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Abstract

Background: Determining the genes responsible for certain human traits can be challenging when the underlying
genetic model takes a complicated form such as heterogeneity (in which different genetic models can result in the
same trait) or epistasis (in which genes interact with other genes and the environment). Multifactor Dimensionality
Reduction (MDR) is a widely used method that effectively detects epistasis; however, it does not perform well in
the presence of heterogeneity partly due to its reliance on cross-validation for internal model validation.
Cross-validation allows for only one “best” model and is therefore inadequate when more than one model could
cause the same trait. We hypothesize that another internal model validation method known as a three-way split
will be better at detecting heterogeneity models.

Results: In this study, we test this hypothesis by performing a simulation study to compare the performance of
MDR to detect models of heterogeneity with the two different internal model validation techniques. We simulated
a range of disease models with both main effects and gene-gene interactions with a range of effect sizes. We
assessed the performance of each method using a range of definitions of power.

Conclusions: Overall, the power of MDR to detect heterogeneity models was relatively poor, especially under more
conservative (strict) definitions of power. While the overall power was low, our results show that the cross-validation
approach greatly outperformed the three-way split approach in detecting heterogeneity. This would motivate using
cross-validation with MDR in studies where heterogeneity might be present. These results also emphasize the
challenge of detecting heterogeneity models and the need for further methods development.
Background
An important problem in human genetics is the chal-
lenge of identifying polymorphisms that are associated
with high disease risk. This task can be difficult because
the underlying genetic models of many common human
diseases, such as heart disease and Type II diabetes, are
complex in their genetic etiology [1]. For instance, there
can be gene-gene interactions (known as epistasis) or
multiple genotypes that result in the same phenotype
(known as genetic heterogeneity) [2]. Epistasis creates a
challenge for traditional analytical approaches and these
challenges in feature selection and parameter estimation
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for epistasis models have been previously discussed in
the literature [2-4].
To address these problems, a number of new

approaches have been developed to try to detect interac-
tions [5,6]. Recent approaches take a broad range of
computational approaches to detect and characterize
epistasis, including exhaustive search techniques [7,8],
two-stage screening approaches [9], Bayesian approaches
[10], evolutionary algorithms [11], tree-based approaches
[12], etc. Each of these approaches has advantages and
disadvantages for a range of genetic etiologies and data-
set sizes [13-15]. Recently, a hand-curated database of
all reported interactions in human genetics documented
the methods used to discover these interactions [16]. In
the reported interactions, about 37% were detected using
new machine-learning methods (as opposed to trad-
itional statistical techniques such as regression, analysis
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of variance, etc.). Of those, Multifactor Dimensionality
Reduction (MDR) [7], was used the most (in 35% of the
studies using new methods, representing a total use in
13% of the studies reporting interactions). This wide-
spread use motivates the further investigation of prac-
tical implementation issues with this method.
MDR is a nonparametric procedure that reduces the

dimensionality of the data by classifying each genotype
as either high-risk or low-risk and then uses internal
model validation, typically either five-fold or ten-fold
cross-validation (CV), to select the best model [17].
MDR with CV has become common in genetic epidemi-
ology and has successfully found interactions in both
simulated and real data related to such diseases as
schizophrenia, sporadic breast cancer, multiple sclerosis,
and atrial fibrillation. A recent review of the MDR ap-
proach and its extension and application can be found
in [18].
One drawback of MDR with CV is that it is computa-

tionally intensive because it performs an exhaustive
search of all possible combinations of factors. Further, the
use of m-fold CV for internal model validation requires
that the MDR algorithm be executed m times for each
possible combination, which adds to the computation
time. To help reduce the required computation an alter-
native internal model validation method, the three-way
split (3WS), has been incorporated into the MDR algo-
rithm [19]. MDR with 3WS has been shown to be signifi-
cantly faster than MDR with CV and it does not result in
a significant loss in the ability to detect interactions [19].
MDR with 3WS does tend to fit a larger model than
MDR with CV, so false positives are more common with
3WS and a pruning procedure may need to be employed
if Type I error is to be avoided [19].
Another drawback of MDR is that it performs poorly in

