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Abstract

In the European Union (EU) millions of laboratory mice are used and killed for experimental
and other scientific purposes each year. Although controversially discussed, the use of car-
bon dioxide (CO,) is still permitted for killing rodents according to the Directive 2010/63/EU.
Within the scope of refinement, our aim was to investigate if isoflurane and sevoflurane are
an appropriate alternative killing method to CO, in mice. Different concentrations of CO, (fill-
ing rates of 20%, 60%, 100%; CO, 20, 60, 100), isoflurane (Iso 2%, 5%) and sevoflurane
(Sevo 4.8%, 8%) were compared in two mouse strains (NMRI, C57BI/6J) using a broad
spectrum of behavioral parameters, including the approach-avoidance test, and analyzing
blood for stress parameters (glucose, adrenaline, noradrenaline). We focused in our study
on the period from the beginning of the gas inlet to loss of consciousness, as during this
period animals are able to perceive pain and distress. Our results show that only higher con-
centrations of CO, (CO, 60, 100) and isoflurane (5%) induced surgical tolerance within 300
s in both strains, with CO, 100 being the fastest acting inhalant anesthetic. The potency of
halogenated ethers depended on the mouse strain, with C57BI/6J being more susceptible
than NMRI mice. Behavioral analysis revealed no specific signs of distress, e. g. stress-
induced grooming, and pain, i. e. audible vocalizations, for all inhalant gases. However,
adrenaline and noradrenaline plasma concentrations were increased, especially in NMRI
mice exposed to CO, in high concentrations, whereas we did not observe such increase in
animals exposed to isoflurane or sevoflurane. Escape latencies in the approach-avoidance
test using C57BI/6J mice did not differ between the three inhalant gases, however, some
animals became recumbent during isoflurane and sevoflurane but not during CO, exposure.
The rise in catecholamine concentrations suggests that CO, exposure might be linked to a
higher stress response compared to isoflurane and sevoflurane exposure, although we did
not observe a behavioral correlate for that. Follow-up studies investigating other fast-acting
stress hormones and central anxiety circuits are needed to confirm our findings.
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Introduction

The fate of almost all experimental animals is being killed at certain stages of each study, either
to gain blood, tissue and other specimens or at humane endpoints to prevent any extension of
stress or pain. Furthermore, during the process of generating transgenic strains, redundant
animals lacking the required genetic background are killed.

More than 50 years ago, the concept of the 3Rs (replace, reduce, refine) in animal experi-
mentation has been promoted [1]. Refinement within the process of killing laboratory animals
means to use the method that causes the least minimum of pain, suffering, and distress [2].
The Directive 2010/63/EU on the protection of animals used for scientific purposes stipulates
that a competent person shall carry out killing using a method that is appropriate for respective
species [3]. In Annex IV of the Directive, the exposure to carbon dioxide (CO,) by gradually
filling is suggested as an adequate method for killing laboratory rodents. Inhalation of CO, is
still the most common euthanasia method because it rapidly and reliably induces loss of con-
sciousness with minimal safety concerns for the user [4]. Several authors regard CO, as an
appropriate killing method for rats [5, 6] and mice [7-10] under certain circumstances (e. g.
appropriate CO, concentration, specific surroundings like habituation to the chamber; for
review see also [4, 11]).

However, the use of CO, for euthanizing animals has been questioned as studies have
shown that the exposure to CO, causes aversion in rats and mice [12, 13], demonstrated by
several behavioral tests, such as the preference test [14-17], the approach-avoidance test [18-
21], and the aversion-avoidance test [22]. Moreover, inhalation of CO, concentrations of
approximately 50% are perceived as unpleasant and painful in most humans [23, 24], provok-
ing a feeling of breathlessness, whose quality and quantity correlates positively to the partial
pressure of CO, in the blood [25, 26]. It is thought that CO, diffuses into the mucosal cells of
the respiratory tract and decreases the intracellular pH by reacting with water, which may
selectively excite primary afferent nociceptors [27, 28]. It has been shown that intranasal appli-
cation of CO, in rats dose- and time-dependently activates pain-related neurons in the medul-
lary dorsal horn [29]. In addition to the behavioral findings, mice and rats killed with CO,
(prefilled or gradually filled) show several histopathologic alterations of the lung, such as hem-
orrhage and perivascular edema [7, 24, 30, 31].

Hence, assessment and development of alternatives to CO, killing has become a focal point
in laboratory animal science. Recent studies recommend the use of volatile anesthetics for
euthanasia [12, 13, 22], but it still needs to be clarified whether they cause less pain, distress,
and suffering compared to CO,. In several behavioral tests, halogenated ethers such as isoflur-
ane, sevoflurane, enflurane, and desflurane as well as halothane were found to be less aversive
than CO, in mice and rats [12, 15, 17, 22]. However, in case of isoflurane there is also evidence
that multiple exposures lead to increased aversiveness in naive rats compared to the first expo-
sure [22]. Sevoflurane is reported to be less irritant in humans than isoflurane [32, 33], and is
therefore used in pediatric patients with maximum vapor concentration for mask induction of
narcosis [34]. A recent study also described sevoflurane to be the least aversive gas in mice in
comparison to isoflurane and CO, [35]. However, there is also evidence that subanesthetic
concentrations of isoflurane and sevoflurane decrease the respiratory response provoked by
hypercapnia in humans [36] and mice [37].

Only few studies specifically compare the exposure to CO, with the exposure to other inhal-
ant anesthetics in rodents, and most of them do not focus on the humaneness of the method.
Isoflurane rather than CO, is recommended as an anesthesia method for blood sampling in
rats, since the heart rate and blood pressure of the animals are affected by CO, for a longer
time post-anesthesia than by isoflurane, although the authors did not further substantiate this
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observation [38]. Increased blood corticosterone concentrations have been observed after iso-
flurane and CO, exposure, which were significantly higher after repeated administration of
CO; [39]. Another study comparing the effects of CO,, methoxyflurane, ether, and isoflurane
on different blood parameters, recommended CO, as a suitable method for retro-orbital blood
sampling because of its smooth recovery period [40]. Valentine et al. suggested that anesthetiz-
ing mice with isoflurane before CO, euthanasia actually increases behavioral and neuromole-
cular signs of stress in comparison to killing with CO, alone [41].

As the present data does not conclusively demonstrate the advantages of halogenated ethers
over CO,, the aim of our study was to evaluate comprehensively the humaneness of isoflurane
and sevoflurane as killing methods in mice, and to compare their effects to those of CO,. During
induction of anesthesia, animals are able to perceive pain, distress, and suffering until they are
unconscious, which refers in general to the end of stage 1 of anesthesia. Although the appropri-
ate surrogate measure for unconsciousness in rodents is not finally defined, the loss of righting
reflex (LORR) has been described as a first indicator of insensibility and as a good correlate for
the loss of consciousness in humans [42]. The subsequent loss of the pedal withdrawal reflex
(LOPR) is a more conservative measure for surgical tolerance [13, 43]. Hence, we focused the
behavioral analysis part of our study on the period from the beginning of gas exposure to the
LORR. In the first part of the study (Experiment 1), the three inhalant gases were applied in dif-
ferent concentrations by gradual filling and the behavior was extensively analyzed on the basis
of the assessment procedure for the evaluation of drug effects described by Irwin [44]. The
behavioral analysis included the recording of ultrasound and audible vocalization, the latter a
specific sign of acute pain [45, 46]. In general, mice produce ultrasonic vocalizations during
nonaggressive social interactions (for review [47]), whereas acute pain leads to specific audible
vocalizations [48]. Additionally, we registered the latencies to the onsets of LORR and LOPR as
time is an important factor for a daily routine of euthanizing animals. For humane reasons,
blood samples for catecholamine and glucose concentrations were collected after the LOPR had
been achieved. As increases in plasma catecholamine concentrations precede corticosterone
responses to stress in rats [49], we decided to measure plasma adrenaline and noradrenaline
concentrations as faster responding stress markers. However, it has to be stated that the absolute
time points for plasma catecholamine and corticosterone concentrations to peak are difficult to
determine. Blood glucose concentrations were also recorded as possible additional stress marker
as a rapid and marked increase in plasma glucose levels has been associated with the stress of
ether anesthesia in two mouse strains [50]. The respiratory tract was examined for macroscop-
ically visible alterations and was subsequently prepared for further histological analysis. Since
strain differences have been already described for the effects of CO, (see [51]), we conducted
our experiments in two commonly used mouse strains, i. e. NMRI and C57Bl/6] mice.

In the second part of our study (Experiment 2), we investigated the aversiveness of CO,, iso-
flurane, and sevoflurane in an approach-avoidance test according to the protocol by Makowska
etal. [52]. Therefore, C57Bl/6] mice were exposed to isoflurane, sevoflurane, or CO, in three
ascending concentrations to determine whether one gas is more avoided than the other.

