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Abstract: Cannabidiol (CBD) is a non-intoxicating compound extracted from Cannabis sativa, show-
ing antidepressant-like effects in different rodent models. However, inconsistent results have been
described depending on the species and the strain used to assess depressive-like behavior. Moreover,
only a few studies investigated the effect of CBD in female rodents. Therefore, we aimed to (i) in-
vestigate the effects of CBD in two different strains of mice (Swiss and C57BL/6) and a rat model
of depression based on selective breeding (Flinders Sensitive and Resistant Lines, FSL and FRL)
subjected to tests predictive of antidepressant-like effects and (ii) investigate the influence of sex in
the effects of CBD in both mice and rats. CBD induced an antidepressant-like effect in male Swiss
but not in female Swiss or C57BL/6 mice in the tail suspension test (TST). In male FSL rats, CBD
produced an antidepressant-like effect 1 h post injection. However, in female FSL, CBD induced a
bimodal effect, increasing the immobility time at 1 h and decreasing it at 2 h. In conclusion, strain,
sex, and administration time affect CBD’s behavioral response to rodents exposed to tests predictive
of antidepressant effects.

Keywords: cannabidiol; S-ketamine; sex; mice strain; Flinders Sensitive Line rats; Flinders Resistant
Lines rats; tail suspension test; forced swim test

1. Introduction

Major depressive disorder (MDD) is a chronic and disabling psychiatric disorder [1].
The World Health Organization (WHO) estimates that more than 300 million people suffer
from depression worldwide [2,3] and that MDD is a major contributor to the world’s burden
of disease [4,5]. This scenario is further aggravated by the high prevalence and comorbidity
of anxiety disorders, affecting more than 3.6% of the world population [2]. Consequently,
there is a significant socioeconomic impact with increasing health-related costs and a
reduction in the productivity of the economically active population [6,7]. Importantly, there
is a considerable sex imbalance in MDD and anxiety prevalence, with depression being
twice as prevalent in women than men [2,3]. Despite that, the use of females to investigate
new drugs and neuropathology is scarce in basic research [8–10]. Eighty percent of the
preclinical research in behavioral neuroscience has been developed in male subjects [11],
which can potentially limit the benefit of the discoveries for females and compromise the
development of personalized medicine [8,11–13].
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Cannabidiol (CBD) is one of the main active constituents present in Cannabis sativa [14].
Unlike delta-9-tetrahydrocannabinol (∆9-THC), it does not induce psychostimulant effects,
nor is it associated with an increased risk of abuse and dependence [15]. Due to its non-
intoxicating properties and multitargeted action [16,17], the therapeutic properties of CBD
were investigated in several animal models of neurological and psychiatric disorders,
with promising results [18]. The anxiolytic effect of CBD was shown in different animal
models [19–21] and clinical trials [19–21]. Although consistent data from humans are
still lacking [16], the antidepressant properties of CBD were consistently demonstrated in
different behavioral readouts, such as the Forced Swim Test (FST) [22–26], Tail Suspension
Test (TST) [27], Learned Helplessness (LH) [24], Olfactory Bulbectomy (OBX) [28], and
Chronic Unpredictable Mild Stress (CUMS) [29,30]. Moreover, CBD is also able to rescue
the behavioral phenotype of congenitally depressed rat strains, such as the Wistar-Kyoto
(WKY) [31,32] and Flinders Sensitive Line (FSL) rats [24,32]. Interestingly, CBD produces
a rapid and sustained antidepressant-like effect in rodents, similar to ketamine [24]. This
characteristic places CBD as an interesting new drug to successfully treat depression
and anxiety.

However, most studies investigating CBD antidepressant effects were performed in
male rodents [16]. More recently, Shbiro and colleagues [32] investigated the effects of CBD
in both female and male WKY and FSL rats and reported that CBD induced antidepressant-
like effects in male and female WKY and male FSL rats [32]. However, in this study, the
authors investigated only one dose of CBD (30 mg/kg), making it difficult to conclude
that CBD lacks effects in female FSL rats, since this drug is known to produce an inverted
U-shape dose-response curve [24,26,33,34]. Moreover, significant variability in effective
CBD doses were observed (10–200 mg/kg), depending on the rodent species and strain,
treatment time, and test used (reviewed by [16]). Indeed, a growing body of evidence
suggests that strain and species of the selected rodents may affect baseline behavioral
measurements in distinct paradigms [35–41]. These factors may also influence the drug
response, interfering with the effective dose range [36,37,40,42] or causing the absence of
effect in different tests [37,38,43].

Therefore, we examined CBD anxiolytic and antidepressant-like effects in both sexes
of different rodent species (rats and mice). More specifically, the present study aimed to
investigate whether CBD treatment could produce (i) an anxiolytic and antidepressant-
like effect in male and female Swiss and C57BL/6 mice (the two most-used mice strains)
submitted to TST and elevated plus maze (EPM) and (ii) an antidepressant-like effect in
male and female FSL rats exposed to FST at different time points (1 and 2 h before the test).

