i zT r
i . From Table 1, we

see that Td
i ~0 for i = 1, 6, 7, 8, and Td

4 ~7 h. For the remaining

cases (i = 2, 3, 5, 9), Td
i is however long it takes for the cyclin

variable to reach its threshold. The stochastic component for each

transition is a random number chosen from an exponential

distribution with mean = li. The random time delay is calculated

from a uniform random deviate, r, by the formula T r
i = {li ln (r).

The values chosen for the li’s are given in Table 1.

In the Methods section, we describe how we simulate the

progression of a single cell through its DNA replication/division

cycle. Because the model’s differential equations are piecewise

linear, they can be solved analytically, and an entire ‘cell cycle

trajectory’ can be determined by computing a few random

numbers and solving some algebraic equations. A typical result of

such simulations, over three cell cycles, is illustrated in Fig. 1B. Not

surprisingly, the accumulation and loss of the cyclins correlate with

the activities of the cyclin regulators. At the beginning of each

cycle, the cell starts in State 1 (G1a phase in Table 1), with low

levels of all cyclin because TFE and TFB are off and Cdh1 is on.

When the cell leaves G1a, TFE turns on and cyclin E rises rapidly,

but cyclin A increases only modestly, because Cdh1 is still active in

early G1b. Cdh1 turns off when cyclin E level crosses hE, allowing

cyclin A to increase dramatically in late G1b and drive the cell into

S phase (State 4). Cyclin B increases modestly in late G1 and S

phase, because Cdh1 is off but TFB has not yet turned on. Cyclin

E is degraded in S phase, because SCF is now active. When the

cell finishes DNA synthesis, TFB turns on, causing further increase

of cyclins A and B. When cyclin B level rises above its first

threshold, hB9, the cell enters prophase (State 6) and then

prometaphase-metaphase (State 7). During State 7, cyclin A level

drops precipitously because Cdc20A is turned on. After the

replicated chromosomes are fully aligned on the mitotic spindle,

Cdc20B turns on (State 8) and cyclin B is partially degraded.

Cdc20B activates Cdh1 (State 9) and cyclin B is degraded even

faster. When cyclin B level drops below its second threshold, hB0,

the cell divides and returns to G1a (State 1).

A Hybrid Model of Mammalian Cell Cycle Regulation
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Figure 1. The model. (A) The synthesis and degradation of cyclin proteins is regulated by transcription factors (TFE and TFB) and by ubiquitination
machinery (SCF, Cdc20 and Cdh1). (B) Three successive cell cycles are simulated as explained in the Methods. Upper panel: gray curve, 30?M(t); blue
curve, [CycE]?M(t); the gold line and the pink line indicate the time periods when TFE = 1 and SCF = 1, respectively. Lower panel: green curve, [CycA]?M(t);
red curve, [CycB]?M(t); the colored bars indicate the time periods when the Boolean variables are active, according to the legend in the inset.
doi:10.1371/journal.pcbi.1001077.g001

A Hybrid Model of Mammalian Cell Cycle Regulation
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Cyclin distributions in an asynchronous culture
Our first test for the hybrid model is to simulate flow cytometry

measurements of the DNA content and cyclin levels in an

asynchronous population of RKO (colon carcinoma) cells [42]. In

the data set, a typical scatter plot has about 65000 data points,

each point displaying the measurements of two observables in a

single cell chosen at random from the cell cycle (Fig. 2). When the

data are plotted in this way, they form a cloudy tube of points

through a projection of the state space (say, cyclin B versus cyclin

A). Because there will be some cells from every phase of the cell

cycle, the tube closes on itself. If the system were completely

deterministic and the measurements were absolutely precise, the

data points would be a simple closed curve (a ‘limit cycle’) in the

state space. The data actually present a fuzzy trajectory that snakes

through state space before closing on itself. The indeterminacy of

the points comes (presumably) from two sources: intrinsic noise in

the molecular regulatory system (modeled by the random waiting

times, T r
i ) and extrinsic measurement errors, which we shall

introduce momentarily. Our strategy for simulating flow-cytom-

etry data is explained in more detail in the Methods section.