Methods
Experimental animals

The animals used in this study, male and female NMRI (HsdWin:NMRI) as well as male and
female C57Bl/6] (C57BL/6]OlaHsd) mice originally obtained by Harlan Laboratories (Nether-
lands), were control mice of previous behavioral experiments conducted at our institute or sur-
plus mice of our own breeding. These mice had been either untreated or had only received
saline injections in previous tests. In order to reflect the conditions in a normal laboratory, the
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age of the animals covered a broad spectrum as 8-22 weeks for NMRI mice and 10-23 weeks
for C57Bl/6] mice. Male mice weighed 37.4 + 3.8 g (NMRI) and 27.6 + 2.3 g (C57Bl/6]), female
mice 30.8 + 3.6 g (NMRI) and 20.8 + 2.0 g (C57Bl/6]).

Before the actual experiments started, mice were group-housed by gender (max. 4 animals
per group) in Makrolon type III cages (420 x 265 x 150 mm, floor area 825 cm’, Bioscape,
Wandlitz, Germany) with dust-free wooden bedding (ssniff®™ Lignocell 3-4 S, Soest, Ger-
many). Cage enrichment included cellulose and cardboard tubes as nesting material and sun-
flower seeds in the bedding to encourage seeking behavior. The animals were fed a pelleted
mouse diet (ssniff’@ EF R/M-H 10 mm, ssniff Spezialdidten GmbH, Soest, Germany) ad libi-
tum and had free access to tap water. The light/dark cycle in the rooms was 12/12 h (lights on
at 5:00 a. m.) with artificial light (~100 Lux in the cage). The room temperature was 23 + 1°C,
with a relative humidity of 50 + 10%. Animals were handled and weighed at least once a week.
Once weekly, home cages were cleaned and equipped with new bedding by a professional ani-
mal keeper. Animals were free of pathogens according to FELASA recommendations and
health status was monitored quarterly by using sentinel animals.

The experiments were performed in accordance with the German Animal Welfare Act and
the corresponding regulation. Breeding, husbandry, and the execution of experimental proce-
dures were approved by the competent authority, i. e. Landesamt fiir Gesundheit und Soziales
(registration numbers ZH5, G 0460/09).

Experiment 1

Narcotic chamber. The narcotic chamber consisted of a Macrolon type III cage (420 x
265 x 150 mm (top), floor area 825 cm?, Bioscape, Wandlitz, Germany; volume: 14 1) and a
purpose-designed, clear acrylic glass lid according to the thesis by Corbach [8] (Fig 1). Three
openings (each 3 cm diameter) were integrated in the lid: two holes at each end for connecting
the exhaust tubes and one hole in the center for connecting the anesthetic gas inlet. An acrylic
glass square (7 cm x 10 cm x 0.5 cm) was attached 1.8 cm below the center hole as a turbulence
device to provide homogenous mixing of the gases [8]. Conventional sealing strip was attached
on the bottom of the lid to prevent air exhausting through the edges. In order to avoid the
influence of different odors, each animal was assigned to an individual cage. The bottom of the
cage contained an acrylic glass board (36.8 cm x 19.8 cm x 0.3 cm) with a rough surface and
with 4 thin nylon threads connected to the middle of each side to allow lifting for testing of the
righting reflex. An ultrasound sensitive microphone (ultrasound sensor: Knowles, Dover Cor-
poration, Downers Grove, Illinois, USA; plug-in connector: Neutrik® NC MX, Dachau, Ger-
many) was suspended in the center of the test cage via a hole in the lid next to the gas tube hole
and connected to the Avisoft Ultrasoundgate 116 (Avisoft Bioacoustics, Glienicke, Germany)
and a laptop. Two video cameras (Panasonic™ HDC-TM 700, Kadoma Osaka, Japan and
Canon PowerShot SX 200 IS, Tokyo, Japan) were positioned close to the test cage to record the
behavior from two different angles.

Anesthetic apparatus and substances. Eight experimental groups per strain (CO, 20, CO,
60, CO, 100, Iso 2%, Iso 5%, Sevo 4.8%, Sevo 8%, and Air) were tested. A sample size calculation
was performed to determine the number of animals to be used: Each group contained 16 animals
(8 male and 8 female). All animals were manually assigned to the treatment groups and it was
assured that each age group was comparably represented in each treatment group and for each
sex. We used CO, from compressed gas cylinders (Air Liquide Deutschland GmbH, Berlin, Ger-
many) fitted with a combined pressure reduction valve and flowmeter. Isoflurane (Forene®,
Abbott GmbH & Co.KG, Wiesbaden, Germany) and sevoflurane (Sevorane™, Abbott GmbH &
Co.KG, Wiesbaden, Germany) were delivered via a custom fitted anesthetic machine on the basis
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Fig 1. A. Narcotic chamber according to Corbach [8] consisting of a Macrolon type III cage and a clear acrylic glass lid. B. Detailed view of the
narcotic chamber. 1) Connector for gas inlet, with a turbulence device attached below. 2) Connector for gas outlet, with an additional
connector on the opposite side. 3) Acrylic glass lid. 4) Microphone.

https://doi.org/10.1371/journal.pone.0203793.g001

of a Driger Sulla®™ device (Driiger Medical GmbH, Liibeck, Germany), that allowed the enrich-
ment of compressed air (Air Liquide Deutschland GmbH, Berlin, Germany) with an isoflurane
vapor (Driger Vapor™ 19.1 Isoflurane 5%, Liibeck, Germany) or sevoflurane vapor (Driger
Vapor™ 19.3 Sevoflurane 8%, Liibeck, Germany) and the direct introduction of the gas into the
test cage. One hundred percent CO, was delivered at three different filling rates: 20, 60, and 100%
of cage volume per minute (% CV/min, = treatment groups CO, 20, CO, 60, and CO, 100)
which corresponds to flow rates of 2.8, 8.4, and 14 I/min, respectively. Isoflurane and sevoflurane
were delivered with a constant filling rate of 71% CV/min, which is the maximum rate for both
anesthetic agents (10 I/min) to allow for rapid filling of the cage, and with low 1.5 minimum alve-
olar concentration [53, 54] and maximum setting of the vapors. Two different concentrations of
isoflurane and sevoflurane were used: 2% and 5% isoflurane (Iso 2% and Iso 5%) and 4.8% and
8% sevoflurane (Sevo 4.8% and Sevo 8%). Concentrations of the narcotic gases were based on pre-
vious studies [53, 54].

An estimation of gas concentration in the test cage was calculated for the time points of the
onset of the LORR and the LOPR for each narcotic gas and strain. Assuming that at any given
time the narcotic gas is homogenously mixed with the residing gas inside the test cage, we

PLOS ONE | https://doi.org/10.1371/journal.pone.0203793 September 10,2018 5/29


https://doi.org/10.1371/journal.pone.0203793.g001
https://doi.org/10.1371/journal.pone.0203793

i@jpl‘)S|ONE

Use of CO,, isoflurane and sevoflurane for euthanasia in mice

estimated the gas concentration (c) at time point (t) using the formula by Corbach [8]:

Cin=C _ -9
Cin — C0

Cin concentration of the narcotic gas [%]

o concentration of the residing gas at time point t = 0 (start of the gas flow) [%]
Q flow rate of the narcotic gas [I/min]

V volume of the test cage [1].

Control animals (Air) received compressed air with a filling rate of 71% CV/min for 300 s
before they were immediately sacrificed by decapitation.

Experimental setup. All experiments were conducted in a separate laboratory room
adjunctive to the housing facilities. Mice were randomly assigned to the eight experimental
groups (see 2.2.2). In order to minimize stress induced by the unfamiliar environment, all ani-
mals were habituated for 3 min on 3 consecutive days to their assigned test cage with the
acrylic glass lid on top. Three days of habituation were found to be sufficient to acclimatize the
animals to the new environment [55]. During this time, mice were single-housed with visible
and odor contact to conspecifics. The mice were carried in their home cages to the adjunctive
testing room. There, they were transferred from the home cages to their assigned test cages
using individual cardboard tubes, which the animals entered voluntarily. Habituation took
place from 9:00 to 11:00 a.m. and 2:00 to 4:00 p.m. The individual test cages were cleaned with
paper towels between trials to retain the mouse odor simulating a home cage-like atmosphere.
Control animals were additionally trained to be placed in the guillotine with the blade in a
non-active position to minimize the stress prior to the decapitation procedure.

The actual experiment took place between 8:30 a. m. and 11:30 a. m. on the fourth day.
After carrying the animal in its home cage to the testing room, each mouse was transferred to
its assigned test cage using the individual cardboard tubes and was allowed to explore it for 1
min before the narcotic gas or air was continuously introduced. The observation period started
with the beginning of gas/Air exposure and ended when the mouse reached surgical tolerance
proven by the LOPR or was terminated after a maximum of 300 s. The fixed period of 300 s as
cut-off time was based on previous studies, in which similar concentrations of the narcotic
gases induced the LOPR after less than 300 s [8, 56]. The 300 s cut-off time was also chosen
due to practical reasons as animals should be euthanized, apart from causing the least distress
and suffering, within the minimal possible time.