2. Results
2.1. Swiss and C57BL/6 Mice
CBD Effects in Male and Female Swiss and C57BL/6 Mice Submitted to the Elevated Plus
Maze (EPM) and Tail Suspension Test (TST)

A three-way ANOVA was performed to examine the effects on mice (Swiss and
C57BL/6) of treatment, sex, and strain on the parameters evaluated in the TST and EPM.
There was a significant effect of the treatment (three-way ANOVA: F(4, 141) = 7.69; p < 0.001)
and mice strain on immobility in the TST (three-way ANOVA: F(4, 141) = 289.7; p < 0.001).
Swiss mice presented greater immobility compared to C57BL/6 mice. Moreover, there
was an interaction between treatment vs. sex (F(4, 141) = 3.31; p = 0.013) and a statistical
tendency in the interaction treatment vs. strain (F(4, 141) = 2.21; p = 0.07).

Since there was a significant effect on the strain and a tendency in the interaction
(treatment vs. strain), we performed an independent two-way ANOVA to evaluate the
treatment and sex effects in each mice strain, Swiss and C57BL/6. In Swiss mice, the
two-way ANOVA revealed a significant effect of the treatment (F(4, 56) = 5.21; p = 0.001)
and the interaction (sex vs. treatment; F(4, 56) = 2.54; p = 0.05). Afterwards, a one-way
ANOVA was performed on each sex to compare the treatment effect on immobility. In
male Swiss mice, a single injection of imipramine (IMIP) and all doses of CBD decreased
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immobility time in the TST (one-way ANOVA: F(4, 25) = 8657; p = 0.0002; Dunnett test:
IMIP, p < 0.0001; CBD 3 mg/kg, p = 0.0159; CBD 10 mg/kg, p = 0.0038; CBD 30 mg/kg,
p = 0.0182; Cohen test: VEH vs. IMIP: d = 3.983; VEH vs. CBD groups: f = 0.70; Figure 1B),
suggesting an antidepressant-like effect. However, none of the drug treatments modified
the analyzed parameters in female Swiss mice (Kruskal–Wallis test: H(5) = 6.153; p = 0.188;
Figure 2B). A two-way ANOVA showed no effect on C57BL/6 mice (Figures 3B and 4B).

Regarding the anxiety-related behavior assessed in the EPM, a three-way ANOVA
revealed a significant strain effect (three-way ANOVA: F(1, 150) = 22.43; p < 0.001), inter-
action sex vs. strain (three-way ANOVA: F(1, 141) = 7.84; p < 0.001), and no treatment
effect on the OA entries, revealing that C57BL/6 mice explored OA more than Swiss mice.
The difference was more significant in male than female animals. Moreover, there was
significant sex vs. strain interaction in the percentage of time spent in the OA (three-way
ANOVA: F(1, 151) = 10.74; p = 0.001), revealing that male Swiss mice spent less time explor-
ing the OA than their female counterparts. In C57BL/6 mice, the exploratory response was
similar between sexes (Figure 1E, Figure 2E, Figure 3E, Figure 4E).

Furthermore, in the time spent in the OA, a three-way ANOVA revealed a significant
difference in the sex (three-way ANOVA: F(1, 148) = 12.84; p < 0.001), strain (three-way
ANOVA: F(1, 148) = 9.58; p < 0.001), and the treatment vs. strain interaction (three-way
ANOVA: F(1, 148) = 2.80; p = 0.028), demonstrating that female mice spent more time
exploring the OA compared to males. Following the significant treatment vs. strain
interaction, we performed a two-way ANOVA to evaluate the treatment and strain effects
in Swiss and C57BL/6 mice. There was no difference in C57BL/6 mice (Figures 3 and 4).
On the other hand, there was a significant treatment effect on the OA of the Swiss mice
(two-way ANOVA: F(4, 73) = 4.08; p = 0.005). However, a one-way ANOVA or Kruskal–
Wallis in each sex of the Swiss mice failed to find a significant effect in this parameter (male:
Kruskal–Wallis test: H(5) = 4.792; p = 0.3094; Figure 1D; female: one-way ANOVA: F(4, 148)
= 1.646; p = 0.1862; Figure 2D).

Concerning the EA entries, a three-way ANOVA revealed a significant treatment
effect in this behavioral response (F(4, 148) = 5.85; p = 0.001). Only in female Swiss mice,
imipramine and CBD 10 mg/kg treatment reduced the EA entries in the EPM compared
to VEH-treated mice (one-way ANOVA: F(4, 33) = 8.305; p < 0.001; Dunnett test: IMIP,
p = 0.0054; CBD 10 mg/kg, p = 0.0310; Figure 2F). There was no significant correlation
between immobility time and EA entries in the IMIP and CBD 10 mg/kg treated group
(correlation: IMIP, r = −0.5697; p = 0.1405; CBD10, r = 0.1224; p = 0.7937; data not shown).
Therefore, the alteration in the locomotor activity did not affect the immobility in the TST.
There was no statistical difference in male Swiss (Figure 1F) and C57BJ/6 mice of both
sexes (male: Figure 3F; female: Figure 4F).