the presence of genetic heterogeneity [20,21]. Genetic het-
erogeneity (where more than one model underlies disease
risk) is a problem for a number of machine learning
methods [22]. There are several potential reasons that
MDR performs poorly in the presence of heterogeneity,
as discussed in these previous studies [20,21]. The use of
cross-validation is one potential reason – since the usual
application of MDR is to pick a single best model, if there
are two competing models such as is the case in hetero-
geneity situations, no single model may emerge as con-
sistently chosen, resulting in a low cross-validation
consistency for all models. It is possible that MDR with
3WS could perform better than MDR with CV in such
situations because the 3WS algorithm uses a different ap-
proach to screen potential models (allowing multiple
models to be passed along at each stage) and tends to fit
a larger model. To our knowledge, no study has been
done to investigate the power of MDR with 3WS in the
presence of genetic heterogeneity.
The purpose of the present study is to compare the ef-
fectiveness of MDR with CV to that of MDR with 3WS
in situations wherein genetic heterogeneity is present.
This is accomplished through simulating genetic data
exhibiting heterogeneity and evaluating the success of
the two internal model validation methods at identifying
the correct underlying models. It is necessary to use
simulated data because we must know the true under-
lying model in order to assess the accuracy of the pre-
dicted model and such information is not known with
real data.

Methods
Multifactor Dimensionality Reduction (MDR)
MDR is a widely used data mining technique that per-
forms an exhaustive search of all possible genes and
combinations of genes to find the best model for a cer-
tain genetic trait [23]. It is able to accommodate more
complex genetic traits that involve gene-gene and gene-
environment interactions [7]. MDR uses combinatorial
data reduction techniques to collapse the high dimen-
sions of complex genetic data into just one dimension
with two levels (high-risk and low-risk) [7]. MDR is non-
parametric as no assumptions about the underlying stat-
istical distribution or genetic models are made. For the
following description consider a set of genetic data of
sample size N (with n1 cases and n0 controls) for which
the genotypes at K loci are known and it is believed that
the largest interaction involves k terms.
The first step in the MDR algorithm is to enumerate

all possible combinations of k loci. For each combination
of loci the number of cases and controls are counted for
every possible combination of genotypes. For genes with
two possible alleles each locus has three possible geno-
types, so the data can be classified into 3k genotypic
combinations. We will refer to each such combination
as a multifactor class. The ratio of cases to controls is
calculated for each multifactor class using the sample
data and this value is used to classify each multifactor
class as either high-risk or low-risk. In the case of
balanced data, meaning data with an equal number of
cases and controls, the multifactor classes with a case-
to-control ratio exceeding one are considered high-risk
while those with a ratio below one are considered low-
risk. In general the threshold is n1/n0. This high-risk/
low-risk parameterization serves to reduce the high
dimensionality of the data.
After each multifactor class is categorized as high-risk

or low-risk, the observed data are compared to the
resulting model to determine what proportion of the
observations are classified correctly. The goal is to find
the model that minimizes the misclassification rate.
When the sample does not include an equal number of
cases and controls, balanced accuracy, the mean of
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sensitivity and specificity, is used [24]. Using this criter-
ion a best model is found for each size model up to k
loci. To avoid over-fitting it is common to use an in-
ternal model validation procedure (either cross-
validation or three-way split) to select the overall best
model. The statistical significance of the selected model’s
prediction accuracy can be evaluated through permuta-
tion testing. Figure 1 illustrates the general MDR algo-
rithm for models of size k=2.

Cross-validation (CV)
CV is the internal model validation method most com-
monly used with MDR. Before running the MDR algo-
rithm on any data the full dataset is split into m equal
intervals. One of these intervals is considered the testing
set while the other m-1 intervals make up the training
set. MDR is run on the training data for each of the m
possible splits of the data. That is, for each possible
combination of k loci MDR is run m times with a differ-
ent interval being excluded from the analysis each time.
After the high-risk and low-risk categories are deter-
mined using the training set, the predictive capability of
the resulting model is determined using the testing set.
For each split of the data and each size of interaction the
model that maximizes the prediction accuracy, meaning
the one that minimizes the misclassification rate for the
testing data, is considered the best model for that size
interaction. This process is illustrated in Figure 2.
Figure 1 Workflow of the MDR process.
The number of times that a particular model is identi-
fied as the best model across the m subsets of the data
is known as the cross-validation consistency. The model
chosen as the best overall model is the one that has
both the highest prediction accuracy and the highest
cross-validation consistency. If the model that maxi-
mizes prediction accuracy is different than the model
that maximizes cross-validation consistency, then the
more parsimonious model is chosen [21]. CV is most
commonly employed with either five or ten equal splits
of the data. It has been shown that five and ten splits
yield similar results [17], so this study utilizes five splits
of the data to lessen computing time.