During the induction of narcosis, behavior and vocalizations were recorded. Animals not
reaching surgical tolerance within 300 s (apart from control animals) were excluded from fur-
ther analysis. At the end of each experiment, animals were immediately sacrificed by decapita-
tion within seconds and blood was collected for further analysis of glucose, adrenaline and
noradrenaline concentrations. Additionally, the respiratory tract was macroscopically ins-
pected and afterwards prepared for histological analysis (see 2.2.4). Between each trial the test
cage was washed out with oxygen. Additionally, the acrylic glass lid, test cage, and movable
acrylic glass board were cleaned with odorless detergent (Frosch®™ Sensitiv Vitamin Spiilmittel,
parfiimfrei, Erdal GmbH, Mainz, Germany) and were dried with a paper towel.

Assessment. Loss of reflexes. The righting reflex of mice is the postural response when
placed on their back or side to reorient themselves such that their paws or feet are oriented
towards the ground [42]. Latency to reach the LORR as an estimation of the onset of
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unconsciousness was recorded as it is suggested for rats [43]. Once the mouse was recumbent
and immobile for 10 s, the acrylic glass board was lifted at one side by pulling at the nylon
threads until the mouse rolled over to its side or back. If the mouse was unable to right itself,
the animal was considered unconscious and that time point was noted [42]. In cases where the
animal attempted to move or to right itself, we tested the reflex again after 10 s of immobility
and repeated this procedure, if necessary. Once the righting reflex was negative, the lid of the
test cage was temporarily opened after 10 s so far that the interdigital web of a hind limb could
be strongly pinched with atraumatic forceps. If the mouse did not show any withdrawal move-
ment, the animal was considered to have reached the stage of surgical tolerance. In cases of
withdrawal movement of the hind limb, we tested the reflex again on the other hind limb after
a further 10 s of immobility and repeated this procedure again every 15 s, if necessary. Mice
were sacrificed with the onset of LOPR as at this time point it was ensured that the animals did
not perceive pain during the procedure.

If a mouse reached the surgical tolerance within 300 s, the treatment was considered practi-
cable. We defined the treatment as reliable if 15 out of 16 (93.8%) mice within one group
reached the surgical tolerance in < 300 s. This definition is an approximation to the ADgys, i. e.
the anesthetic dose at which 95% of the patients are anesthetized and will not show any move-
ment to pain stimuli [57]. In our study, experimental groups with a minimum of 14 out of 16
animals (i. e. 87.5%) reaching surgical tolerance within 300 s were included in the statistical
analysis to demonstrate a dose-response dependency. If a single mouse did not reach the surgi-
cal tolerance in < 300 s, the animal was excluded from further analysis.

Behavioral analysis. The behavior from the start of gas exposure to the end of the experi-
ment (either reaching LOPR or after a maximum of 300 s) was videotaped and afterwards ana-
lyzed by an experimenter blind to the treatment. Since it is generally suggested that animals
can only perceive pain, suffering, and distress during stage 1 of anesthesia, we observed which
of the following behavioral parameters occurred before the LORR:

Locomotion. Crossings (i. e. with the middle part of the mouse body) of a virtual center line
parallel to the short side of the test cage according to Niel and Weary [58]. The number [n] of
crossings was counted and calculated per min. As we wanted to measure ambulatory behav-
ior, we excluded incomplete crossings in form of body turns which mostly occurred within 3
s. Increased locomotor activity can be a sign of agitation and distress. In addition, we looked
out for freezing behavior as a sign of fear and anxiety.

Rearings. The number [n] of rearings (i. e. lifting both fore paws) was recorded and calcu-
lated per min.

Stress-induced grooming. Stress-induced grooming behavior was defined as “incorrect”
transitions between different grooming stages (uninterrupted cephalocaudal progression of
self-grooming) and as more interrupted grooming bouts [59]. The number [n] of incorrect
grooming actions was noted and calculated per min.

Jumps. Since CO, exposure can induce escape responses, such as jumping behavior, in mice
[51], we additionally counted the number of jumps (defined as sudden springing with all four
paws off of the ground) per min.

Excitatory phenomena. Clonic or tonic convulsions may be evoked especially during slow
induction or emergence of anesthesia. Hence, the occurrence of the following excitatory phe-
nomena according to Irwin [44] were recorded and calculated as a percentage for each
group: running excitement, clonus (coordinated, asymmetrical convulsion with natural, pur-
poseful-like movements, e. g. "running”, while the animal is lying down or on its side), and
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opisthotonus (seizure where head, body, and limbs are rigidly extended and arched back-
wards) [44].

Gait. The occurrence of the following movements were registered and the percentage for
each group calculated according to Irwin [44]: ataxia (inability of truncal, pelvic, and limb
muscles to move in unison, so that the animal tends to excessively sway, rock, or lurch to the
side as it proceeds forward and is variously unable to walk a straight line) and hypotonic gait
(impairment due to limb weakness or paralysis in which the animal is variously unable to
support its weight but can proceed forward in a straight line without lurching).

Vocalization. The frequency and duration of audible and ultrasound calls were recorded by
the Avisoft-RECORDER 2.7 and analyzed by the Avisoft-SASLab Pro 4.15 software (Avisoft
Bioacoustics, Glienicke, Germany).

Blood analysis At the end of the experiment, the animals were immediately decapitated
and trunk blood was collected (dripped directly or drawn up with a 1 ml syringe) for further
analysis.

Blood glucose concentration. Glucose concentration [mmol/]] in the trunk blood was
immediately determined using a blood glucose meter by Ascensia™ Dex2®™ with a measuring
range of 10-600 mg/dl (0,6-33,3 mmol/l) and Autodisc®) test strips (both Bayer HealthCare
AG, Leverkusen, Germany) according to the manufacturer’s instructions.

Plasma adrenaline and noradrenaline concentrations. Trunk blood was dripped into ice
cooled tubes (420 A weif8 Katecholamine 1 ml containing EGTA/GSH, Kabe Labortechnik,
Niimbrecht-Elsenroth, Germany) and immediately centrifuged (5°C, 10 min, 4000 rpm,
Eppendorf Centrifuge 5403, Hamburg, Germany). The supernatant plasma was collected and
stored in another tube in the fridge (-12 to -14°C) until further processing on the same day
using the test kit by CHROMSYSTEMS GmbH for analyzing catecholamine concentrations
(Munich, Germany). The test kit consisted of a mobile phase, internal standard, extraction
buffer, washing buffer, elution buffer, sample clean up columns, plasma calibration standard
for catecholamines and plasma endocrine control, pathological range, lyophilized. Plasma
samples were less than 1 ml. Therefore, we modified the manufacturer’s instruction as follow-
ing: the plasma was diluted with 0.9% sodium chloride (NaCl) solution and the internal stan-
dard was adjusted quantitatively as preliminary tests have already revealed substantial
differences in catecholamine plasma concentrations between CO, and the halogenated ethers
(treatment groups CO, 20, CO, 60, and CO, 100: 100 pl plasma, 800 pl 0.9% NaCl, and 100 pl
internal standard, treatment groups Iso 2%, Iso 5%, Sevo 4.8%, and Sevo 8% and control
group: 200 pl plasma, 725 pl 0.9% NaCl, and 75 yl internal standard). The probes were stored
at -80°C until they were analyzed for catecholamine concentrations by high pressure liquid
chromatography (HPLC). HPLC analysis was conducted with electrochemical detection
(pump 510, autosampler 717 and detector 460 by Waters, Milford, Massachusetts, USA; with
0.8 ml/min at 400 mV) using an equilibrated and tested column for catecholamines in plasma
and the mobile phase for HPLC analysis of catecholamines by CHROMSYSTEMS GmbH
(Munich, Germany) and the chromatography software Peak Net"™ (automatization software,
version 5.1, Dionex, Sunnyvale, California, USA). The concentrations of the catecholamines in
plasma samples were calculated relative to the internal standard. Each run was 20 min, and the
retention times for adrenaline and noradrenaline were 6.0 min and 7.1 min, respectively. The
plasma concentrations of adrenaline and noradrenaline are expressed as [ng/ml].

Examination of the respiratory tract. Gross and histological alterations of the respiratory
tract were taken as indications of pain.
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Gross examination. Nasal and buccal mucosae of the respiratory tract as well as the con-
junctivae were examined for mucosal defects and signs of inflammation (redness, swelling,
and exudation). Moreover, it was noted if there was foamy efflux from the trachea of the
decapitated trunk. As hemorrhage has been observed following CO, euthanasia in rats [24],
the tracheal lumen was controlled for coagulated blood caused by intrapulmonary bleeding.

Histological examination. Both lungs including the trachea were carefully dissected and
fixed by immersion in 4% paraformaldehyde for 14 days. Afterwards, the specimens were
completely embedded in Paraplast®™ (Roth, Karlsruhe, Germany) and 6 pm slices were pre-
pared. Slices were stained with hematoxylin and eosin (HE), connective tissue staining (Lade-
wig), and Elastika staining (resorcin fuchsine, thiazine red, picric acid). A horizontal plane was
chosen as section plane that included parts of the trachea, bronchi, bronchioles, and alveoli.
Lung slices of 4 randomly selected mice per group were scanned by a blinded investigator. Per
animal, 2 HE, 1 Ladewig, and 1 Elastika stained slices with 200 x and 400 x magnification of
the microscope (Axioskop HBO 50, Carl Zeiss AG, Oberkochen, Germany; microscope cam-
era: Nikon DS Ri 1, Nikon Instruments Europe B.V., Amstelveen, Netherlands) were analyzed
for the occurrence of blood aspiration in trachea and bronchi, congestion of blood vessels
(veins, venules, and capillaries), and alteration to lung tissues (bleeding into alveolar septa and
alveolar spaces, atelectasis, edema, and disintegration).

