Supplemental Information

Cardiac-specific overexpression of Ndufs1 ameliorates

cardiac dysfunction after myocardial infarction by

alleviating mitochondrial dysfunction and apoptosis

Bingchao Qi, 1,3 Liqiang Song 2,3, Lang Hu, 1,3 Dong Guo, 1 Gaotong Ren, 1 Tingwei

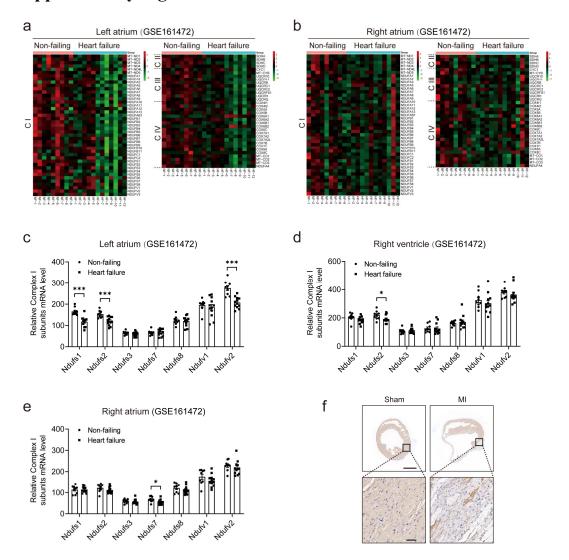
Peng, ¹ Mingchuan Liu, ¹ Yexian Fang, ¹ Chunyu Li, ¹ Mingming Zhang, ¹ and Yan Li. ¹

¹Department of Cardiology, Tangdu Hospital, Fourth Military Medical University,

Xi'an, 710038, People's Republic of China.

²Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth

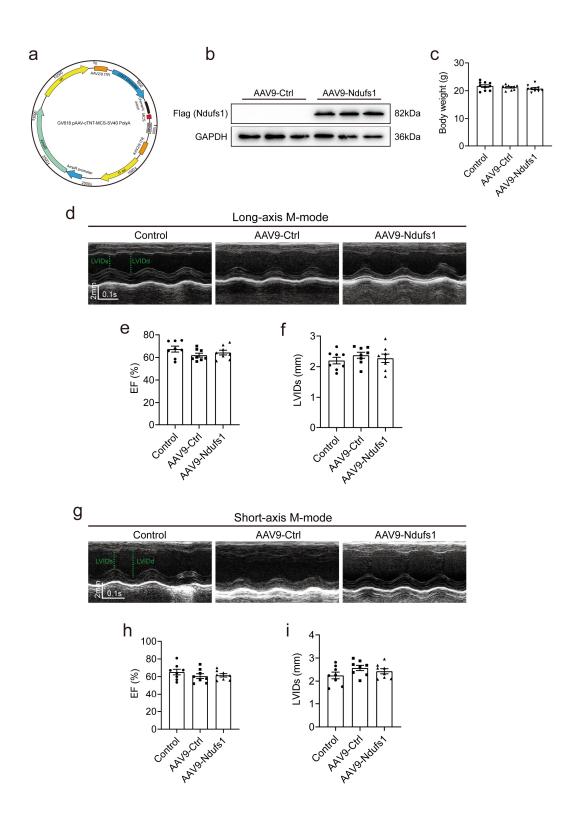
Military Medical University, Xi'an, 710032, People's Republic of China.


³These authors contributed equally.

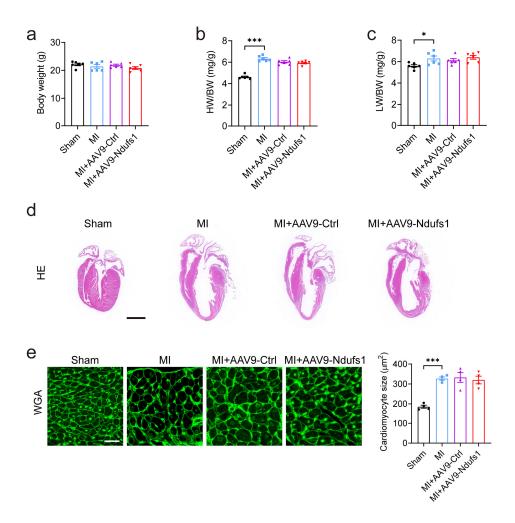
Address correspondence to:

Prof. Yan Li, profleeyan@163.com.

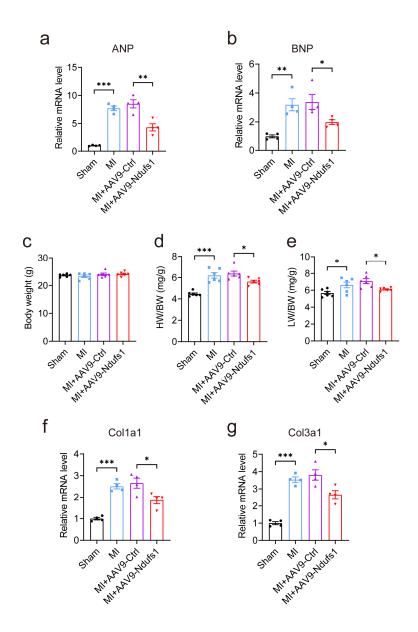
Prof. Mingming Zhang, winterzhang3@163.com.