Three-way split (3WS)
3WS is an internal model validation method that has only
recently been implemented with MDR. For this proced-
ure, the full dataset is randomly split into three parts: a
training set to build initial models, a testing set to narrow
the list of potential models, and a validation set to choose
the best model and assess its predictive capability. It has
been shown that the proportion of the data included in
each split does not make a major difference in the result-
ing model, but the optimal split, and the one we use, is a
2:2:1 ratio [19]. MDR is run using each of these three sets
with every possible combination of up to k loci consid-
ered with the training set, a subset of these possible com-
binations considered with the testing set, and only the top



Figure 2 Workflow of the five-fold cross-validation process.
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few models considered with the validation set. The three
splits of the data can be considered independent of one
another and balanced accuracy can be calculated for each
combination of loci to determine the best model. This
method is much more computationally efficient than CV
because the MDR algorithm is carried out fewer times
and fewer models are considered each time.
When MDR is performed on the training set all pos-

sible combinations of loci for each size combination up to
size k are considered. The top x models for each size are
chosen based on balanced accuracy and these models
move on to the testing set. The value of x is arbitrary and
is chosen by the user. A common practice, and the one
we use in our analysis, is to set x equal to K, the total
number of loci being considered. This “rule of thumb”
was proposed based on the results of a parameter sweep
comparing the performance of MDR with different splits
of the data [19]. MDR is carried out again on the top x
models for each size and only the model with the greatest
balanced accuracy for each size moves on to the valid-
ation set. In the validation set MDR is carried out a final
time on the top model for each size and the model with
the greatest balanced accuracy is chosen as the overall
best model. This process is illustrated in Figure 3.

Data simulation
To determine if MDR with 3WS can better detect gen-
etic heterogeneity than MDR with CV we performed a
simulation-based study so that we could calculate the
empirical power for both methods (since theoretical
power calculations are not possible with MDR). Factors
of interest considered were the number of loci in the
true disease model, the structure of the true model, the
odds ratio, and the level of heterogeneity. In particular,
genetic heterogeneity models consisting of two one-
locus models or two two-locus models were simulated.
The one-locus models involved additive or recessive
effects while the two-locus models followed an XOR
model, which is an epistatic model that has been previ-
ously discussed in the literature [25]. Since the hetero-
geneity models combine two models, we ultimately
tested MDR’s capability to detect two-locus and four-
locus models. The levels of heterogeneity considered
were 50/50, meaning the two disease models going into
the simulation carried equal weight, and 25/75, meaning
one disease model carried more weight than the other.
The odds ratios considered were 1.5 and 2. Each of the
models had a heritability (h2) of .05 which is a very low
genetic signal compared to many genetic diseases. The
penetrance tables for the models simulated are shown in
Figure 4, where penetrance is the probability of disease
given a particular genotype combination.
We simulated a total of 21 genetic heterogeneity mod-

els. Table 1 shows the type of model, level of heterogen-
eity, and odds ratio for each model simulated. There
were 14 two-locus models that varied by model type
(additive or recessive), level of heterogeneity (50/50 or
25/75), and odds ratios (1.5 or 2). The remaining seven



Figure 3 Workflow of the three-way split approach.
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simulations involved XOR models that varied by level of
heterogeneity (50/50 or 25/75) and odds ratios (1.5 or
2). Using the GenomeSIM software [26], 100 datasets of
sample size 1000 were generated for each of the 21 mod-
els. Each dataset includes 500 cases and 500 controls so
the data are balanced. Each dataset also has a total of 25
loci meaning either 23 or 21 noise loci to go along with
the two or four disease loci depending on the size of the
true model. Although most candidate gene studies in-
clude more than 25 total loci it has been previously
shown that additional noise loci do not affect the power
of MDR [27], so fewer loci were included to reduce
computing time and make the simulation study feasible.