Statistical analysis. All data were analyzed using SigmaPlot™ (Version 11, SPSS Inc., Chi-
cago, Illinois, USA) and are shown as medians and [25./75. percentile] or percentage [%] of
animals of each experimental group. Only mice that reached the surgical tolerance within 300
s and experimental groups in which a minimum of 14 mice (87.5%) reached the surgical toler-
ance within 300 s as well as all animals of the control groups were included in the final analysis
(see Table 1, grey shaded groups). The majority of data was not normally distributed, therefore
all data were analyzed by Kruskal-Wallis one-way ANOV As on ranks followed by Dunn’s
tests. The behavioral data as well as glucose, adrenaline, and noradrenaline concentrations
were compared to control (Air) and also pairwise between the treatment groups. Data of
LORR and LOPR were only compared pairwise between the treatment groups. A probability
value of p<0.05 was considered to be statistically significant. The treatment effects on the
respiratory tract (gross and histological examination) were descriptively analyzed.

Experiment 2

The approach-avoidance test was conducted according to Makowska et al. [52]. The principle
of this test is that animals are put in a situation where they have to decide between the intake
of a food reward or the escape from a negative stimulus, in this case incoming inhalant gas.
First, mice are trained to enter the experimental cage on a signal, which is rewarded with food.
Once the training is accomplished, the animals are exposed in the experimental cage to the
inhalant gas, which was turned on when the animal starts eating. The latency of the animal to
leave the cage is recorded. Aversion is defined as significantly decreased escape latency after
gas exposure compared to Air control. In the present study, we used 16 male (30.9 + 2.9 g) and
14 female (22.6 + 1.53 g) C57Bl/6] mice. The animals were randomly allocated to the three
treatment groups, i. e. isoflurane (4 female/6 male), sevoflurane (5 female/5 male), and CO, (5
female/5 male). All treatment groups were initially exposed to air and then to one of the three
gases in three ascending concentrations, so that each animal served as its own control.
Apparatus. The apparatus consisted of two Macrolon type III cages (420 x 265 x 150 mm,
floor area 825 cm?, Bioscape, Wandlitz, Germany) connected with a black, ribbed hose (@ 3.5
cm, 35 cm long) that allowed the animal to cross freely between both cages. The experimental
cage was placed 15 cm below the other cage (see Fig 2). Both cages contained normal bedding
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Table 1. Latencies [s] to reach the loss of righting reflex (LORR) and pedal withdrawal reflex (LOPR) are presented as median [25./75. percentiles] of mice that
reached the LOPR within 300 s.

NMRI LORR [s] LOPR [s] LOPR [n/ %]
CO, 20 111.5 | [108.0/114.0] 261.0 | [197.5/298.5] 4/25
CO, 60 58.5 | [55.0/66.5] 94.5 | [74.5/129.0] 16 / 100
CO, 100 51.0 | [46.75/54.75] 65.0 | [60.5/71.25]* 15/93.8
Iso 2% 191.5 | [181.0/204.0] 284.0 | [256.0/297.0] 10/ 62.5
Is0 5% 80.5 | [73.0/86.0]** 101.5 | [95.0/124.0]* 16/ 100
Sevo 4.8% 169.0 | [141.0/181.0] 270.5 | [246.0/295.0] 10/ 62.5
Sevo 8% 100.5 | [86.0/113.0]** 141.0 | [127.0/172.0]** 14/87.5
C57Bl/6] LORR [s] LOPR [s] LOPR [n/ %]
CO,20 108.0 | [84.5/117.5] 196.0 | [166.0/267.25] 5/31.3
CO, 60 60.0 | [57.0/63.75] 80.0 | [75.25/85.75] 15/93.8
CO, 100 50.0 | [49.0/52.5] 63.5 | [60.5/67.0] 16 / 100
Iso 2% 122.0 | [108.0/136.0]** 250.5 | [231.0/282.0]*" 14/ 87.5
Iso 5% 67.0 | [65.5/68.0]*" 95.0 | [83.5/102.0]™* 16 / 100
Sevo 4.8% 122.0 [113.25/129.5] 230.0 | [213.5/259.5] 13/81.3
Sevo 8% 82.0 | [75.5/86.0]*" 115.5 | [109.0/123.0]** 16 / 100

Note, the latencies to reach the LOPR have to interpreted with caution as the opening of the cage lid to test this reflex might have diluted the gas concentration with air.
The number [n] and percentage [%] of a group reaching the LOPR within 300 s are indicated in the right column. Grey boxes indicate the groups that are included in
the statistical analysis of behavioral and blood parameters as well as the descriptive analysis of the respiratory tract. p<0.05 (Dunn's test),

*vs. CO, 60,

*vs. CO, 100,

*vs. Iso 2%.

https://doi.org/10.1371/journal.pone.0203793.t001

material and provided access to standard diet and tap water. Environmental enrichment (nesting
material, cardboard tube) was only provided in the upper cage. For training and testing, the stan-
dard cage lid of the experimental cage was substituted with an acrylic glass lid designed for Exper-
iment 1 (see. 2.2.1). During the whole experiment, the animals were single-housed in the testing
apparatus with visible and odor contact with conspecifics.

Experimental setup. An overview of the timeline for the training and testing procedure is
provided in Fig 3.

Training. Two days before the actual training started, animals were familiarized with the
two cages, tube, and reward. It was ensured that the animals entered both cages via the con-
necting tube. Additionally, the reward consisting of sweetened condensed milk

Fig 2. Set-up of the approach-avoidance test. The lid of the left chamber was the same as the one used for Experiment
1.

https://doi.org/10.1371/journal.pone.0203793.9002
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3 trials per day with 2 trials per day with
2 min intervals 15 min intervals
TRAINING TESTING

-2-10 12 34 5 6 7 8 9 10 11 Days
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Familiarizing ~ Without Air With Air Day A' Day Q Day 1& Day 1&
with cages exposure exposure

and reward . . C0, 100% CO, 100% CO, 100%
_c0/5 . 7l 2 2
Group 1 (n =5%/5d): Air > (2.11/min) > (4.2 1/min) > (6.3 1/min)

Group 2 (n=49/67): Air —» 1s01.25% ——>» 1s02.5% ——> Is03.75%

Group 3 (n=59/57): Air —» Sevo2% ——» Sevo4% — Sevo6%

Fig 3. Overview of the timeline of the approach-avoidance test.

https://doi.org/10.1371/journal.pone.0203793.g003

(Milchmédchen, Nestlé, Frankfurt, Germany, plus gelatin (1:1)) was presented once before
training in the upper cage. The actual training took place on the following eight days. The aim
of training was to condition the animal to enter the lower experimental cage on a signal, i. e.
by knocking with a fingernail on the cage wall, which was rewarded with food. During the
training phase, the normal lid of the experimental cage was removed and substituted by the
experimental acrylic glass lid. Firstly, the animal was allowed to explore both cages for 120 s.
Then, if the animal did not voluntarily enter the upper cage, it was placed there by the experi-
menter and the tube was closed with a rubber plug. Afterwards, the reward was placed in the
lower experimental cage and the tube was re-opened. Once the animal stepped downwards, it
was accompanied with the signal. For 240 s, the animal was allowed to stay in the experimental
cage and to eat the reward. This procedure was repeated three times per day with 2-min inter-
vals on four consecutive days. Over the next four days, the animal was trained to enter the
experimental cage that had an incoming airflow to acclimate them to the air movement and
noise. On the first day, the airflow (4 1/min) was running on before the animal entered the
experimental cage. On the following three days, the airflow (in ascending strength 4, 7, and 10
1/min) started once the animal entered the experimental cage and commenced eating. This
procedure was also repeated three times per day with 2-min intervals.

Testing. Testing took place on four consecutive days. On the first testing day, each animal
was exposed to air (10 1/min) as control. On the following three testing days, the animal
received one of the three gases in ascending concentrations. The concentrations were chosen
based on the findings of Experiment 1. We used 25%, 50%, and 75% of the lowest concentra-
tion that reliably induced the LOPR (see Table 1). Hence, isoflurane and sevoflurane were
introduced with a flow rate of 10 I/min in concentrations of 1.25, 2.5, and 3.75% (isoflurane)
and 2, 4, and 6% (sevoflurane). CO, was tested with flow rates of 2.1, 4.2, and 6.3 1/min at a
concentration of 100%. On each testing day, the animal was allowed to explore both cages for
120 s. Afterwards the mouse was locked in the upper cage for 60 s. After removing the plug,
the mouse was guided by the signal into the experimental cage. Once the animal started eating
the reward, the gas was immediately turned on and the time latencies to leave the experimental
cage (with all four paws in the tube) were recorded. The trial was finished when the animal left
the cage or was ended after 240 s. For each gas and concentration, two test trials per day were
conducted as replicates with a 15-min interval. During the resting time, the experimental cage
was ventilated with air to avoid gas contamination from the first trial, and bedding material
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was changed. In order to avoid extinction from the conditioning, an additional training trial
with air (10 I/min) was conducted in the afternoon.

