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Abstract

Motivation: As the quantity of data being depositing into biological databases continues to in-

crease, it becomes ever more vital to develop methods that enable us to understand this data and

ensure that the knowledge is correct. It is widely-held that data percolates between different data-

bases, which causes particular concerns for data correctness; if this percolation occurs, incorrect

data in one database may eventually affect many others while, conversely, corrections in one data-

base may fail to percolate to others. In this paper, we test this widely-held belief by directly looking

for sentence reuse both within and between databases. Further, we investigate patterns of how

sentences are reused over time. Finally, we consider the limitations of this form of analysis and the

implications that this may have for bioinformatics database design.
Results: We show that reuse of annotation is common within many different databases, and that

also there is a detectable level of reuse between databases. In addition, we show that there are pat-

terns of reuse that have previously been shown to be associated with percolation errors.
Availability and implementation: Analytical software is available on request.

Contact: phillip.lord@newcastle.ac.uk

1 Introduction

It is estimated that over 1500 active databases are currently in exist-

ence (Fern�andez-Su�arez and Galperin, 2013). While these are gener-

ally thought of as containing biological data, they often also contain

collected and collated information about the data they carry, which

is described as annotation. There are many different types of annota-

tion (Wooley and Lin, 2005): some is highly structured and

organized containing, for instance, links through to other databases,

ontology terms, or taxonomic relationships; others include unstruc-

tured or semi-structured free text. The free text, or textual annota-

tion, is often considered to be the highest value annotation,

although, by its very nature it is also the hardest to represent and

analyze computationally (Lord et al., 2001). In this paper, we will

consider this form of annotation.

Biological databases and annotation mirror the evolution of bio-

logical systems. As highly similar genes occur in many different or-

ganisms, transferred both horizontally and vertically, so the

annotation about these genes is reused between different databases

(Richardson and Watson, 2013). This form of reuse substantially

reduces the work required by database annotators, but also creates a

problem; for most databases it is difficult to determine the source or

support for a particular statement (Bolleman et al., 2010). Although

most databases contain out-going references, either to the primary

literature or to other databases, these are generally given at the level

of the database record. For the richest databases, there may be many

statements for each record. In short, databases often lack a formal

representation of their provenance (Bolleman et al., 2010).

While this form of reuse is part of the folk-history of bioinfor-

matics (http://madhadron.com/posts/2012-03-26-a-

farewell-to-bioinformatics.html), and is apparent from

even a short perusal of a few bioinformatics databases, it has rarely

been explicitly studied. In a previous study (Bell et al., 2013), we

have shown that the level of reuse in UniProtKB is extremely high—

the most reused sentence in TrEMBL occurs more than seven million

times, while the most common sentence in Swiss-Prot occurs more

than 91 000 times. Moreover, we have shown that this reuse oper-

ates as an informal indicator of provenance; two identical sentences

are likely to share a common history. This, in turn, allowed us to
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identify propagation patterns that can be used to detect inconsisten-

cies and errors in this annotation.

Our previous analysis looked at only a single database; but we

also believe that reuse occurs between different databases, forming a

biological knowledge ecosystem. In this paper, we extend the ana-

lysis further, looking at several different databases, and show that

within these there are also high levels of reuse. The same analysis

also allows us to track reuse between databases and show that, here

also, there is significant reuse. Further, we look for tell-tale signature

patterns previously shown to indicate erroneous annotation and

show that these patterns are also present within several databases

and can be seen between several databases. This analysis suggests

that as well as reuse being common-place, that it is possible to detect

knowledge flow between databases, giving an informal mechanism

for detection of provenance.