Analysis
All 100 datasets for each of the 21 simulations were ana-
lyzed using MDR with five-fold CV and MDR with 3WS.
Figure 4 Penetrance tables for the models simulated.
This was done using the MDR package available for the
statistical software R [28,29]. For MDR with 3WS we
used the default split of 2:2:1 (train:test:validate) and a
value of x=25 (the total number of loci in each dataset)
to allow 25 models to pass from the training set to the
testing set. For both methods MDR considered models
of size k=1,2 for the two-locus models and k=1,2,3,4 for
the four-locus models.
We collected the output from these MDR procedures

to assess the accuracy of the final models. Power was
calculated as the percentage of times out of the 100
datasets for each simulation that the final model met
some specified criterion. We initially computed a con-
servative estimate of power for which this criterion was
that the final predicted model included all of the true
disease loci and no false positive loci. It was immediately
apparent that both methods did a poor job finding the



Table 1 Summary of genetic models simulated

First model Second model

Simulation Disease loci Model type Level of heterogeneity Odds ratio Contribution Odds ratio Contribution

1 2 additive 25/75 1.5 25% 1.5 75%

2 2 additive 25/75 2 25% 2 75%

3 2 additive 25/75 1.5 25% 2 75%

4 2 additive 25/75 2 25% 1.5 75%

5 2 additive 50/50 1.5 50% 1.5 50%

6 2 additive 50/50 2 50% 2 50%

7 2 additive 50/50 1.5 50% 2 50%

8 2 recessive 25/75 1.5 25% 1.5 75%

9 2 recessive 25/75 2 25% 2 75%

10 2 recessive 25/75 1.5 25% 2 75%

11 2 recessive 25/75 2 25% 1.5 75%

12 2 recessive 50/50 1.5 50% 1.5 50%

13 2 recessive 50/50 2 50% 2 50%

14 2 recessive 50/50 1.5 50% 2 50%

15 4 XOR 25/75 1.5 25% 1.5 75%

16 4 XOR 25/75 2 25% 2 75%

17 4 XOR 25/75 1.5 25% 2 75%

18 4 XOR 25/75 2 25% 1.5 75%

19 4 XOR 50/50 1.5 50% 1.5 50%

20 4 XOR 50/50 2 50% 2 50%

21 4 XOR 50/50 1.5 50% 2 50%
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entire correct model. We therefore defined several more
liberal types of power to assess how often each method
found at least one of the two models included in the het-
erogeneity model. For the power labeled mod1 a trial
was considered a success if at least the locus or loci of
the first of the two models contributing to the hetero-
geneity model was included in the final predicted model.
For the power labeled onlymod1 the requirement was
that the final predicted model be exactly the first of the
two simulated models contributing to the overall model
with no additional loci included. The power definitions
mod2 and onlymod2 are analogous to mod1 and only-
mod1, but for the second of the two models. We also
defined a power, labeled nofalse, that considered a trial a
success if the predicted model included any number of
correct loci and no false positive loci.
Differences between the performances of the two in-

ternal model validation methods were tested using an
analysis of variance (ANOVA), implemented in SASv9.2
[30].

Results and discussion
MDR was rarely able to detect the true disease model
for both the two-locus and four-locus heterogeneity
models regardless of whether it was implemented with
3WS or five-fold CV. This is an expected result given
previous studies that have examined the power of MDR
to detect heterogeneity [20,21]. In fact, for all 21 simula-
tions the most often that a single method found all of
the true disease loci across the 100 simulated datasets
was twelve. This poor conservative power is illustrated
in Figure 5. Because both 3WS and five-fold CV had
such poor conservative power, neither proved to be sig-
nificantly better than the other by this measure (p-value
= .1637) when an analysis of variance (ANOVA) was run
on the results.
Since the conservative power estimates did not provide

much information as to which internal model validation
method has better performance, 3WS and CV were
compared using more liberal estimates of power. These
alternative forms of power will be referred to as mod1,
mod2, onlymod1, onlymod2, and nofalse. The criteria
for mod1 and mod2 was that the final predicted model
include all of the true disease loci in either the first or
second of the two models contributing to the overall
heterogeneity model. This is not as stringent as the con-
servative power that required all the true disease loci
from both of the contributing models to be included in
the final predicted model. By easing back the require-
ment for the method to be considered a success we saw