Supplementary Figures

Supplementary Fig. 1 Ndufs1 expression is decreased in the myocardium of heart failure patients and post-MI mice

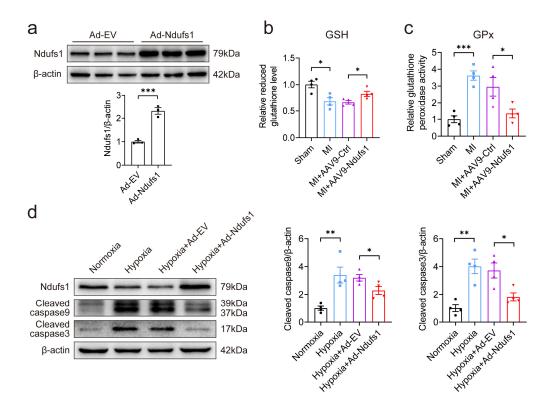

a, **b** Heat map of RNA-seq analysis for mitochondrial genes belonging to complex I (C I), complex II (C II), complex III (C III), and complex IV (C IV) in the left atrium samples and right atrium samples of non-failing subjects (n = 9) and heart failure patients (n = 12). **c-e** Mitochondrial Complex I subunits mRNA levels in three heart chambers of non-failing subjects (n = 9) and heart failure patients (n = 12) based on the RNA-seq data. **f** Representative immunohistochemical staining images of Ndufs1 in the

hearts of sham mice and mice on the 28th-day post-MI; upper scale bar = 2 mm, lower scale bar = 50 μ m. Data were presented as means \pm SEM. Statistical significance was assessed by one-way ANOVA. *p < 0.05, **p < 0.01, ***p < 0.001.

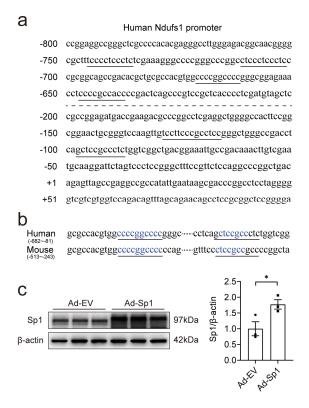

Supplementary Fig. 2 Cardiac-specific overexpression of Ndufs1 has no effect on cardiac function in C57BL/6J mice

a Schematic diagram of the adeno-associated virus serotype 9 (AAV9) vector under the control of a cardiac troponin T promoter (cTnT) used in this study. **b** Representative blots showing overexpression effect by AAV9-Ndufs1 infection in hearts of C57BL/6 J mice. **c** Body weight of mice at 4 weeks after AAV injection (n = 10 per group). **d** Representative long-axis M-mode echocardiograph images at 4 weeks after AAV injection. LVIDs, left ventricular systolic internal dimension; LVIDd, left ventricular diastolic internal dimension. **e**, **f** Echocardiograph analysis in the long-axis M-mode (n = 8 per group). EF, ejection fraction. **g** Representative short-axis M-mode echocardiograph images at 4 weeks after AAV injection. **h**, **i** Echocardiograph analysis in the short-axis M-mode (n = 8 per group). Data were presented as means \pm SEM. Statistical significance was assessed by one-way ANOVA.

Supplementary Fig. 3 Cardiac-specific overexpression of Ndufs1 has no effect on compensatory myocardial hypertrophy in the acute phase of MI


a-c Body weight, heart weight/body weight (HW/BW), and lung weight/body weight (LW/BW) on the 3rd-day post-MI (n=6 per group). **d** Hematoxylin and eosin (HE) staining showed the gross morphology of hearts on the 3rd-day post-MI; scale bar = 2 mm. **e** Representative images of wheat germ agglutinin (WGA) staining and quantitative analysis of the cross-sectional area of cardiomyocytes on the 3rd day post-MI (n=4 per group); scale bar = 30 μ m. Data were presented as means \pm SEM. Statistical significance was assessed by one-way ANOVA. *p < 0.05, ***p < 0.001.

Supplementary Fig. 4 Cardiac-specific overexpression of Ndufs1 significantly decreases the makers of heart failure and myocardial fibrosis in the healing phase of MI


a, **b** qRT-PCR analysis of the makers of heart failure, including ANP and BNP, at 4 weeks after MI (n = 4 per group). **c-e** Body weight, HW/BW, and LW/BW at 4 weeks after MI (n = 6 per group). **f**, **g** qRT-PCR analysis of the makers of myocardial fibrosis, including Colla1 and Col3a1, at 4 weeks after MI (n = 4 per group). Data were presented as means \pm SEM. Statistical significance was assessed by one-way ANOVA.

p < 0.05, p < 0.01, p < 0.001, p < 0.001.