Statistical analysis. Two female animals had to be excluded from the statistical analysis
due to insufficient training: one from the CO, group and one from the sevoflurane group. The
mean of the two trials per day was calculated for each mouse and gas concentration. If an ani-
mal lost consciousness during one trial, both trials of the animal were excluded from further
statistical analysis (one animal for the lowest and three animals for the highest isoflurane con-
centration; two animals for the highest sevoflurane concentration). Afterwards the means of
each treatment group and concentration were generated. A two-way ANOVA on repeated
measures with factor treatment (CO,, Iso, Sevo) and factor gas concentration (0% (=Air), 25%,
50%, 75%) was conducted followed by Holm-Sidak test versus control (Air). As it has been
shown that previous exposure can influence the aversion of a given gas [22], we analyzed the
first gas exposure, i. . 25%, separately using a one-way ANOVA. A probability value of
p<0.05 was considered to be statistically significant.

Results
Loss of reflexes, practicability, and reliability

Latencies of the onset of LORR (i. e. unconsciousness) and LOPR (i. e. state of surgical toler-
ance) are shown in Table 1 as medians and [25./75. percentile]. Note that the absolute figures
for LOPR have to be interpreted with caution as the opening of the cage lid to test this reflex
likely caused a slight dilution of the anesthetic gas with ambient air and, hence, might have led
to a delayed onset of this reflex. Despite that, LOPR was, independent from the strain, most
rapidly reached when animals were treated with CO, 100, followed by CO, 60 and Iso 5%.
According to our definitions in 2.2.4, CO, 60, CO, 100, and Iso 5% can be seen as practical
and they reliably induced the stage of surgical tolerance within 300 s (i. e. in > 93.8% of the
group) in both mouse strains. This was also true for using Sevo 8% in C57Bl/6] mice, whereas
for NMRI mice, two animals did not reach surgical tolerance within 300 s. In both strains, the
percentage of animals reaching surgical tolerance following CO, 20, Iso 2%, and Sevo 4.8%
exposure was below 93.8% and therefore, can be seen as impracticable and unreliable accord-
ing to our definition (Table 1). In approximation to the ADgs, experimental groups with mini-
mum of 14 out of 16 (87.5%) effective treatments were also included in the further statistical
analysis to demonstrate a dose-response dependency.

In NMRI mice, we detected significant differences regarding unconsciousness (H = 50.7,
p<0.001, Df = 3): The latencies of LORR for CO, 100 and CO, 60 were significantly shorter
than those for Iso 5% and Sevo 8%, respectively. LOPR was most rapidly reached after CO,
100 exposure compared to CO, 60, Iso 5% as well as to Sevo 8%. In addition, the latency for
LOPR for CO, 60 was significantly shorter than Sevo 8% (H =49.3, p<0.001, Df = 3) (see
Table 1).

In C57Bl/6] mice, the latencies for LORR (H = 66.7, p<0.001, Df = 4) and LOPR (H = 66.4,
p<0.001, Df = 4) of animals treated with CO, 100 were shorter than for animals treated with
Iso 2%, Iso 5%, and Sevo 8%. Also, CO, 60 induced the LORR and LOPR faster than Iso 2%
and Sevo 8%. LORR and LOPR latencies of Iso 2% were also significantly prolonged when
compared to Iso 5% (see Table 1).

The estimated concentrations of the gases in the test cage were calculated for the onset of
the LORR and the LOPR for each narcotic gas and strain and are shown in Table 2.

PLOS ONE | https://doi.org/10.1371/journal.pone.0203793 September 10,2018 12/29


https://doi.org/10.1371/journal.pone.0203793

@° PLOS | ONE

Use of CO,, isoflurane and sevoflurane for euthanasia in mice

Table 2. The estimated concentrations in percent [%] of the chamber volume (CV) for all analyzed narcotic gases
and both mouse strains at the onset of LORR and LOPR.

NMRI Gas concentration [%] CV

LORR LOPR"
CO, 20 31.1 58.1
CO, 60 44.3 61.0
CO, 100 57.3 66.2
Iso 2% 1.8 1.9
Iso 5% 3.1 3.5
Sevo 4.8% 4.2 4.6
Sevo 8% 5.6 6.5
C57Bl/6) Gas concentration [%] CV

LORR LOPR"
CO, 20 30.3 48.0
CO, 60 45.1 55.1
CO, 100 56.6 65.3
Iso 2% 1.5 1.9
Iso 5% 2.7 3.4
Sevo 4.8% 3.7 45
Sevo 8% 5.0 6.0

Y Please note that for LOPR this is a rough calculation due to anesthetic gas dilution with ambient air.

https://doi.org/10.1371/journal.pone.0203793.t002

Behavioral analysis

Table 3 provides an overview of the results for the behavioral parameters. All behaviors were
observed before the onset of LORR and therefore changes could be a sign of distress. Signifi-
cant changes (up- and down-regulation) in comparison to Air control are indicated by arrows.

Locomotion. In NMRI mice, there was a significant treatment effect on locomotion
(H =44.7, p<0.001, Df = 4): groups treated with Iso 5% (10.2 [7.7/12.8]) and Sevo 8% (8.6
[7.6/10.4]) showed significantly more ambulatory behavior per min than control animals (3.7
[2.9/4.6]). Animals treated with Iso 5% were more active than animals treated with CO, 60
(4.9 [3.4/6.0]) and CO, 100 (6.00 [4.3/8.8]). In addition, Sevo 8% induced more locomotor
activity than CO, 60.

A similar treatment effect was observed for C57Bl/6] mice (H = 41.7, p<0.001, Df = 5):
locomotion was significantly higher in groups treated with Iso 5% (5.3 [3.8/6.2]) and Sevo 8%
(6.7 [4.3/7.5] compared to control animals (1.8 [1.2/2.5]). Iso 5% treated C57Bl/6] mice were
more active than when exposed to CO, 100 (2.9 [1.6/3.8]). The highest locomotor activity was
observed for mice exposed to Sevo 8% when compared to CO, 60 (3.5 [2.3/4.1]) and CO, 100.
Freezing behavior did not occur in any group.

Rearings. Effects on rearings were mainly registered for animals treated with CO,. In
NMRI mice, animals exposed to CO, 60 (3.6 [1.5/9.0]) and CO, 100 (7.1 [3.4/7.8]) showed sig-
nificantly fewer rearings per minute (H = 20.4, p<0.001, Df = 4) compared to control animals
(10.6 [7.9/12.2]) and animals exposed to Iso 5% (10.9 [7.2/17.2]).

Also in C57Bl/6] mice, CO, 60 (1.3 [0.0/1.4]) and CO, 100 (1.4 [0.0/1.9]) induced signifi-
cantly fewer rearings per minute (H = 45.3, p<0.001, Df = 5) compared to control animals (5.9
[4.2/7.0]) as well as compared to animals exposed to Iso 5% (4.3 [3.2/7.3]). For CO, 60, the
number per minute for rearings was significantly less than for Iso 2% (2.9 [2.3/5.7]).
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Table 3. Significant changes in behavioral parameters in comparison to air control are indicated by arrows either as up- or down-regulation or as no changes (—).
NMRI CO, 60 CO, 100 Iso 5% Sevo 8%

Locomotion — — i) i

Rearings 3 g - —

Stress-induced grooming — — —

Clonus — — i i

Running excitement — — i i}

Opisthotonus — — i) i)

Jumps — — — —

Ataxia i) i 1] Iij

Hypotonic gait 1] i — —

C57Bl/6) CO, 60 CO, 100 Iso 2% Iso 5% Sevo 8%
Locomotion — — — i 1]
Rearings J 4 — — —
Stress-induced grooming — — l — —
Clonus — — — — i)
Running excitement — — i i} i}
Opisthotonus — — — — —
Jumps — — — — —
Ataxia i) i 1] i) i
Hypotonic gait i) i — — —

https://doi.org/10.1371/journal.pone.0203793.t003

Stress-induced grooming. Stress-induced self-grooming was rarely observed and was
mainly registered in control animals: NMRI mice displayed 0.5 [0.2/0.6] and C57Bl/6] 0.6 [0.4/
0.6] stress-induced grooming events per minute. Stress-induced grooming was also registered
in NMRI mice exposed to Iso 5% (0.0 [0.0/0.8]) and in C57Bl/6] mice exposed to Iso 2% (0.0
[0.0/0.5]), however, to a lesser amount than in control mice (H = 51.3, p<0.001, Df = 5).

Jumps. Escape-oriented jumping was a rare event, mainly in NMRI mice: animals
exposed to CO, 100 showed 0.0 [0.0/3.2] jumps per minute, 0.0 [0.0/0.5] when exposed to Iso
5%, and 0.0 [0.0/0.8] when exposed to Sevo 8%. In C57Bl/6], some jumps per minute (0.0 [0.0/
0.8]) were registered in animals exposed to CO, 60. Although one-way ANOVA on ranks
revealed a significant treatment effect for both strains NMRI: H = 9.7, p = 0.046, Df = 4;
C57Bl/6]: H = 11.5, p = 0.042, Df = 5), post-hoc analysis failed to detect significant differences.