Figure 5 Power results for both the three-way split (3WS) and cross-validation (CV) implementations of MDR where power is defined
as the percentage of times that both models were identified (with no false positive and no false negative loci).
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an improvement in performance and the emergence of
differences between the two methods. This approach is
similar to previous studies that considered heterogeneity
[20,21]. In particular, power sharply improved for both
methods when looking at mod2. A much smaller im-
provement was seen for mod1. This disparity is due
largely to the fact that in half of the simulations the first
model only carries 25% of the weight whereas the
Figure 6 Power results for both the three-way split (3WS) and cross-v
as the percentage of times that one of the underlying models was id
loci). The results for Model 1 are shown in A, and the results for Model 2 a
second model contributes 75% to the overall model. This
makes the first model much more difficult to detect in
these situations and results in the lower success rate in
terms of identifying the first model versus identifying
the second. Figure 6 summarizes these results.
Two more stringent definitions of power that accounted

for the inclusion of false positives in the final pre
dicted model, onlymod1 and onlymod2, saw similar
alidation (CV) implementations of MDR where power is defined
entified (with no false negative loci but allowing false positive
re shown in B.
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improvements in power (when compared to conservative
power) for MDR implemented with CV. These definitions
of power required that exactly one of the two contribut-
ing models be identified with no additional loci included
in the final predicted model. For MDR implemented with
CV there was a drastic improvement in terms of finding
the second model and a minor improvement in terms of
detecting the first model. However, MDR implemented
with 3WS had very little success detecting either model.
Figure 7 summarizes these results. Ultimately, MDR
implemented with CV saw little drop off in performance
from mod1 to onlymod1 and from mod2 to onlymod2
while MDR implemented with 3WS saw a severe decline
in performance when false positives were counted against
the model. This suggests that MDR implemented with
3WS has a higher rate of false positives.
In fact, MDR implemented with 3WS tends to choose

a larger final model than MDR implemented with CV.
For the two-locus heterogeneity models the mean size of
the final predicted model was 1.89 for 3WS (mode of 2)
and 1.21 for CV (mode of 1). For the four-locus hetero-
geneity models the mean size of the final predicted
model was 3.99 for 3WS (mode of 4) and 1.84 for CV
Figure 7 Power results for both the three-way split (3WS) and cross-v
as the percentage of times that one of the underlying models was id
results for Model 1 are shown in A, and the results for Model 2 are shown
(mode of 2). Since 3WS tended to choose the largest
possible final model, it had poorer power in terms of
producing final models that included exactly one of the
two contributing models with no additional loci. It also
had a tendency to produce fewer models with no false
positives (power labeled nofalse). For all 21 simulations,
MDR implemented with CV produced a final predicted
model with no false positives in at least six more of the
100 datasets than MDR implemented with 3WS did. In
most cases the difference between the two methods was
much greater with the disparity between number of
datasets yielding a predicted model with no false posi-
tives getting as high as 91. This is illustrated in Figure 8.
This measure did not take into account how many true
disease loci were identified, only that no loci were incor-
rectly identified, so while it shows that 3WS tends to in-
clude more false positives it says nothing about the rate
of false negatives.
For both the two-locus and four-locus heterogeneity

models, MDR implemented with CV tended to outper-
form MDR implemented with 3WS based on the more
liberal definitions of power. Statistical significance (at α =
.05) was achieved for mod2 (p-value=.0056), onlymod1
alidation (CV) implementations of MDR where power is defined
entified (with no false positive and no false negative loci). The
in B.



Figure 8 Power results for both the three-way split (3WS) and cross-validation (CV) implementations of MDR where power is defined
as the percentage of times that any of the correct loci were identified (allowing false negative loci but not false positive loci).
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(p-value=.0012), onlymod2 (p-value <.0001), and nofalse
(p-value < .0001). The greatest differences in performance
were seen with onlymod2 and nofalse where CV had ex-
tremely high power while 3WS had minimal power. The
only liberal definition of power that did not see a signifi-
cant difference was mod1. This lack of significance
resulted more from the poor performance of MDR imple-
mented with CV than from the strong performance of
MDR implemented with 3WS. Many of the models that
needed to be identified to be considered a success for this
type of power contributed only 25% to the overall hetero-
geneity model, so they were extremely hard to detect.
While the performance of MDR implemented with CV
was about the same for mod1 as for onlymod1, there was
a significant difference between CV and 3WS based on
onlymod1 because MDR implemented with 3WS almost
never identified the first model without including any
additional loci.
The results of the ANOVA analysis to evaluate the

results of the simulations experiment are shown in
Table 2. In general, as expected, the simulation factors
also had an effect on MDR’s performance. For conserva-
tive power, OR and model type (XOR, additive, or reces-
sive) significantly impacted the performance of MDR.
For the more liberal definitions of power, OR generally
did not have a significant impact on performance, but
level of heterogeneity and model type generally did.
Level of heterogeneity had the biggest impact on power
and was found to be statistically significant (at α = .05)
Table 2 P-values from the ANOVA analysis of the simulation r