Supplementary Fig. 5 Upregulation of Ndufs1 decreases MI-induced oxidative stress and hypoxia-induced apoptosis

a Representative blots and quantitative analysis of overexpression effect by Ad-Ndufs1 infection in NRCMs (n = 3 per group). **b**, **c** GSH level and GPx activity in mouse heart tissues (n = 4 per group). **d** Representative blots and quantitative analysis of cleaved caspase 9 and cleaved caspase 3 levels in NRCMs (n = 4 per group). Data were presented as means \pm SEM. Statistical significance was assessed by one-way ANOVA. *p < 0.05, **p < 0.01, ***p < 0.001.

Supplementary Fig. 6 Potential binding sites for the transcription factor Sp1

a Potential binding sites for Sp1 in the human Ndufs1 promoter region. **b** Conserved putative Sp1 binding sites of Ndufs1 promoter region in human and mouse. **c** Representative blots and quantitative analysis of overexpression effect by Ad-Sp1 infection in NRCMs (n = 3 per group). Statistical significance was assessed by Student's t-test. *p < 0.05.

Supplementary Tables

Supplementary Table 1

The primer sequences used for quantitative PCR were as follows:

Species	Gene	Forward primer (5'-3')	Reverse primer (5'-3')
Human	Ndufs1	TTAGCAAATCACCCATTGGACTG	CCCCTCTAAAAATCGGCTCCTA
Human	β-actin	CCTGGCACCCAGCACAAT	GGGCCGGACTCGTCATAC
Mouse	Ndufs1	AGGATATGTTCGCACAACTGG	TCATGGTAACAGAATCGAGGGA
Mouse	Ndufs2	CAGCCAGATATTGAATGGGCA	TGTTGGTCACCGCTTTTTCCT
Mouse	Ndufs3	TGGCAGCACGTAAGAAGGG	CTTGGGTAAGATTTCAGCCACAT
Mouse	Ndufs7	GTTCATCAGAGTGTAGCCACTG	CAGGCCGAAGGTCATAGGC
Mouse	Ndufs8	AGTGGCGGCAACGTACAAG	TCGAAAGAGGTAACTTAGGGTCA
Mouse	Ndufv1	TTTCTCGGCGGGTTGGTTC	GGTTGGTAAAGATCCGGTCTTC
Mouse	Ndufv2	GCAAGGAATTTGCATAAGACAGC	TAGCCATCCATTCTGCCTTTG
Mouse	Col1a1	GGAGACAGGTCAGACCTGTGTG	CAGCTGGATAGCGACATCGGC
Mouse	Col3a1	CTGTAACATGGAAACTGGGGAAA	CTGTAACATGGAAACTGGGGAAA
Mouse	ANP	GCTTCCAGGCCATATTGGAGCA	TCTCTCAGAGGTGGGTTGACCT
Mouse	BNP	ATGGATCTCCTGAAGGTGCTGT	GCAGCTTGAGATATGTGTCACC
Mouse	Sp1	GCCGCCTTTTCTCAGACTC	TTGGGTGACTCAATTCTGCTG
Mouse	GAPDH	GGCTGCCCAGAACATCAT	CGGACACATTGGGGGTAG
Rat	Ndufs1	CCAAAGTAGCAGTGACACCTCC	CAACATCATCATATCGAACCAG
Rat	Col1a1	ATCAGCCCAAACCCCAAGGAGA	CGCAGGAAGGTCAGCTGGATAG
Rat	Col3a1	TGCCATTGCTGGAGTTGGA	GAAGACATGATCTCCTCAGTGTTGA
Rat	ANP	GGAGCCTGCGAAGGTCAA	TATCTTCGGTACCGGAAGCTGT
Rat	BNP	CAGTCAGTCGCTTGGGCTGT	GCAGAGTCAGAAGCCGGAGT
Rat	β-actin	TGTCACCAACTGGGACGATA	GGGGTGTTGAAGGTCTCAAA

Supplementary Table 2

Primary antibodies used for western blotting and immunohistochemistry were as follows:

Antibody	Source	Company	Catalogue Number
Ndufs1 (WB, IHC)	Rabbit	Abcam	ab169540
GAPDH (WB)	Rabbit	Proteintech	10494-1-AP
β-actin (WB)	Rabbit	Proteintech	20536-1-AP
$Hif1\alpha(WB)$	Rabbit	Proteintech	20960-1-AP
DDDDK tag (WB)	Rabbit	Abcam	ab205606
Cleaved caspase-3 (WB)	Rabbit	CST	9664
Cleaved caspase-9 (WB)	Rabbit	CST	20750
Sp1 (ChIP)	Rabbit	Active Motif	39058
Sp1 (WB)	Rabbit	Proteintech	21962-1-AP

Supplementary Table 3

siRNA sequences of primers were as follows:

Target	siRNA sense sequence (5'-3')	siRNA sense sequence (5'-3')
Ndufs1	GCAUGCAAAUCCCUCGAUUTT	AAUCGAGGGAUUUGCAUGCTT
Sp1	UGAGAACAGCAACUCCTT	GGAGUUGUUGCUGUUCUCAUU
Control	UUCUCCGAACGUGUCACGUTT	ACGUGACACGUUCGGAGAATT