In summary, CBD induced an antidepressant-like effect in male Swiss mice without
affecting the locomotor activity, but not in females from the same strain. Moreover, CBD
did not affect the TST and EPM behaviors in male and female C57BL/6 mice.
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Figure 1. Effects induced by cannabidiol (CBD) in male Swiss mice submitted to tail suspension test and elevated plus-maze.
Experimental scheme (A). Effect of cannabidiol (CBD) in male Swiss mice administered 30 min before the exposure to TST
(B). EPM (C–F). Bars represent the immobility time (s) in the TST, time and percentage of the time spent on OA, number of
OA and EA entries in the EPM. Values are mean ± SEM; asterisk represents significant treatment difference from control
(* p < 0.05; one-way ANOVA followed by Dunnett post hoc test), n = 4–8 animals/group. CBD: cannabidiol; EA: enclosed
arm; IMIP: imipramine; OA: open arm; VEH: vehicle.
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Figure 2. Effects induced by cannabidiol (CBD) in female Swiss mice submitted to the tail suspension test and elevated plus
maze. Experimental scheme (A). Effect of cannabidiol (CBD) in female Swiss mice administered 30 min before the exposure
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EA: enclosed arm; IMIP: imipramine; OA: open arm; VEH: vehicle.
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cannabidiol; EA: enclosed arm; IMIP: imipramine; OA: open arm; VEH: vehicle.
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Figure 4. Effects induced by cannabidiol (CBD) in female C57BL/6 mice submitted to the tail suspension test and elevated
plus maze. Experimental scheme (A). Effect of cannabidiol (CBD) in female C57BL/6 mice administered 30 min before the
exposure to TST (A) and EPM (B–F). Bars represent the immobility time (s) in the TST, time and percentage of the time spent
on OA, number of OA and EA entries in the EPM. Values are mean ± SEM; n = 9–13 animals/group. CBD: cannabidiol;
EA: enclosed arm; IMIP: imipramine; OA: open arm; VEH: vehicle.
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2.2. FSL Rats
2.2.1. Dose-Response Curve of Ketamine in Female FSL Rats Exposed to the OFT/FST

As expected, ketamine 15 mg/kg and 20 mg/kg reduced the immobility in FSL rats
exposed to the FST (Kruskal–Wallis test: H(4) = 10.60; p = 0.0141; Dunn’s and Cohen
d tests: ketamine 15 mg/kg, p = 0.0198, d = 1.838; ketamine 20 mg/kg, p = 0.0108, d = 3.350;
Figure 5B). FSL rats treated with vehicle had significantly higher immobility time when
compared with FRL rats treated with vehicle (Mann–Whitney test: U = 6.5; p = 0.0037;
Figure 5B), which characterized a depressive-like phenotype. Neither rat strain (Student’s
t-test: t(15) = 0.7981; p = 0.4373) nor drug treatment (one-way ANOVA: F(3, 24) = 0.6495;
p = 0.5910; Figure 5C) changed the OFT locomotor activity in FSL rats.
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are mean ± SEM; hash indicates significant differences between FSL and FRL vehicle-treated groups (# p < 0.05, Student’s
t-test or Mann–Whitney test); asterisk represents significant treatment difference from FSL control (* p < 0.05; Kruskal–Wallis
followed by Dunn’s post hoc), n = 7–10 animals/group. FST: forced swimming test; OFT: open field test; KET: S-ketamine;
VEH: vehicle.

2.2.2. Effect Produced by CBD Administered 1 or 2 h before the OFT/FST in Male and
Female FSL Rats

A three-way ANOVA was performed to examine the effect of treatment, sex, and time
in the parameters evaluated in the FST and OFT. There was a significant effect of treatment
(three-way ANOVA: F(4, 94) = 10.29; p < 0.001) and sex (three-way ANOVA: F(1, 94) = 25.48;
p < 0.001) and between treatment vs. time (three-way ANOVA: F(2, 94) = 3.82; p = 0.025),
sex vs. time (three-way ANOVA: F(1, 94) = 28.53; p < 0.001), and treatment vs. sex vs. time
(three-way ANOVA: F(2, 94) = 15.41; p < 0.001) interactions in the immobility in the FST.