2 Materials and methods

2.1 Choosing a set of databases
There are many databases in the bioinformatics ecosystem that we

could use to study. Unfortunately, these vary significantly techno-

logically, both in terms of their format, their identifiers and their

scheme for updates and maintenance history. Our previous analysis

focused exclusively on UniProtKB, using it an exemplar gold stand-

ard. This analysis also benefited from the organization of

UniProtKB, which consists of two databases: Swiss-Prot, which is

manually curated and reviewed; and TrEMBL, which is computa-

tionally generated and unreviewed. Here, we wish to identify a set

of suitable databases that allow us to extend our analysis further.

We, therefore, have used the following criteria for selection of a

database, firstly on technical grounds: the database must make

available historical versions; contain more than just minimal

amounts of textual annotation; and, be in a form which is relatively

easy to obtain and parse. Within this, we have picked a set of data-

bases of mixed maturity to obtain a reasonable sample. We chose

the following five databases:

• neXtProt (Lane et al., 2012)—focused solely on human proteins,

neXtProt incorporates data from various sources and is built as a

participative platform; the core corpus is based on human pro-

teins from Swiss-Prot. Unlike many databases, neXtProt provides

a classification system that categorizes data based on its quality

into gold, silver or bronze.
• PROSITE (Sigrist et al., 2013)—consists of sequence patterns, or

motifs, that are conserved in protein sequences and can be used to

help infer information about a sequence, such as which protein

family it belongs to and its possible function. Each PROSITE entry

contains a pointer to a relevant documentation entry, which pro-

vides biological information that can be inferred by the pattern.
• PRINTS (Attwood et al., 2003)—a collection of sequence motifs,

similar to PROSITE. However, entries in PRINTS are known as

fingerprints, as they are composed of multiple motifs, unlike

entries in PROSITE which contain only single motifs. All

PRINTS entries are manually curated and provide cross-

references to the equivalent PROSITE entries, if they exist.
• TIGRFAMs (Haft et al., 2003)—provides a collection of protein

families which are designed to assist with the prediction of pro-

tein function. Each TIGRFAMs entry contains a textual annota-

tion section with additional supporting information, such as GO

annotations and references to relevant Pfam and InterPro entries.
• InterPro (Hunter et al., 2012)—an integrative database collating

information regarding protein families, domains and functional

sites from eleven member databases, including PROSITE,

PRINTS and TIGRFAMs. Each InterPro entry contains a de-

scription, or abstract, which is often supplemented with refer-

ences to relevant literature.

The chosen databases are summarized, along with the URL used to

access each database, in Table 1.

2.2 Data extraction and visualization
For our analysis, we need to extract sentences from the textual anno-

tation of each database. As each of these has a different format for

each of these necessitates, a custom framework was written for

each, which was extended from the tool described previously (Bell

et al., 2013). Fortunately, the requirements for our analysis are fairly

simple: we need only extract the textual annotation and basic meta-

data for a record (the identifier or accession number), so this process

is relatively straightforward and robust to differences (or changes

over time) in the database format. Sentences are intentionally ex-

tracted verbatim and stored in lower-case, with only database-

specific formatting removed. For example, the following data from

UniProtKB:

CC -!- FUNCTION: May be a transcription factor with

important functions

CC in eye and nasal development.

would be transformed and stored as:

may be a transcription factor with important func-

tions in eye and nasal

development.

This form of analysis is intentionally very simple; we performed no

stemming or even stop-word analysis, with white space normal-

ization the only change made to sentences. While this form of ana-

lysis may seem very blunt, we choose it for two reasons: it is

computationally very attractive, both when parsing and searching

for matches; and, most importantly, we were concerned more with

correctness than recall. When a match between two databases is

found, it is very likely to be a real one.

Following extraction, sentences were stored in a relational data-

base, linked to a record identifier, database and version. Dates of re-

cords are calculated using the release version in which a record

occurs, and therefore reflect an upper bound, the size of which is re-

flective of the release frequencies of the databases, as described pre-

viously (Bell et al., 2013).