Excitatory phenomena. No excitatory phenomena like clonus, running excitement, and
opisthotonus were observed for both mouse strains when exposed to CO, 60, CO, 100, and
Air. The three excitatory events only occurred when animals were exposed to the two haloge-
nated ethers. In NMRI mice, all animals (100%) treated with Iso 5% and Sevo 8% showed clo-
nus and running excitement. Clonus only occurred in 25% of C57Bl/6] mice exposed to Sevo
8%. Running excitement was registered in 57% of C57Bl/6] mice exposed to Iso 2%, in 75% of
the Iso 5% group and in 100% of the Sevo 8% group. Considerable strain differences were seen
with the phenomenon opisthotonus: it was observed in 25% of NMRI mice exposed to Iso 5%
and in 64% of animals exposed to Sevo 8%, whereas it did not occur at all in C57Bl/6] mice.

Gait. All Air control animals of both strains (NMRI and C57Bl/6]) did not show any signs
of ataxia or hypotonic gait. In both strains, hypotonic gait only occurred when animals were
exposed to to CO, 60 or to CO, 100. Ataxia occurred to all animals independent from the
strain or the inhalant gases in different concentrations.

Vocalization. In both strains, we could not detect any vocalizations (audible and ultra-
sound) in control animals (Air) or in treatment groups.
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Glucose [mmol/l]

Blood parameters

Blood glucose concentration. In NMRI mice, we could not detect a difference in the glu-
cose concentrations between the three treatment groups. However, glucose concentration of
animals exposed to Iso 5% was significantly increased compared to Air control animals
(H=10.3, p=0.037, Df = 4; see Fig 4). In C57Bl/6 mice, blood glucose concentrations signifi-
cantly differed between treatment groups (H = 39.4, p<0.001, Df = 5): the highest concentra-
tion was found when mice were exposed to Iso 2% in comparison to CO, 60, CO, 100, Iso 5%,
and also to Air control. Additionally, glucose concentrations of animals exposed to Sevo 8%
were significantly higher compared to CO, 60 and CO, 100 (see Fig 4).

Plasma adrenaline and noradrenaline concentrations. Significant treatment effects on
plasma adrenaline concentrations were observed for both NMRI (H = 59.2, p<0.001, Df = 4)
and C57Bl/6] mice (H = 73.0, p<0.001, Df = 5) (see Fig 5). Post-hoc analyses revealed that for
both strains, adrenaline concentrations of animals exposed to CO, 60 and CO, 100 were sig-
nificantly increased compared to isoflurane and sevoflurane in all concentrations. Adrenaline
concentration of CO, 100 treated NMRI mice was significantly higher than in Air control ani-
mals. In C57Bl/6] mice, CO, exposure also seemed to increase adrenaline concentrations in
comparison to Air control, although post-hoc analysis did not reveal significance.
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Fig 4. Blood glucose levels [mmol/l] for air control and animals exposed to the three inhalant gases at the beginning of
surgical tolerance as median [25./75. percentiles]. Number of mice per treatment group in brackets. * p<0.05, beginning

and end of the bar point to the groups compared.
https://doi.org/10.1371/journal.pone.0203793.9004
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Fig 5. Plasma adrenaline levels [ng/ml] for air control and animals exposed to the three inhalant gases at the beginning
of surgical tolerance as median [25./75. percentiles]. Number of mice per treatment group in brackets. * p<0.05,
beginning and end of the bar point to the groups compared.
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Interestingly, after Sevo 8% exposure adrenaline concentrations were decreased in comparison
to Air control in both strains (see Fig 5).

We observed a similar treatment effect on the plasma noradrenaline concentrations for
NMRI (H = 59.1, p<0.001, Df = 4) and C57Bl/6] mice (H = 76.8, p<0.001, Df = 5) (see Fig 6).
In NMRI mice, noradrenaline concentrations were increased in animals exposed to CO, 60
and CO, 100 in comparison to Iso 5% and Sevo 8% and, additionally, compared to Air control.
In C57Bl/6] mice, CO, 60 and CO, 100 also showed higher noradrenaline concentrations
compared to isoflurane and sevoflurane in all concentrations, however, this effect was not sig-
nificant when compared to Air control. Also for noradrenaline, we observed significant lower
concentrations for animals exposed to Iso 2%, Iso 5% and Sevo 8% compared to Air control
(see Fig 6). For all animals, we did not observe any recovery or movement after being removed
from the narcotic chamber which could have influenced the catecholamine concentrations.

Respiratory tract

Gross examination. In both strains, gross examination of mucosae, trachea and lung
revealed no mucosal alterations or signs of inflammation (redness, swelling, and exudate) in
control animals or in treatment groups. In NMRI mice, foamy efflux from trachea of the
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Fig 6. Plasma noradrenaline levels [ng/ml] for air control and animals exposed to inhalant gases at the beginning of
surgical tolerance as median [25./75. percentiles]. Number of mice per treatment group in brackets. * p<0.05, beginning
and end of the bar point to the groups compared.

https://doi.org/10.1371/journal.pone.0203793.9006

decapitated trunk was noticed in several animals of all treatment groups (CO, 60 (5 animals),
CO, 100 (2), Iso 5% (10), Sevo 8% (4)), but it did not occur in control animals.

In C57Bl/6] mice, foamy efflux was noted in some animals from every group except in
group CO, 100 (control (1 animal), CO, 60 (1), Iso 2% (6), Iso 5% (7), Sevo 8% (7)). In both
strains, we observed coagulated blood in the tracheal lumen induced by decapitation in several
animals (3-12) of all treatment as well as control groups.

Histological examination. In both strains and in all groups (control and treatment), we
found massive numbers of erythrocytes and other blood cells in trachea and/or bronchi. For
all groups, congestion of blood vessels (veins, venules, and capillaries), bleeding into alveolar
septa and alveolar spaces could not always be differentiated from each other and can be rather
considered as transitional stages of lung hemorrhage. Disintegration, i. e. loss of the typical
order of alveolar septa and spaces, of lung tissue was observed in several NMRI mice treated
with CO, 60 and Sevo 8%. We could not detect edema in any of the examined animals. We
diagnosed atelectasis in both strains in mice exposed to CO, 60 and 100.

Experiment 2

Independent from the concentration, all three gases were perceived similar aversive by the
animals, indicated by shorter escape latencies compared to Air control (F(3, 69) = 147.95;
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latency to leave the chamber [s]

P<0.001; see Fig 7) and no significant treatment effect (F(2, 69) = 1.83; p = 0.18). The separate
analysis of the first gas exposure also revealed no significant difference between the three inhal-
ant gases (p = 0.473). However, it has to be noted that 4 animals treated with isoflurane (i. e. 1
animal for the lowest and 3 animals for the highest isoflurane concentration) and 2 animals
treated with the highest sevoflurane concentration had to be taken out of the apparatus prelim-
inary as they became recumbent during the gas exposure.

Discussion

Within the scope of refinement, the primary goal of our study was to identify the least severe
of three inhalant gases, i. e. isoflurane, sevoflurane, and CO,, to induce the loss of conscious-
ness in order to kill laboratory mice in the most humane manner. When assessing impairment
of animal welfare in conjunction with general anesthetics, the spectrum of adverse drug effects,
their severity, and duration of severity have to be taken into account. In this regard, discom-
fort, suffering, and pain can be described as an aggregation of low efficacy indicated by long
latencies to reach unconsciousness, aversion towards the inhalant gas, induction of fear and
anxiety as well as occurrence of distress and pain caused by irritations of the oral and nasal cav-
ity. All these factors can dynamically contribute to the impairment of animal welfare and
might act interdependently. Referring to Bali and Jaggi [60], we combined a broad spectrum of
methods to assess acute stress, suffering, pain, and discomfort. The methods included

| I T
| | |
250 4 | | : — IC°2
— : : | [ lIso
| | | S Sevo
| | |
200 A : : :
| | |
| | |
|
150 | : :
|
T | | '
| * : :
100 + |
|
I |
| |
| = | o
50 4 | : * I : * *
| *
| | l B ==
ll J_ |% —r |é
0 | | I
] | | I
I l I | I | I
Air 25 % 50 % 75 %

[concentration]

Fig 7. Escape latencies [s] from the narcotic chamber of the approach-avoidance test after the exposure to air and different
concentrations of CO,, isoflurane (Iso), and sevoflurane (Sevo). Data are shown as median [25./75. percentiles]. * p<0.05 vs.
Air control.

https://doi.org/10.1371/journal.pone.0203793.9007
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behavioral changes, gross inspection and histopathological analyses of the respiratory organs
as well as measurement of biochemical markers, such as the stress hormones adrenaline and
noradrenaline as well as blood glucose using mice of two strains (NMRI and C57Bl/6]). We
focused on the timespan from the first gas exposure to LORR, as during this period animals
are thought to be still conscious and, therefore, are able to perceive pain, distress, and anxiety.
Attention was paid to practicability and reliability of the three inhalant gases to induce surgical
tolerance indicated by the LOPR since this aspect is specifically important for a daily routine.