In Fig. 2 we compare our simulated flow-cytometry scatter plots

with experimental results of Yan et al. [42]. We color-code each

cell in the simulated plot according to which Boolean State

(Table 1) the cell is in at the time of fixation. In Fig. 3 we plot

cyclin E fluctuations, as predicted by our model, along with a

projection of the cell cycle trajectory in a subspace spanned by the

three cyclin variables (A, B and E).

Contact inhibition of cultured cells
As a further test of the utility of this modeling approach, we

have used our hybrid model to simulate an exponentially growing

population of an immortalized Human Umbilical Vein Endothe-

lial cell line (HUVEC). In the experiment (Fig. 4A; see Methods), a

culture is seeded with 56104 cells on ‘Day 0’ and allowed to grow.

At Day 6, it reaches confluence and cell number plateaued at a

constant level.

To apply the hybrid model to this data, we had to devise a way

to model contact inhibition, which arrests cells in a stable

quiescent state. To this end, we assume that the transition

probability, p, for exiting State 1 is a function of the number of

cells alive at that time, N:

p~
p0

1z exp
N{N0

N1

� � : ð3Þ

For 0,N1%N0, p is a sigmoidal function of N that drops abruptly

from p0 to 0 for N.N0. For each cell in this simulation, we set l1

(the mean for the random time spent in G1a) to 1/p, and we

choose p0 = 0.5 h21 to conform to the value of l1 in Table 1. As

the population size N increases, the time spent in G1a phase

increases until cells eventually arrest in State 1, and the growth

curve, N(t), levels off. In this case, State 1 in our model corresponds

to a quiescent state (G0) in which cells are alive but not

proliferating.

To make the simulation more tractable, we start off with 500

cells (instead of 50,000 cells) and follow the lineage of each initial

cell until Day 10. Every 24 hours, we compute the number of cells

alive at that point of time and plot the results in Fig. 4A, along with

the experimental data (scaled down by a factor of 100). The

parameter values, N0 = 11,000 and N1 = 500, are chosen to fit the

simulation to the observed growth curve. From the model we can

also compute the percentage of cells in G0/G1, S and G2/M

phases on each day (Fig. 4C), and the results compare favorably

Table 1. Hybrid model of mammalian cell cycle control.

d CycA½ �
dt

~ksa{kda½CycA� ksa~k0sazk0 0saBTFEzk00 0saBTFB k0sa~5 k0 0sa~6 k00 0sa~20

kda~k0dazk0 0daBCdc20Azk00 0daBCdh1 k0da~0:2 k0 0da~1:2 k00 0da~1:2

d½CycB�
dt

~ksb{kdb½CycB� ksb~k0sbzk0 0sbBTFB k0sb~2:5 k0 0sb~6

kdb~k0dbzk0 0dbBCdc20Bzk00 0dbBCdh1 k0db~0:2 k0 0db~1:2 k00 0db~0:3

d½CycE�
dt

~kse{kde½CycE�

kse~k0sezk0 0seBTFE kse~k0sezk0 0seBTFE k0se~0:02 k0 0se~2

kde~k0dezk0 0deBSCF k0se~0:02 k0 0de~0:5

dM
dt

~c:M M~d:M at division c~0:029 hr{1 d~0:5:Ga

G : m~1,s~3:33

State Phase BTFE BSCF BTFB BCdc20A BCdc20B BCdh1 Condition for exit l (h)

1 G1a 0 0 0 0 0 1 none 2

2 Early G1b 1 0 0 0 0 1 [CycE]*M = hE 0

3 Late G1b 1 0 0 0 0 [CycA].hA 0.01

4 S 1 1 0 0 0 0 Tmin = 7 h 1

5 G2 1 1 1 0 0 0 [CycB].h0B 0.5

6 Prophae 0 1 1 0 0 0 none 0.75

7 Metaphase 0 1 1 1 0 0 none 1.5

8 Anaphase 0 1 1 1 1 0 none 0.5

9 Telophase 0 1 0 1 1 1 [CycB],h0 0B 0.025

aG is a Gaussian random variable with mean = 1, s = 3.3%.
hA = 12.5, h0B = 21.25, h0 0B = 3, hE = 80.
doi:10.1371/journal.pcbi.1001077.t001

A Hybrid Model of Mammalian Cell Cycle Regulation
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with the experimental observations (Fig. 4B). Lastly, we also

simulate the patterns of cyclin A2 and cyclin B1 expression on

each day for the growing population of HUVEC cells (see

Supporting Fig. S1).