The visualization of sentence propagation uses an interactive vis-

ualization using the Highcharts library (http://www.high

charts.com/products/highcharts) driven directly from the

database generated in the previous step. These visualizations provide

Table 1. The databases chosen for our analyses, including the web

address (URL) of each database

Database name URL

UniProtKB

(Swiss-Prot

& TrEMBL)

http://www.uniprot.org/

InterPro http://www.ebi.ac.uk/interpro/

neXtProt http://www.nextprot.org

PROSITE http://prosite.expasy.org/

PRINTS http://130.88.97.239/PRINTS/

TIGRFAMs http://www.jcvi.org/cgi-bin/tigrfams/
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various interactive features such as zooming, narrowing and so

forth. For full details, please see (Bell, 2015).

3 Results

First, we introduce a number of measures that we have used to ana-

lyze reuse of textual annotation. We focus on the number of sen-

tences within a database. It would be expected that for the sentences

that occur in the database, some will occur more than once (i.e. the

database is redundant) and some only once. These allow us to distin-

guish between the three following measures of a sentence which we

reuse throughout the paper.

• Total sentences—A redundant set of all sentences in a database

version.
• Unique sentences—A non-redundant set of all sentences in a

database version.
• Singleton sentences—A set of sentences that occur only a single

time within an entire database version.

3.1 Reuse within databases
Previously, we have shown that UniProtKB (i.e. Swiss-Prot and

TrEMBL) reuse sentences between multiple records; in the case of

TrEMBL this reuse is extreme with only 8131 unique sentences

from 22 706 421 total sentences. First, we address the question of

how widespread this practice of reuse is within our chosen data-

bases. Moreover, we ask whether this is a feature of the overall size

and complexity of a database.

To address this question, in Figure 1 we show the total number of

sentences in each database; to recap, this is the number of sentences

that occur in all records, whether they are duplicates or not. This is

shown on a log scale as TrEMBL is much larger in size than all of the

others, as shown in Table 2. In Figure 1, we also show the number of

unique and singleton sentences as a percentage of the total.

This analysis shows a number of features. First, TrEMBL is

shown to be an extreme outlier; as a database, it is very large, but

has the lowest number of unique sentences (8131, followed by

TIGRFAMs with 12 155). Of the databases, the PROSITE database

has the highest percentage of unique sentences—over 95% of sen-

tences are unique. Broadly, this theme is also repeated in the other

databases—the larger the database, the more reuse we see.

From this, we conclude that reuse of sentences is a feature of all

of the databases that we have analyzed, and that this reuse is sub-

stantial in most cases.

3.2 Patterns of reuse within databases
Previously, we have shown that there are identifiable patterns of re-

use within UniProtKB. We hypothesized that some of these patterns

may be indicative of low quality or erroneous annotation occurring

as a result of a failure to propagate changes; this was confirmed for

one pattern by a close analysis of a number of examples Bell et al.

(2013).

Having confirmed in Section 3.1 that sentence reuse is a feature

of all databases that we have analyzed. We now address the question

as to whether the patterns we found in UniProtKB are also present

elsewhere.

We analyze the databases here for two patterns, transient and

missing origin. The transient pattern is where sentences occur within

an entry for only a single database release (i.e. they are removed

from an entry after one iteration of the database). From this defin-

ition, it follows that it is impossible to classify a sentence as transient

when it occurs only in the current version of a database, so we show

these independently as possibly transient, although we do not con-

sider this to be a separate pattern. A sentence follows the missing

origin pattern if it initially occurs in a database entry, is later propa-

gated to a secondary entry (or entries) and then subsequently

removed from the origin entry whilst still remaining in the secondary

entries. Table 3 shows the number of sentences identified in each

database which follow each pattern.