Furthermore, in the total distance traveled in the OFT, there was a significant effect of
treatment (three-way ANOVA: F(4, 94) = 12.80; p < 0.001), sex (three-way ANOVA: F(1, 94)
= 38.16; p < 0.001), and time (three-way ANOVA: F(1, 94) = 7.32; p < 0.001) and treatment vs.
sex (three-way ANOVA: F(4, 94) = 13.58; p < 0.001), treatment vs. time (three-way ANOVA:
F(2, 94) = 3.96; p = 0.022), sex vs. time (three-way ANOVA: F(4, 94) = 4.27; p = 0.04), and
treatment vs. sex vs. time (three-way ANOVA: F(2, 94) = 7.46; p = 0.0001) interactions.

Since there was a significant effect in the interaction (treatment vs. sex vs. time) in
the parameters assessed in FST and OFT, we performed an independent Student’s t-test to
compare the results between the rat strains, FRL and FSL, vehicle-treated groups, and a
one-way ANOVA followed by Dunnett post hoc test to evaluate the treatment effect in each
sex and time in FSL rats. When the variances between the groups were not homogenous,
the Mann–Whitney (for comparisons between FSL and FRL vehicle-treated groups) or
Kruskal–Wallis followed by Dunn’s post hoc tests were used to compare FSL rats treated
with VEH, ketamine, or CBD.
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One hour after injection, male FSL rats treated with vehicle displayed significantly in-
creased immobility time compared with FRL rats treated with vehicle (Student’s t-test: t(17)
= 5.126; p < 0.0001; Figure 6C). FSL rats treated with CBD (30 mg/kg) or KET (15 mg/kg)
showed a tendency to reduce immobility time (one-way ANOVA: F(4, 29) = 3.178; p = 0.0279;
Dunnett test: CBD 30 mg/kg, p = 0.0826; KET, p = 0.0523; Cohen d test: FSL-VEH vs. FSL-
KET, d = 1.218; FSL-VEH vs. FSL-CBD 30 mg/kg, d = 1.153; Figure 6C), suggesting an
antidepressant-like effect. Neither rat strain (t(17) = 0.5769; p = 0.5716) nor drug treatment
(one-way ANOVA: F(4, 29) = 0.3576; p = 0.8366; Figure 6E) changed the locomotor activity
in FSL rats.

Two hours after injection, male FRL treated with vehicle presented lower immobility
(Student’s t-test: t(16) = 5.241; p < 0.0001; Figure 6D) and increased locomotion (Student’s
t-test: t(16) = 2.722; p = 0.0151; Figure 6F) in comparison with vehicle-treated FSL animals.
As demonstrated previously, ketamine (15 mg/kg) injected 1 h before FST reduced im-
mobility in FSL rats (Kruskal–Wallis test: H(3) = 14.52; p = 0.0007; Dunn’s test: p = 0.0007;
Cohen d test: d = 1.749; Figure 6D). CBD did not change immobility in the test 2 h later
(Kruskal–Wallis test: H(3) = 14.52; p = 0.0007; Dunn’s: p > 0.9999; Figure 6D). None of the
treatments changed the distance traveled in the OFT (one-way ANOVA: F(2, 27) = 0.3255;
p = 0.7250; Figure 6F).

On the other hand, female FSL rats treated with vehicle displayed significantly in-
creased immobility time when compared with FRL rats treated with vehicle (Student’s
t-test: t(12) = 2.954; p = 0.0120; Figure 7C). They also showed a significant decrease in
locomotion (Mann–Whitney test: U = 8; p = 0.0426; Figure 7E). However, female FSL rats
treated with the intermediate dose of CBD (30 mg/kg) showed a tendency to increase
immobility in the FST 1 h after treatment (one-way ANOVA: F(4, 24) = 9.464; p < 0.0001;
Dunnett test: p = 0.0898; Figure 7C), suggesting a depressive-like effect. In contrast, the
FSL rats treated with ketamine (20 mg/kg) showed a significant reduction the immobility
(one-way ANOVA: F(4, 24) = 9.464; p < 0.0001; Dunnett test: p = 0.0096; Figure 7C). No drug
treatment in FSL rats affected the locomotor activity (Kruskal–Wallis test: H(5) = 5.917;
p = 0.2054; Figure 7E).

Two hours after injection, female FSL rats treated with vehicle displayed significantly
increased immobility time when compared with FRL rats treated with vehicle (Student’s
t-test: (t(8) = 3.076; p = 0.0152; Figure 7D). They also presented a tendency to decrease
the distance traveled in OFT (t(8) = 1.861; p = 0.0998; Figure 7D). Interestingly, 2 h after
treatment CBD (30 mg/kg) in female FSL rats, immobility was reduced (one-way ANOVA:
F(2, 15) = 4.439; p = 0.0306; Dunnett test: p = 0.018; Cohen d test: d = 1.621; Figure 7D).
Ketamine (20 mg/kg) injected 2 h before the FST did not change the behavior in the test
(one-way ANOVA: F(2, 15) = 4.439; p = 0.0306; Dunnett test: p = 0.4096; Figure 7D). No
treatment modified the distance traveled in the OFT in FSL rats (one-way ANOVA: F(2, 15)
= 0.9503; p = 0.4087; Figure 7F).
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Figure 7. Effects of cannabidiol (CBD) administered 1 or 2 h before the forced swim and open field tests in female FSL rats.
Experimental scheme (A,B). Effect of cannabidiol (CBD) in female FSL rats administered 1 (C,E) and 2 h (D,F) before the
exposure to the FST and OFT. Bars represent the immobility time (s) in the FST or the traveled distance (m) in the OFT.
Values are mean ± SEM; hash indicates significant differences between FSL and FRL vehicle-treated groups (# p < 0.05,
Student’s t-test or Mann–Whitney test); asterisk represent significant treatment difference from FSL control rats (* p < 0.05;
one-way ANOVA followed by Dunnett post hoc), n = 4–10 animals/group. CBD: cannabidiol; FST: forced swimming test;
OFT: open field test; KET: S-ketamine; VEH: vehicle.
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3. Discussion