Discussion

We have constructed a simple, effective model of the cyclin-

dependent kinase control system in mammalian cells and used the

model to simulate faithfully the accumulation and degradation of

cyclin proteins during asynchronous proliferation of RKO (colon

carcinoma) cells. The model is inspired by the work of Li et al.

[14], who proposed a robust Boolean model of cell cycle regulation

in budding yeast. Our goal was to retain the elegance of the

Boolean representation of the switching network, while introduc-

ing continuous variables for cell size, cell age, and cyclin

composition, in order to create a model that could be compared

in quantitative detail to experimental measurements.

We have shown that this model can accurately simulate flow-

cytometric measurements of cyclin abundances in asynchronous

populations of growing-dividing mammalian cells. The parameters

in the model that allow for a quantitative description of the

experimental measurements are easily estimated from the data

itself. Now that the model is parameterized and validated for wild-

type cells, we are currently extending it to handle the behavior of

cell populations perturbed by drugs and by genetic interference. In

some cases, only modest extensions of the model are required; in

other cases, a more thorough overhaul of the way the discrete and

continuous variables interact with each other is necessary.

We have chosen parameter values in our model to capture the

major features of cyclin fluctuations as measured by flow

cytometry during the somatic division cycle of mammalian cells.

We have used a human tumor cell line to calibrate our model.

Between cell lines and normal human cultured cells, there are

differences in the expressions of A and B cyclins [43]; however,

when the levels of cyclin B1 were rigorously compared for HeLa,

K562, and RKO cells, both the patterns and magnitudes of

expression are remarkably similar, apparently dependent to some

degree on the rate of population growth [44]. In addition, the

patterns of expression of cyclins A2 and B1 are similar for these

human tumor cell lines and stimulated normal human circulating

lymphocytes (Supporting Fig. S2). Overall, the simulation outputs

have satisfying similarity both in pattern and magnitude to the real

data for RKO cells, and our simulated expression patterns of

cyclins A, B and E for the tumor cell line are quite similar to the

simulated expression patterns in HUVEC cells (see Supporting

Fig. S1).

However, there remain some inconsistencies between our

mathematical simulations and our experimental observations that

point out where future modifications to the model are needed. For

example, in the model DNA synthesis starts when cyclin A has

accumulated to ,8% of its maximum level (see arrow in Fig. 2D;

50/600<8%), whereas in our measurements DNA synthesis starts

when cyclin A is ,5% of its maximum level (arrow in Fig. 2C).

This discrepancy is tempered by the fact that we are not confident

of the quantitative accuracy of cyclin A expression levels below

,4% of its maximum level in Fig. 2C. Where we place the

minimum expression level of cyclin A in Fig. 2D affects our

estimate of the cyclin A level at onset of DNA synthesis (50 AU at

present). By lowering the minimum expression level of cyclin A

below 10 AU in Fig. 2D (e.g., by lowering k9sa), we could line up

the two arrows in Figs. 2C and D. Nonetheless, we observe

(Supporting Fig. S3) that cyclin A expression correlates highly with

Figure 2. Scatter plots. (A,C,E) Flow cytometry data from Yan et al [42]. DNA = 190 corresponds to G1 and DNA = 380 corresponds to G2/M. (B,D,F)
Our simulations. We are plotting the total amount of cyclin A and cyclin B per cell, i.e., [CycA]?M(t) and [CycB]?M(t). DNA = 1 in G0/G1 phase; = 2 in G2/
M phase. Some ‘instrumental noise’ has been added to the calculated levels of cyclins and DNA, as described in the Methods. The arrows in (A, B)
indicate the rate of cyclin B accumulation in S phase in the measurements and in the model. The arrows in (C, D) indicate the cyclin A level at the
onset of DNA synthesis, compared to the maximum expression level of ,600 AU.
doi:10.1371/journal.pcbi.1001077.g002
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BrdU incorporation, suggesting that significant accumulation of

cyclin A begins simultaneously with the onset of DNA synthesis,

whereas in our model cyclin A production begins in mid-G1

phase. This discrepancy could be minimized by lowering the

cyclin A threshold (hA) in the model.