Overall, the main findings of our study are that high concentrations of CO, (60%, 100%
CV/min) and isoflurane (5% with a constant filling rate of 71% CV/min) reliably induced sur-
gical tolerance in both mouse strains within the given timeframe of 300 s. C57Bl/6] mice were
more susceptible to isoflurane and sevoflurane than NMRI mice suggesting strain differences
in the potency of halogenated ethers. Independent from the strain, behavioral analysis did not
reveal signs of distress measured by stress-induced grooming or audible vocalization calls for
all inhalant gases during the induction of narcosis. For animals exposed to CO, we recorded
an increase in adrenaline and noradrenaline plasma concentrations compared to Air control
as well as compared to isoflurane and sevoflurane, although the effect was strain dependent. In
the approach-avoidance test using C57Bl/6] mice, all three inhalant gases were perceived aver-
sive independent from the concentration, and there were no significant differences between
the gases. However, in the two groups exposed to isoflurane and sevoflurane some animals
became recumbent, whereas recumbency did not occur in animals exposed to CO, in the
approach-avoidance tests.

In more detail, CO, 60, CO, 100, and Iso 5% met our requirement of a practicable and reli-
able anesthetic gas for both strains taking the ADgs in pharmacological studies into account
[57]. For C57Bl/6] mice, but not for NMRI mice, Sevo 8% can also be rated as an inhalant gas
that sufficiently induces narcosis. A primary criterion for euthanasia in terms of animal welfare
is that the method achieves rapid unconsciousness [61]. In our study, LORR and LOPR were
fastest induced by CO, 100 reflecting a higher potency than isoflurane and sevoflurane admin-
istered in high concentrations. In a similar study by Moody et al., shorter timespans for LORR
and LOPR were observed in C57Bl/6] mice exposed to CO, and isoflurane [62]. One reason
could be the turbulence device we used, which might have caused that the gases did not accu-
mulate as fast at the bottom of the narcotic chamber. In addition, we had to open the cage lid
in order to test the LOPR with the forceps. This might have diluted the anesthetic gas concen-
tration in the testing cage with ambient air, and might have resulted in a delayed onset of this
reflex. Despite that, the differences in the latencies for LORR and LOPR after CO, and isoflur-
ane exposure of Moody et al. were similar to our observation [62]. Thus, using our experimen-
tal setup, the lowest concentrations of CO, (20% CV/min), isoflurane (2%), and sevoflurane
(4.8%) cannot be recommended for euthanasia as they did not reliably induce LOPR in both
strains. In addition, for NMRI mice 8% sevoflurane occurs also unreliable as less than 90% of
the animals per group reached LOPR within 300 s. One could argue that more animals would
have reached the LOPR if the experimental time was not limited to 300 s, but we believe that
this is the maximum timespan during which animals should reach unconsciousness in a day-
to-day routine of euthanasia. From a practical point of view, we cannot recommend the induc-
tion of narcosis with CO, at the low filling rate of 20% of chamber volume per min as well as
with lower concentrations than 5% for isoflurane and 8% for sevoflurane using our lid con-
struction with turbulence device. This contradicts current euthanasia recommendations
implying a filling rate of 20% CO, or gradual filling sufficient to induce LORR and LOPR and,
hence, as appropriate methods for euthanizing adult mice [61] and rats [63]. Our recommen-
dation is also in contrast to a recent study by Biovin et al. [64]. They have shown that low CO,
chamber replacement rates induce death in C57Bl/6N mice in a sufficient time. As stated
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above, differences in the experimental setup most likely contributed to the diverging results, i.
e. prolonged timespan to reach LOPR. Thus, it is up to a further investigation if CO,, isoflur-
ane, and sevoflurane in low concentrations can reliably induce unconsciousness using our
experimental setup and longer observation periods.

With regard to animal welfare, it has to be taken into account that a high flow rate of CO, is
accompanied by a high concentration in the narcotic chamber at the time of unconsciousness,
in our case around 60% for CO, 100. There is great evidence that exposure to already low CO,
concentrations is accompanied by fear and anxiety. In humans, exposure to low CO, concen-
trations of 5% - 7.5% is used as a “CO, challenge test” for anxiety, since a heightened sensitivity
to CO, is observed in individuals with a diagnosis of panic disorder [65]. Mice exposed to low
CO, concentration (10%) show fear-related freezing behavior and increased anxiety-related
behavior in the open field test [66]. In rats, short exposure to rising CO, concentrations (from
atmospheric concentrations up to 20% CO,) increases anxiety-related behavior and activates
brain areas involved in fear and anxiety, mobilizes the HPA stress-axis and initiates stress-
related sympathetic responses [67]. The mechanism behind is thought to be the CO,-induced
pH reduction: by lowering brain pH, pH-sensitive receptors are activated in the fear circuit
[68], particularly in the amygdala and locus coeruleus.

Despite these facts, in our study we did not observe corresponding fear- and anxiety-related
behavior, such as freezing, increased locomotion, or stress-induced grooming during the
induction of narcosis with CO,. Mice exposed to CO, occurred rather quiet and appeared
sedated and showed a reduced number of rearings. Decreased rearing can be seen as a sign of
reduced exploratory and anxiety-like behavior [69, 70], but in our case it is more likely that the
reduced vertical activity is related to sedative CO, effects and a sign for beginning muscle
weakness at an early stage of narcosis. This assumption is supported by the fact that in both
mouse strains CO,-induced ataxia and hypotonic gait which are associated with muscle weak-
ness [44]. At first sight, our behavioral observation contradicts the general belief that CO,
induces fear and anxiety in mice. However, supporting our results are observations of inci-
dents with CO, in humans. Survivors of CO, poisoning reported, besides a pungent smell and
difficulty breathing, no fear, pain, or other warning signs, and unconsciousness was reached
within a few seconds [71, 72]. Also, a recent study comparing CO,, isoflurane, and pentobarbi-
tal-phenytoin euthanasia in mice observed no specific behavioral signs for distress [7].

It can be assumed that mice experience pain analogous to humans when exposed to higher
CO, concentrations [65]. CO, has been used as a pain stimulus in animals with similar con-
centrations that are used for CO, euthanasia [16, 29, 73, 74]. Thus, pain induced by CO, at the
mucosa of the nasal and mouth cavity can be assumed. However, also inhalation of isoflurane
has been associated with unpleasant sensations. Isoflurane has a pungent smell [75] and it was
described that airway irritation and neurogenic constriction are evoked by the activation of
TRPA1 channels, which in turn affects the anesthetic induction latency negatively [76]. In
humans, 2.3% isoflurane inhalation for one minute provokes coughing, burning, and other
unpleasant sensations in the airways in about 40% of subjects, whereas 4% sevoflurane pro-
vokes coughing in only 3.7% of the volunteers [33]. Concomitantly, 5% isoflurane induces
adverse airway events, as indicated by reflex responses [77]. Analogous to humans, mice can
be expected to experience similar sensations at the mucous membranes, such as burning and
irritation under isoflurane anesthetic exposure. This has been supposed for rabbits which
reluctantly inhale isoflurane and sevoflurane and hold their breath between 30 and 180 s [78].
When analyzing the videotapes, we did not observe any signs for reluctant inhalation or other
unpleasant sensations. Unfortunately, we were unable to measure the respiratory frequency,
but we noticed that mice exposed to CO, were breathing more deeply following the LORR.
Deep breathing could be a sign that those animals moved fast from stage 2 to stage 3, i. e. they
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reached the stage of surgical tolerance faster than animals exposed to isoflurane or sevoflurane.
This assumption is supported by the fact that we observed relatively shorter timespans between
LORR and LOPR for CO, than for the two halogenated ethers. We also observed deepening in
abdominal breathing in animals exposed to isoflurane and high concentrations of sevoflurane.
Deepening of breathing occurred when the animals were already immobile and just before the
LORR was measured. Thus, it is most likely that deep breathing in the isoflurane and sevoflur-
ane treatment groups was already a sign for stage 3 of anesthesia. Gross and histologic exami-
nation of the respiratory organs revealed no distinct alterations in the three treatment groups
that differed from the control group. However, we only detected microscopic atelectasis in
mice of both strains when exposed to CO, 60 and 100, but not in mice exposed to halogenated
ethers. CO, easily dissolves in blood and has a high diffusion coefficient. Therefore, it is possi-
ble that the observed atelectasis is due to reabsorption of CO,. Foamy efflux was observed in
all animals exposed to isoflurane, sevoflurane, or CO,, but only in one control C57Bl/6]
mouse. Hence, this seems to be more a specific sign for the inhalant gases. Overall, the results
of the gross and histologic examination were incongruent and did not provide a specific sign
for pain. This is contradicting a recent study by Biovin et al. that observed more severe patho-
logical alterations of the lungs after CO, exposure compared to isoflurane [7]. But likewise to
their conclusion, we cannot determine whether the histological alterations like atelectasis or
foamy efflux occurred before the LORR and, hence, were perceived as painful. The recordings
of vocalizations provided no further information as we did not detect any in the audible and
ultrasound range. In general, mice produce ultrasonic vocalizations during nonaggressive
social interactions (for review [47]) and audible vocalizations are expressed when experiencing
pain [48]. Valentine et al. observed increased ultrasound vocalization in mice exposed to CO,
and isoflurane [41]. However, using this kind of display format, one cannot clearly discrimi-
nate between real mouse vocalizations and artefacts, e. g. produced by gas flow.