The main finding of the present work was that CBD differentially modulates depressive-
like behavior depending on injection time, strain, species, and sex. This study was the
first to systematically investigate CBD’s behavioral effects in both sexes of FSL rats and
different mice strains (Swiss and C57BL/6). Our main findings suggest that CBD produces
an antidepressant-like effect in male Swiss mice but not in C57BL/6J mice. Strikingly, CBD
induced a bimodal effect in female FSL rats depending on the injection time. In contrast,
CBD tended to decrease the immobility time at 1 h after the injection in males and did not
produce any behavioral change at 2 h.

Previous studies reported that acute injection of CBD produces an antidepressant-like
effect in male Swiss mice subjected to different predictive tests, including FST [24–26,44]
and TST [27], as we also observed herein. However, we failed to find an antidepressant
effect of acute CBD treatment in male C57BL/6 mice in the TST. Previous studies reported
that acute and repeated CBD administration produced a behavioral response in male
C57BL/6 mice submitted to OBX [28] and CUMS [45,46], which suggests that CBD effects in
C57BL/6J mice might depend on the experimental paradigm and treatment regimen (acute
vs. repeated administration). Curiously, imipramine also did not induce an antidepressant-
like effect in both male and female C57BL/6 mice in the TST, which contrasts with other
evidence in the literature [47]. However, it is known that C57BL/6 mice are less sensitive
than other strains of mice in the TST [38], and experimental conditions, such as age and
previous stress exposure [48–51], can affect the results, which might explain the contrasting
results between the studies.

On the other hand, CBD did not change the immobility time in female Swiss and
C57BL/6 mice submitted to the TST. Since CBD was tested in only one time point af-
ter drug administration (30 min) in mice, it is possible that other exposure times could
produce different results in female mice, as we observed in female rats. Both phar-
macokinetic and pharmacodynamic parameters might have influenced CBD effects in
males and females of different mice strains. The peak of maximum plasma concentration
(Cmax) of CBD can vary, depending on the route of administration, vehicle used, animal
species, and sex [52]. Moreover, evidence has shown that mice strain (Swiss and C57BL/6)
influences the baseline behavioral [38,40,53,54] response to established antidepressant
drugs [37,38,40,49,55,56], neurochemical profile [37], sensitivity to stress [39,57,58], and
some biochemical parameters [39], which could produce a significant impact on the CBD
effects. Therefore, experimental differences might have contributed to the contrasting
results between studies.

The biological variable sex is a critical factor that affects the antidepressant drug
response in different models [37,59–63] and can change the effective dose of a given
drug [36,37,40]. For example, females may be more sensitive to the effects of selective
serotonin reuptake inhibitors (SSRIs), since acute administration of lower doses of fluox-
etine [59,61], paroxetine [37], and sertraline [64] produced an antidepressant-like effect
in female rats and mice exposed to the FST and TST compared to males. Moreover, sim-
ilar sex differences were reported in animals with the fast-acting antidepressant drug
ketamine [60,65].

Surprisingly, we failed to detect CBD effects in mice submitted to the EPM. This
contrasted with previous publications, where the anxiolytic properties of CBD were well
described [27,45,46,54,66], but agrees with a recent publication in CD1 mice [67]. The lack
of positive control in our EPM studies was a limitation for our conclusions about that.
Anxiety disorders are frequently observed as a comorbidity in depressed patients [68,69].
However, in contrast to our expectations, CBD did not affect the anxiety-related behaviors
in the EPM in male and female mice from both mice strains (Swiss and C57BL/6 mice).
Previous works showed similar findings in male C57BL/6J mice, in which CBD acutely
administered did not change the anxiety-related behaviors in different tests [53,54].

Moreover, consistent with our results in females, acute and repeated administration
of CBD did not produce an anxiolytic effect in adolescent and adult female C57BL/6J
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mice [53]. However, in the OFT and light-dark test, CBD chronic administration did cause
an anxiolytic effect after 21 days in male C57BL/6JArc mice [54]. It also prevented (after
14 days) the anxiogenic effect induced by chronic stress in the novelty suppressed feeding
and EPM tests [45,46]. Until now, CBD effects on anxiety-related behaviors had not been
investigated in female Swiss mice.