The simulation (Fig. 2B) captures the observed accummulation

of cyclin B in late G1 (when Cdh1 turns off), but the simulated rise

in cyclin B during S phase appears to be faster than the observed

rise [45] (compare the arrows in Figs. 2A and B). The simulation

does capture the rapid accumulation of cyclin B observed in G2.

Finally, while we did not calibrate the cyclin E expression

parameters to any specific dataset, the pattern of expression in

Fig. 3A is quite similar to expected expression patterns for normal

human somatic cells and some human tumor cell lines [46].

We believe that our hybrid approach will be generally useful for

modeling macromolecular regulatory networks in cells, because it

combines the qualitative appeal of Boolean models with the

quantitative realism of reaction kinetic models.

Methods

Simulations
We simulate a flow cytometry experiment with our hybrid

model in two steps.

Step 1: Creating complete ‘life histories’ for thousands of cells. At the start

of the simulation, we specify initial conditions at the beginning of

the cycle (State 1) for a progenitor cell. We used the following

initial values of the state variables: [CycA] = [CycB] = [CycE] = 1

and M = 3. Our strategy is to follow this cell through its cycle until

it divides into two daughters. We then choose one of the two

daughters at random and repeat the process, continuing for 32500

iterations. We discard the first 500 cells, and keep a sample of

Figure 3. Model predictions of cyclin E dynamics. (A) Scatter plots. (B) Stochastic limit cycle in the state space of cyclins A, B and E. We provide
two different perspectives of this three dimensional figure to help visualize how the cyclin levels go up and down. In addition, we have added
golden-colored balls to help guide the eye along the cell cycle trajectory. Each ball represents the average of the cyclin levels of all the cells binned
over a hundredth of the Qi interval [0,1], where Qi refers to the fraction of the cell cycle completed by cell i (as described in the Methods section).
Finally, it may help to recognize that Fig. 2E is a projection of the data on the CycA-CycB plane, and Fig. 3B is a projection on the CycA-CycE plane.
doi:10.1371/journal.pcbi.1001077.g003

A Hybrid Model of Mammalian Cell Cycle Regulation

PLoS Computational Biology | www.ploscompbiol.org 7 February 2011 | Volume 7 | Issue 2 | e1001077



32000 cells that have completed a replication-division cycle

according to our model. In the second step, we create a simulated

sample of 32000 cells chosen at random phases of the cell cycle, to

represent the cells that were assayed by the flow cytometer.

Let us consider cell i (1,i,32500) at the time of its birth, ti0. By

definition, this cell is in State 1, and we assume that we know its

birth mass, M(ti0), and its starting concentrations of cyclins A, B

and E. Denote the starting concentrations as [CycA(ti0)],

[CycB(ti0)], [CycE(ti0)]. In the ensuing discussion, unless it is

necessary for clarity, we drop the i subscript, it being understood

that we are talking about a representative cell in the population.

We will follow this cell until it divides to produce a daughter cell

with known concentrations of cyclins.

According to Table 1, a cell in State 1 has no special conditions to

satisfy before moving to State 2. Hence the residence time in State 1 is a

random number T r
1 chosen from an exponential distribution with

mean l1 = 2 h. The cell enters State 2 at t1 = t0+T r
1. Assuming

exponential growth, its size at this time is M(t1) = M(t0)

exp{c(t12t0)} = M(t0) exp{cA1}, where c is the specific growth rate of

the culture and A1 = t12t0 is the age of the cell when it exits State 1. To

illustrate how cyclin concentrations are computed at t = t1, let us

consider cyclin A as an example. During the interval t0,t,t1, [CycA]

satisfies a linear ODE with effective rate constants ksa1 = k9sa = 5 and

kda1 = k9da+k09da = 1.4, because BTFE = BTFB = BCdc20A = 0 and

BCdh1 = 1 for a cell in State 1. We can compute the concentration of

cyclin A at any time during this interval from

½CycA(t)�~ ksa1

kda1
z CycA(t0)½ �{ ksa1

kda1

� �
e{kda1(t{t0),toƒtƒt1 ð4Þ

Setting t = t1 in this equation gives the number we seek. In this fashion,

we start tabulating the following information for each simulated cell:

Time t0 t1 t2 . . .

Enter State 1 2 3 . . .

Age 0 A1~t1{t0 A2~t2{t0

Size M t0ð Þ M t1ð Þ M t2ð Þ . . .