Concerning the behavioral parameters, the induction of narcosis with isoflurane and sevo-
flurane increased locomotor activity and led to running excitement, clonus, and opisthotonus
before the onset of LORR and, thus, could be interpreted as a stress response. Anesthetic excite-
ment by isoflurane has already been described. It is explained by opposite effects of isoflurane
on network excitability in neocortex and hippocampus, which are both involved in anesthetic-
induced motor excitation. While low concentrations of isoflurane reduce the excitability in the
neocortex, they simultaneously increase it in the hippocampus [79]. Thus, it is difficult to distin-
guish whether these behaviors reflected distress and/or arousal. In both humans and rodents,
unconsciousness is induced by isoflurane already at doses that do not abolish complex move-
ments, and complex movements can be initiated in the spinal cord with minor involvement of
supraspinal structures [80]. Running excitement, clonus, and opisthotonus occurred close to
the onset of LORR. As we did not see an increase in noradrenaline and adrenaline after expo-
sure to the halogenated ethers, we assume that the excitations were not perceived as stressful.

A valid method to investigate stressful events is the analysis of fast reacting stress hormones
such as adrenaline and noradrenaline plasma concentrations as well as blood glucose concentra-
tion [50, 81]. In our study, isoflurane and sevoflurane increased blood glucose concentrations
compared to CO, and Air control. However, the increase remained within the physiological
range [82, 83], thus, we assume that it does not refer to a stress reaction. An explanation of the
relative hyperglycemia induced by isoflurane in C57Bl/6] mice is the impaired release of insulin
[84]. It is possible that in our study the exposure to the inhalant gases was too short (below 300
s) to induce a so called stress-induced hyperglycemia, which is usually measured 10-15 min
after stimulus application [85-87].

With regard to adrenaline and noradrenaline, we observed a marked increase of both cate-
cholamines in response to CO, exposure compared to Air control, although the magnitude
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differed between the strains with NMRI mice showing higher concentrations than C57Bl/6]
mice. Independent from the strain and gas concentrations, both catecholamine concentrations
were significantly higher after CO, exposure in comparison to isoflurane or sevoflurane. This
increase can be regarded as a solid stress response [88] and suggests that two pathways are
involved: on the one hand activation of sympathetic nerve endings by noradrenaline and on
the other hand a centrally evoked response by adrenaline [89, 90]. This is supported by find-
ings in pigs, where CO, inhalation before castration or slaughtering leads to large increases in
adrenaline and noradrenaline concentrations [91-93] and in humans, where 35% CO, stimu-
lates noradrenaline release 2 min following inhalation and induces subjective feelings of fear
[94, 95]. Also in mice, CO, exposure for 15 s leads to an increase in plasma adrenaline and nor-
adrenaline [90]. However, as in our study plasma concentrations of adrenaline and noradrena-
line were determined with the onset of LOPR there is a possibility that mice might have
already been unconscious at the time of the hormonal stress reaction and therefore have not
experienced distress.

Surprisingly, animals exposed to isoflurane and sevoflurane did not respond with an increase
in catecholamine concentrations. This could be interpreted that halogenated ethers are not expe-
rienced as stressful as CO, by the animals, although a recent study has shown that both isoflurane
and CO, lead to a similar increase in the stress hormone ACTH in comparison to a pentobarbi-
tal-phenytoin injection [7]. However, in this study ACTH concentrations were measured after
the death of the animal and the study does not include a control group. Hence, it is difficult to
define if differences in the ACTH concentrations reflect a stress response. In our study, the cate-
cholamine concentrations for the halogenated ethers were even lower than the one of Air control,
especially for sevoflurane. This effect might be confounded by the circumstance that the catechol-
amine concentrations of Air control animals are not equal to baseline levels as the decapitation
itself could have caused stress, although we habituated the animals to the fixation procedure [90,
96]. It could also be argued that the missing increase in adrenaline and noradrenaline concentra-
tions after isoflurane and sevoflurane exposure is due to a suppression of stress-related feelings or
autonomic reflexes resulting from different signaling mechanisms of isoflurane versus CO,.
Patch-clamp recordings in murine amygdala slices, a brain area relevant for anxiety, revealed that
synaptic signaling by non-NMDA, NMDA, and GABAg, receptors is decreased by isoflurane,
whereas GABA 4 receptor-mediated responses are increased [97]. Furthermore, suppression of
autonomic reflexes by isoflurane has been demonstrated and explained at least partly by reduced
excitability of the amygdala by this mechanism, consequently leading to reduced sympathetic out-
flow from hypothalamus [97]. Hence, further experiments focusing on anxiety circuits are needed
to state clearly that absent elevated adrenaline and noradrenaline levels are equivalent to a lack of
fear or anxiety. In addition, studies assessing plasma catecholamines at an earlier stage of anesthe-
sia (at the LORR) and including other fast acting stress hormones like ACTH could provide fur-
ther insight.

Based on the differences in the catecholamine concentrations between the three inhalant
gases we expected to observe a corresponding difference in the approach-avoidance test, i. e.
that CO, is perceived significantly more aversive than the two halogenated ethers. It is known
that CO, sensing in mice and rats starts at much lower concentrations than those producing tri-
geminal sensations in humans [98]. Mice detect CO, at near atmospheric concentrations
through an olfactory subsystem leading to an innate avoidance behavior [99]. Given the choice,
mice leave a chamber gradually filled with low CO, concentrations as 7-12% (our study) and
13.5-18.2% independently of filling rate [52], indicating aversion of mice to these low CO, con-
centrations. In our approach-avoidance setup, C57Bl/6] mice showed similar escape latencies
for all three inhalant gases independent there from the concentrations. Thus, CO,, isoflurane,
and sevoflurane seemed to be experienced comparably aversive. The results of the second and
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third exposure have to be interpreted with caution as it was shown for isoflurane and sevoflur-
ane that re-exposure can lead to increased aversion in rodents [13, 22, 100, 101]. Here, a sepa-
rate analysis of the initial exposure did not reveal a significant difference in the escape latencies
for CO,, isoflurane, and sevoflurane contradicting previous findings using similar experimental
setups and including a single gas exposure. Leach et al. observed that CO, was the most aversive
gas compared to several halogenated ethers in mice, and also Moody and Weary found isoflur-
ane to be more aversive than CO, indicated by longer dwelling times [13, 15]. A more recent
study using a new aversion test revealed sevoflurane to be the least aversive inhalant gas com-
pared to isoflurane and CO, [35]. However, we also noted that some animals of the groups
exposed to isoflurane or sevoflurane, but not CO,, became recumbent arguing for a higher aver-
siveness of CO,. A similar observation was made for mice and rats which became recumbent
when exposed to isoflurane or sevoflurane, but not to CO, [13, 52, 101]. However, recumbency
mostly occurred in the groups re-exposed to halogenated ethers and only one animal of the iso-
flurane group became recumbent during the first exposure. Thus, the lacking significant differ-
ences in the approach-avoidance test during the first gas exposure seem to correlate with the
missing differences in the behavioral parameters of our first experiments.

To sum up, it cannot be decided yet which of the inhalant gases is the best option to eutha-
nize laboratory mice. It needs an ethical discussion whether a longer procedure with less maxi-
mum stress counterbalances a shorter procedure with more maximum stress. Despite all the
new data of our present study, it is still difficult to weigh up the advantages and disadvantages of
CO, against isoflurane and sevoflurane narcosis. All three gases were sensed aversive by the ani-
mals. The seemingly rather quiet behavior during CO, exposure as opposed to the more ‘agi-
tated’ behavior during isoflurane exposure may be misleading in the interpretation of stress. We
argue that the behaviors evoked by isoflurane are rather due to the typical excitement phase of
inhalant anesthetics and are accompanied by the loss of consciousness. The marked increase in
adrenaline and noradrenaline evoked by CO, indicates a higher stress response compared to
isoflurane and sevoflurane. However, the suppression of autonomic reflexes by the halogenated
ethers may lead to a missing catecholamine increase. Measurement of other fast reacting stress
hormones like ACTH might be helpful to confirm our findings. Sevoflurane showed a strain-
dependent efficacy and might not be sufficient for euthanasia of all mouse strains. It also needs
to be clarified, how the different parameters of this study are affected by CO,, isoflurane, or
sevoflurane, if several animals are euthanized at the same time in one home cage. Still, our data
suggests that rather high concentrations of halogenated ethers shall be applied and low concen-
trations of CO, should be omitted. Our results do not provide enough evidence that CO, can be
fully replaced by isoflurane and sevoflurane to kill laboratory rodents.

Supporting information

S1 Supporting Information. Raw datasets including the latencies to LORR and LOPR, the
occurrence of rearings, ataxia, and locomotion, the occurrence of convulsions, stress-
induced grooming, running excitement, and opisthotonus, vocalizations, glucose, adrena-
line, and noradrenaline concentrations, gross examination and histology of the respiratory
tract, and escape latencies from the narcotic chamber of the approach-avoidance test.
(XLSX)
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