In male FSL rats, CBD showed a tendency to induce an antidepressant-like effect
1 h after the injection in the FST and did not produce any behavioral change 2 h post
injection. A previous study from our group showed that CBD induced an antidepressant-
like effect 1 h after administration but no sustained effect 7 days later in male FSL rats [24].
CBD effect was consistent with previous studies, which reported that CBD acute injection
significantly decreased the immobility in the FST [23,70], reduced the number of failures,
and increased the number of escapes in LH [24]. The small sample size used herein might
have compromised the possibility of detecting a significant effect of CBD, although a trend
was observed at the dose of 30 mg/kg.

Previous evidence demonstrated that CBD produced a hedonic and antidepressant-
like effect in male FSL and WKY rats 2 h after oral administration, while it had no effect in
female FSL [31,32]. In contrast, our results demonstrated a bimodal effect of CBD in female
FSL rats, with marked antidepressant effect only at 2 h post injection. The discrepancy
in the behavioral effects can be explained by the different behavioral tests used, vehicle,
and the administration routes used (i.p. vs. oral). CBD is a highly lipophilic and poorly
soluble molecule, making it difficult to ascertain the correct dose [14,71]. The vehicle and
the administration routes can affect its pharmacokinetic profile, thus resulting in different
plasma levels, Tmax and Cmax [52,72–74]. Measurements of CBD plasma levels in these
two time points clarifying these results.

What could then be the neurobiological explanation behind the sex differences ob-
served in our work? One possible explanation would be the physico-chemical properties
of CBD. CBD has a chemical structure that confers high lipophilicity similar to delta-9-
tetrahydrocannabinol (∆9-THC) [14,71]. Therefore, it rapidly penetrates highly vascular-
ized tissues in a short time, accumulates in fat tissue, and suffers redistribution, modifying
the plasmatic concentration of the drug [75]. Consequently, this process can be affected by
body weight and composition, which varies between sexes [75–78]. CBD presents a similar
molecular structure to ∆9-THC [79–81], and the influence of sex on ∆9-THC metabolism in
the rat liver has been previously shown [82,83]. Adult female rats presented higher blood
levels of the hydroxylated metabolite, 11-hydroxy-∆9-THC, than males [83]. Therefore, it is
likely that these factors can influence the plasmatic and brain concentration of CBD and,
consequently, differentially impact the behavioral effects observed among different sexes.

Another possible explanation for sex differences could be related to pharmacodynamic
aspects. A growing body of evidence has shown sexual dimorphisms in the endocannabi-
noid and serotonergic systems, key molecular targets enrolled in the CBD effect [16]. For
example, the gonadal hormones influence the levels of endocannabinoids [84] and sero-
tonin [85], as well as cannabinoid receptor [86,87] and serotoninergic receptor type 1A
(5-HT1A) expression [88,89]. Indeed, further studies are crucial to understanding the
molecular mechanism involved in the CBD effects in females.

The present study was also the first to perform a dose-effect curve for ketamine in
female FSL rats. We showed that a single injection of ketamine (15 and 20 mg/kg) produced
an antidepressant-like effect in female FSL rats exposed to FST. Our finding strengthened
previous results showing the efficacy of the treatment with ketamine in female rats, even
though the effective doses vary in comparison to males [90–94]. In agreement with these
results, our group recently showed that ketamine responses in FSL rats were associated with
a sex difference in the hippocampus morphology, alteration of hippocampal astrocytes, and
brain-derived neurotrophic factor (BDNF) [95]. More studies are necessary to investigate
how these differences are involved in the ketamine effect in female FSL rats.

Notwithstanding, there are a few limitations in the present work. Most importantly,
it would be relevant to measure CBD plasma and brain levels in both sexes. It would
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also be interesting to consider the estrous cycle in females and how it may affect the
basal response in the tests [96–99]. Even if it seemed not to modulate the FST response in
female FSL rats [100], it could influence the drug effects of the other tested species. Due
to the limitations of the TST as a model of depression [47,101], it would be interesting to
investigate the effect of CBD using additional preclinical models. Finally, a positive control
group in the EPM using an anxiolytic benzodiazepine could help to confirm the lack of CBD
effect in anxiety-related behaviors in both sexes and strains of the used mice [102–104].