Cyclin A CycA t0ð Þ½ � CycA t1ð Þ½ � CycA t2ð Þ½ � . . .

Cyclin B CycB t0ð Þ½ � CycB t1ð Þ½ � CycB t2ð Þ½ � . . .

Cyclin E CycE t0ð Þ½ � CycE t1ð Þ½ � CycE t2ð Þ½ � . . .

Notice that, at t = t1 when the cell enters State 2, the

transcription factor (TFE) for cyclins E and A turns on, and these

cyclins start to accumulate. The cell cannot leave State 2 until

cyclin E accumulates to a sufficiently high level: [Cy-

cE](t)?M(t) = hE, according to Table 1. When this condition is

satisfied, the cell leaves State 2 and enters State 3. The size

dependence on this transition is a way to couple cell growth to the

DNA replication-division cycle. According to the parameter

settings in Table 1, there is no stochastic component to the

transition out of State 2.

We continue in this fashion until the cell leaves State 9 and

returns to State 1, when cyclin B is degraded at the end of mitosis.

This is the signal for cell division. The age of the cell at division is

A9 = t92t0, and the mass of the cell at division is M(t9) = M(t0)

exp(c?A9). The mass of the daughter cell at the beginning of her life

history is Mdaughter(t0) = d?Mmother(t9), where d is a random number

sampled from a normal distribution of mean 0.5 and standard

deviation 0.0167 to allow for asymmetries of cell division.

Notice that simulating the life history of a single cell only

requires generating about a dozen random numbers and

performing a handful of algebraic calculations. At no point do

we need to solve differential equations numerically. Hence we can

quickly calculate the life histories of tens of thousands of cells.

Step 2: Finding the DNA and cyclin levels of each cell in an asynchronous

sample. In the flow cytometry experiments of Yan et al. [42], a

random sample of cells is taken from an asynchronous population,

the cells are fixed and stained, and then run one-by-one through

laser beams where fluorescence measurements are made. So each

data point consists of measurements of light scatter (related to cell

size) and fluorescence proportional to DNA and cyclin content for

a single cell taken at some random point in the cell cycle. To

simulate this experiment we must assign to each of our 32000

simulated cells a number Qi selected randomly from the interval

[0,1], where Qi refers to the fraction of the cell cycle completed by

cell i when it was fixed and stained for measurement. Because each

mother cell divides into two daughter cells, the density of cells at

birth, Q = 0, is twice the density of cells at division, Q = 1. The

‘ideal’ probability density for an asynchronous population of cells

expanding exponentially in number is

f (Q)~( ln 2):21{Q ð5Þ
According to the ‘transformation method’ [47, Chapter 7.2], we

compute Q as

Figure 4. Contact inhibition of a culture of human umbilical vein endothelial cells. (A) Growth curve for the HUVEC population over 10
days, showing the base-10 logarithm of the cell count for both experimental data and our simulation (with N0 = 11000 and N1 = 500). (B) Daily
distribution of cells across the phases of the cell cycle, from experimental data. (C) Model simulation of the phase distributions.
doi:10.1371/journal.pcbi.1001077.g004
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Q~log2

2

2{r

� �
ð6Þ

where r is a random number chosen from a uniform distribution

on [0,1]. In this way, we generate 32000 fractions, Qi.

If Qi is the cell-cycle location of the ith cell when it is selected for

the flow cytometry measurements, then its age at the time of

selection is ai = Qi?Ai9, where Ai9 is the age of the ith cell at division.

Given a value for ai, we then find the state n ( = 1, 2, … or 9) of the

ith cell at the time of its selection:

ti,n{1ƒti0zaivti,n ð7Þ

where ti,n (as defined above) is the time at which the ith cell left state

n to enter state n+1.

Once we know the state n of the cell, we can compute the

concentration of each cyclin in the cell at its exact age ai by

analogy to Eq. [4]:

½CycA(ai)�~

ksa,n

kda,n
z CycA(ti,n{1)½ �{ ksa,n

kda,n

� �
e
{kda,n(ti0zai{ti,n{1)

ð8Þ

where ksa,n and kda,n are the synthesis and degradation rate

constants for cyclin A in state n. This is a straightforward

calculation because in Step 1 we stored the values of tn and

[CycA(tn)] for every state of each cell. We can also calculate the

mass of cell i at the time of its selection:

M(ai)~M(ti0): exp (c:ai) ð9Þ

where M(ti0) is the mass at birth of cell i and c is the specific growth

rate of the culture. Because the flow cytometer measures the total

amount of fluorescence proportional to all cyclin A molecules in

the ith cell, we take as our measurable the product of [CycA(ai)]

times M(ai).