Effect Conservative mod1

internal model validation method 0.1637 0.5136

level of heterogeneity 0.2482 < .0001

model type 0.0006 0.0147

odds ratio (OR) 0.0444 0.2025
for all liberal types of power except nofalse. Model type
was not significant for onlymod1 or nofalse, but it was
for everything else. Odds ratio impacted nofalse, but not
any of the other liberal powers.
In terms of computing time, MDR implemented with

3WS was approximately five times faster than MDR
implemented with CV. This is consistent with results
published by Winham et al. [8]. The majority of the
computation time is spent classifying all possible combi-
nations of loci as either high-risk or low-risk and cal
culating a balanced accuracy estimate for all these com-
binations in the training set. This process is done only
once with 3WS and five times for five-fold CV, so 3WS
is theoretically five times faster than five-fold CV. The
difference in efficiency also depends on many other fac-
tors such as sample size and the total number of loci
[19].

Conclusion
While MDR implemented with CV has been effective at
detecting disease models exhibiting epistasis, it has been
shown to have a dramatic decrease in power in the pres-
ence of genetic heterogeneity [20,21]. Recently, an alter-
native internal model validation method, the 3WS, has
been shown to have roughly the same power as CV for
detecting standard epistatic models when implemented
with MDR [19]. The main conclusion to draw from this
study is that MDR implemented with 3WS not only fails
to detect disease models exhibiting genetic heterogeneity
esults

onlymod1 mod2 onlymod2 nofalse

0.0012 0.0056 < .0001 <.0001

0.0003 0.0005 0.001 0.0733

0.1672 0.0004 0.0109 0.155

0.7075 0.18 0.3708 0.0003
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better than MDR implemented with CV, but by some
measures it performs significantly worse. While we
recognize that the current study does not provide solu-
tions for improving detection of heterogeneity, we do
hope this study provides important practical guidance
when choosing an internal model validation approach.
Both 3WS and CV perform extremely poorly in terms

of detecting the full heterogeneity model. Neither
method did significantly better than the other in this re-
spect, but neither performed well enough to have any
practical utility. Looking at more liberal definitions of
power, for which it was considered a success if MDR
detected one of the two models contributing to the over-
all genetic heterogeneity model, differences in perform-
ance arise. In particular, MDR implemented with CV is
significantly better at detecting models that contribute at
least 50% to the overall genetic heterogeneity model.
There is not, however, a significant difference in the abil-
ity of the two methods to detect models that contribute
at most 50% to the overall model. This can be attributed
primarily to the extremely poor performance of both
methods in regard to detecting the less prevalent model.
When the inclusion of false positives into the model

predicted by MDR was considered, it was found that
MDR implemented with CV is far better than MDR
implemented with 3WS at finding exactly one of the two
models contributing to the overall genetic heterogeneity
model without including any additional loci. The average
final model size for MDR implemented with 3WS was
about twice that of MDR implemented with CV. This
was expected based on previous findings [19] and was
one of the main reasons we initially hypothesized that
MDR implemented with 3WS would better detect het-
erogeneity models. Unfortunately, the additional loci
included in the final model by MDR implemented with
3WS were not the hard-to-detect disease loci contribut-
ing to the heterogeneity model but were instead false
positives.
Ultimately, MDR does not appear to be able to effect-

ively detect models exhibiting genetic heterogeneity re-
gardless of the internal model validation method used.
Therefore, some other approach must be developed to
find this type of model. Ritchie et al. [21] suggested
using either cluster analysis or recursive partitioning to
confront the challenge presented by genetic heterogen-
eity. The cluster analysis approach is based on the idea
that genetic heterogeneity results from groups of indivi-
duals within a population who have different genetic
backgrounds. If these groups could be identified prior to
looking for associations, then MDR could be run on the
groups separately under the assumption that within each
group there is only one underlying disease model (and
consequently no heterogeneity). Whether using classifi-
cation trees or cluster analysis, grouping individuals
based on a shared genetic background before attempting
to identify gene associations seems to be a reasonable
direction for further research into finding genetic het-
erogeneity models. These results highlight the import-
ance of continued development to improve the
performance of MDR in the case of heterogeneity, and
motivate the use of other approaches if genetic hetero-
geneity is expected to play a role in the disease etiology.
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