4. Materials and Methods
4.1. Animals

We used adult male and female Swiss and C57BL/6 mice (8 weeks old) from the
University of São Paulo (SP) breeding facility and adult male and female Flinders Sensitive
Line (FSL) and Flinders Resistant Line rats (FRL; control of genetic background) (weight:
male: 200–405 g; female: 138–216 g; 8–12 weeks old) from breeding colonies at Translational
Neuropsychiatry Unit (Aarhus University, Aarhus, Denmark). The mice were housed in
groups of 10 animals per polypropylene cages (200 × 120 × 300 mm), and the rats were
housed in pairs in standard cages (Cage 1291H Eurostandard Type III H, 425 × 266 ×
185 mm, Tecniplast, Buguggiate, VA, Italy). All animals were housed in a temperature-
controlled room (23 ± 2 ◦C) with a 12/12 h light-dark cycle (lights on 6:00 a.m./lights off
6:00 p.m.) with free access to tap water and standard food. The bedding material for rats
(Tapvei Estonia OÜ, Paekna, Estonia) was made of wood chips with access to tunnel shelter,
nesting material, and a wooden stick. For mice, cages were lined with wood shavings
without enrichment material in the cages. Female and male animals were allocated in
different rooms to avoid interference in the behavioral results.

The Ethics Committee approved the experimental protocols for the use of animals
from the School of Pharmaceutical Sciences of Ribeirão Preto—USP (protocol number
17.1.537.60.6) and the Danish Animal Experiments Inspectorate (protocol number 2016-
150201-001105). The experimental procedures were conducted following the National
Council for Control of Animal Experimentation (CONCEA, Brasília, DF, Brazil) and Eu-
ropean Community Council Directive 2010/63/EU. All behavioral experiments were
conducted between 9:00 a.m. and 1:00 p.m.

4.2. Drugs

Synthetic cannabidiol (CBD; Prati-Donaduzzi, Toledo, PR, Brazil; doses: 3, 10, and
30 mg/10 mL/kg intraperitoneal (i.p.)) stored at 4 ◦C and protected from light, diluted
with sterile saline and 2% polysorbate 80 (Tween® 80; Synth, Diadema, SP, Brazil) for
mice [24–26] or synthetic CBD (THC-Pharma, Frankfurt, HE, Germany; doses: 10, 30, and
60 mg/kg/2 mL i.p.) diluted with sterile saline and 3% polysorbate 80 (Tween® 80; Sigma-
Aldrich, St. Louise, MO, USA) for systemic administration in FSL rats [24]. S-ketamine
hydrochloride (Pfizer Ltd.a, Ballerup, Denmark; doses: 10, 15, and 20 mg/kg/2 mL i.p.)
stored at 4 ◦C was dissolved in sterile saline [24,105] and imipramine hydrochloride (IMIP;
Abcam, Waltham, MA, USA; dose: 20 mg/kg/10 mL), stored at 4 ◦C and diluted in sterile
saline [106]. The vehicle (VEH) group received CBD vehicle injections. All drugs were
freshly prepared before the experiment. The animals received the treatment randomly by
writing down the treatment in pieces of paper, folding them, then drawing one by one for
each animal [107].

4.3. Methods and Experimental Design
4.3.1. Mice
Experiments 1 and 2—CBD Effects in Male and Female Mice Exposed to EPM and TST

The elevated plus maze (EPM) and the tail suspension test (TST) were conducted to
investigate the anxiolytic and antidepressant-related behaviors in mice. The EPM was
performed as previously described [27,108]. The apparatus was a plus-shaped maze made
of wood and consisted of 2 equals enclosed arms (EA; 30 cm × 6 cm; surrounded by walls
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15 cm high) disposed perpendicularly to a 2 equals open arms (OA; 30 cm × 6 cm). The
animals were placed in the center of the equipment facing one EA and freely exploring the
maze for 5 min. The OA entries, time, and percentage of time spent in the OA were analyzed.
Also, EA entries were assessed as an exploratory behavior, as described in [103,108].

In the TST, the animal was suspended 60 cm above the floor with the adhesive tape
placed 1 cm at the tip of the tail on the experimentation table for 6 min [47,109]. Moreover,
a plastic cylinder tubing (40 mm length; 16 mm diameter) was placed around the animal
tail to prevent tail-climbing behavior, as described previously [110].

Thirty minutes after the habituation period in the experimental room, the mice re-
ceived the intraperitoneal injection with VEH, IMIP, or CBD (3, 10, and 30 mg/kg). Thirty
minutes later, the animals were exposed to the EPM (5 min) and TST (6 min). To avoid
interference in the behavioral response in the tests, the experiment carried out with fe-
males was performed independently and on different days from male animals. The female
reproductive cycle status was not taken into account [111].

Independent experiments were carried out for Swiss and C57BL/6 mice for each sex
(a total of four independent experiments).

4.3.2. Flinders Sensitive Line (FSL) Rats
Experiment 3—CBD Effect 1 and 2 h before OFT/FST in Male FSL Rats

To assess whether CBD produced an antidepressant-like effect 1 or 2 h after the
injection, the rats received an i.p. injection with VEH, ketamine (15 mg/kg), or CBD (10, 30,
and 60 mg/kg). After 50 min or 1 h 50 min, the animals were exposed to the OFT (5 min)
and, immediately after, they were submitted to the FST (5 min). The FST was performed,
as previously described [24,112]. The FSL and FRL rats were exposed to a 10 min test in a
Perspex cylinder (height 60 cm, diameter 24 cm) filled with tap water at 24 ± 1 ◦C, up to
40 cm height, and the immobility time was measured in the first 5 min [24].