Lastly we determine the DNA content of cell i at age ai

according to:

DNA = 1 for ti0#ti0+ai,ti3 = entry of ith cell into S phase

DNA = 1+(ti0+ai2ti3)/(ti42ti3) for ti3#ti0+ai,ti4 = exit of

ith cell from S phase

DNA = 2 for ti4#ti0+ai,ti9

Now we have simulated values for the measurable quantities of

each cell at the time point in the cell cycle when it was selected for

analysis. Before plotting these numbers, we should take into

account experimental errors, such as probe quality, fixation,

staining and measurement. We do so by multiplying each

measurable quantity (DNA content and cyclin levels) by a random

number chosen from a Gaussian distribution with mean 1 and

standard deviation = 0.03 for DNA measurements and 0.15 for

cyclin measurements. These choices give scatter to the simulated

data that is comparable to the scatter in the experimental data.

Source codes for the hybrid model are provided in the

Supporting Text S1.

Cells, culture, and fixation
Culture and fixation of RKO cells were described in [42]. The

immortalized HUVEC cells [48] at passage 93 were seeded at

2.56103 cells/cm2 in 10 ml EGM-2 media with 2% fetal bovine

serum (Lonza, Basel). Duplicate plates were prepared for each

time point at days 1, 2, 3, 4, 5, 6, 7, 10, and 15. Cells were fed

every other day by replacing half the volume of used media. At the

indicated times, cells were trypsinized, washed, and cell counts

performed with a Guava Personal Cytometer (Millipore, Billerica,

MA). Fixation was as previously described [49]; briefly, cells were

treated with 0.125% formaldehyde (Polysciences, Warrington, PA)

for 10 min at 37uC, washed, then dehydrated with 90% Methanol.

Cells were fixed in aliquots of 16106 cells (days 1–3) or 26106

(days 4–15). Fixed cell samples were stored at 220uC until staining

for cytometry.

Immunofluorescence staining, antibodies, flow
cytometry

Staining and cytometry for RKO cells were described in [42].

Briefly, cells were trypsinized, fixed with 90% MeOH, washed

with phosphate buffered saline, then stained with monoclonal

antibodies reactive with cyclin B1, cyclin A, phospho-S10-histone

H3, and with 49,6-diamidino-2-phenylindole (DAPI). For a

detailed, updated version of antibodies, staining, and cytometry

for cyclins A2 and B1, phospho-S10-histone H3, and DNA

content, see Jacobberger et al. (38).

Data pre-processing
Data pre-processing was performed with WinList (Verity

Software House, Topsham, ME). Doublet discrimination (peak

versus area DAPI plot) was used to limit the analysis to singlet cells;

non-specific binding was used to remove background fluorescence

from the total fluorescence related to cyclin A2 and B1 staining.

The phycoerythrin channel (cyclin A2) was compensated for

spectral overlap from FITC or Alexa Fluor 488. For simplification,

very large 2C G1 HUVEC cells and any cells cycling at 4CR8C

were removed from the analysis. These were present at low

frequency. Data were written as text files then transferred to

Microsoft Excel.

Supporting Information

Figure S1 Patterns of Cyclin A and Cyclin B expression in

simulated populations of HUVECs growing toward confluence

over days 0–10.

Found at: doi:10.1371/journal.pcbi.1001077.s001 (0.75 MB PDF)

Figure S2 Pattern of Cyclin A expression in stimulated human

circulating lymphocytes.

Found at: doi:10.1371/journal.pcbi.1001077.s002 (0.05 MB PDF)

Figure S3 Correlation of Cyclin A expression with BrdU

labeling.

Found at: doi:10.1371/journal.pcbi.1001077.s003 (0.33 MB PDF)

Text S1 Source codes.

Found at: doi:10.1371/journal.pcbi.1001077.s004 (0.18 MB

DOC)
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