To analyze the unspecific change in the locomotor activity produced by the drug treat-
ment, an open field test (OFT) was performed, as previously described [113]. Immediately
before the test in the FST (see below), the rats were submitted individually to an open field
square (100 cm × 100 cm) for 5 min. The light intensity was 40 lux at the center of the arena.
The total distance traveled (meter; m) was subsequently analyzed using EthoVision® XT14
(Noldus Information Technology, Wageningen, The Netherlands).

In addition, the FSL and FRL rats were handled for 3–5 min during three consecutive
days before the experiment to habituate the animals to the experimenter and minimize
stress caused by manipulation.

Experiment 4—Dose-Response Curves with Ketamine in Female FSL Rats Exposed to
OFT/FST

A dose-response curve with ketamine was conducted to determine the effective dose
that produced antidepressant-like effects in female FSL rats. For this purpose, 1 h after
the habituation in the experimental room, the female FRL rats received systemic treatment
with VEH (sterile saline), and female FSL rats were treated with VEH or ketamine (10, 15,
and 20 mg/kg i.p.). Fifty minutes later, the rats were submitted to OFT (5 min) and FST
(10 min), as previously described. The rat reproductive cycle status was not considered, as
it was earlier shown not to affect immobility [100,114].

Experiment 5—CBD Effect 1 and 2 h before OFT/FST in Female FSL Rats

A similar design described in Experiment 3 was used for females, except that S-
ketamine was 20 mg/kg. To avoid interference in the behavioral response in the tests, the
experiment carried out with females was conducted independently and on different days
than the males. The rat reproductive cycle status was not considered [100,114].
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4.4. Data Analysis

A three-way analysis of variance (ANOVA) with treatment, sex, strain or time (with
FSL rats) as independent factors was performed to examine the behavioral data. To measure
significant effects of the strain and in the interaction (treatment vs. strain), we performed
an independent two-way ANOVA to evaluate the treatment and sex effect in each mice
strain, Swiss and C57BL/6. In sequence, to measure significant effect on the treatment and
interaction (sex vs. treatment), we performed a one-way ANOVA on each sex to compare
the treatment effect on immobility. However, for FSL rats, to compare significant effects of
the interaction (treatment vs. sex vs. time), we performed the following tests: (i) Student’s
t-test to compare the results between the rat strain, FRL and FSL vehicle-treated groups
and (ii) one-way ANOVA test followed by Dunnett post hoc test to compare differences
between FSL-VEH and FSL-ketamine or FSL-CBD and mice treated groups (VEH, IMIP, and
CBD). When the variances between the groups were not homogenous, Mann–Whitney (for
comparisons between FSL and FRL vehicle-treated groups) or Kruskal–Wallis followed by
Dunn’s post hoc test (to compare between FSL treated with VEH, ketamine, and CBD and
treated mice) was applied. Significant outliers were removed from the statistical analysis
through GraphPad’ Outlier calculator (online version, 2021; GraphPad Software Inc., San
Diego, CA, USA). The outliers were the following: male and female FSL rats: 1 rat/sex;
female C57BL/6 and male Swiss mice: 5 animals/strain; male C57BL/6 and female Swiss
mice: 3 animals/strain. We calculated and reported the effect size from TST and FST using
G*Power (version 3.1.9.6, Heinrich Heine Universität, Düsseldorf, NRW, Germany) [115].
Results in the graphs are expressed as the mean ± standard error of the mean (SEM). A
significant difference between groups was considered when p ≤ 0.05. The p-value between
0.05 and 0.1 was considered a statistical trend [116]. Statistical analyses were performed
using GraphPad Prism 8.0 (GraphPad Software Inc., San Diego, CA, USA) and SPSS
software (version 20.0), and the graphs were created using GraphPad Prism 8.0 (GraphPad
Software Inc., San Diego, CA, USA). The raw data are published on FigShare [117].

5. Conclusions

In conclusion, our findings point out that sex, animal strain, species, and injection
time may affect the behavioral response induced by CBD in rodents submitted to animal
models of depression. CBD produced an antidepressant-like effect only in male Swiss mice
and no effect in female Swiss mice or C57BL/6 mice (both sexes) was observed. Notably, in
female FSL rats, CBD produced an antidepressant effect 2 h post injection and tended to
induce a depressive-like effect at 1 h. In male FSL, CBD tended to cause an antidepressant
at 1 h but not at 2 h. Therefore, these findings indicate that it is necessary to consider the
sex, animal strain and species, compound chemistry, exposure, and behavioral test when
evaluating novel drugs for depression.
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