From these results, we note that all of the databases show inci-

dences of the patterns that we have previously identified. Of the

databases, PRINTS and TIGRFAMs have the lowest level of all of

these patterns. This is consistent with Figure 1—as these patterns

are a feature of a unique sentence, they are upper-bounded by the

uniqueness, and likely to be affected by the level of reuse within the

databases. To be classified, a sentence only needs to exhibit a pat-

tern in a single entry. A clear example of this is shown in Figure 2

which shows an example of the missing origin pattern. This sentence

(‘pyelonephritogenic e.coli specifically invade the uroepithelium by
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Fig. 1. Figure showing the percentage of singleton (red/right hand column)

and unique (blue/left hand column) sentences in each analyzed database. The

line graph represents the total number of sentences in the database (shown

on log scales). Within this graph we can broadly see that the larger the data-

base, the more redundant its annotation (Color version of this figure is avail-

able at Bioinformatics online.)

Table 2. Table showing the total number of sentences, unique (i.e.

distinct) sentences and singleton sentences contained within the

latest version of each analyzed database

Total

sentences

Unique

sentences

Singleton

sentences

Total

unique

Swiss-Prot 3 304 681 394 233 255 349 531 206

TrEMBL 26 706 421 8131 735 49 665

InterPro 139 624 71 755 57 628 100 874

neXtProt 158 929 101 822 90 875 110 607

PROSITE 22 940 21 902 21 356 29 127

PRINTS 27 987 16 953 14 356 17 858

TIGRFAMs 13 360 12 155 11 481 13 373

Note: Additionally, we show the total number of unique sentences over the

lifetime of the entire database.
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expressing between 100 and 300 pili on their cell surface’) initially

appears in InterPro entry IPR004086 in 2001 and later appears in

InterPro entry IPR005430 approximately a year later. However, the

sentence is removed from IPR004086 (the origin) in 2003 while still

remaining in the secondary entry IPR005430 for another release.

We have chosen this example, because it clearly represents an

error in the database, albeit a minor typographical one; namely the

presence of a space between the species and genus in ‘E. coli’ (This

modification seems to reflect a change in the underlying XML repre-

sentation as taxonomic markup was removed at the same time. Our

analysis explicitly excludes markup early in the pipeline; we note,

however, that were it included, the missing origin pattern would

also have detected the lack of percolation of markup changes.).

Obviously this form of the error is unlikely to cause major chal-

lenges for human consumption of the database annotation, but

could cause issues for computational use.

In this section, therefore, we have demonstrated that the patterns

of reuse that we have previously seen in UniProtKB also occur in

other databases and in some cases, at reasonably high levels. In gen-

eral, these patterns occur more in databases with more redundancy.

3.3 Reuse between databases
One common worry about knowledge in biology is that it is circular,

as the knowledge is reused and percolated through the biological

database ecosystem. If this is true, then we should be able to detect

this supposed reuse, for instance by sentence reuse between data-

bases. In fact Figure 2, in addition to showing a missing original,

also shows an example of reuse between databases; a sentence which

appears first in PRINTS and, then, later reappears in InterPro.

To address this question more systematically, we have looked

for identical sentences that occur between any of the databases in

our collection, the results of which are shown in Table 4.

These results show that there is substantial reuse of sentences in

two key cases. Firstly, there is a very high-level of reuse between

UniProtKB and neXtProt. This is expected as neXtProt explicitly de-

pends on UniProtKB—in this case, perhaps, it is more surprising

that a significant proportion of neXtProt is unique to it (around

25% of the total sentences in neXtProt). A second case is shown be-

tween the InterPro database and PRINTS, PROSITE and

TIGRFAMs. This is to be expected as InterPro is a federated data-

base, explicitly depending on the other three databases. We do also

see reuse between other databases, although this occurs at a fairly

low-level, compared to the total number of sentences. There is one

sentence which occurs in all five of the databases which is ‘visual

pigments are the light-absorbing molecules that mediate vision.’

From this we conclude that knowledge does percolate between

different databases and that it is possible to detect this by using

whole sentence analysis. However, in the majority of cases where

identical sentences are found in large numbers between databases,

occur as a result of a formal relationship between the two—for in-

stance, between UniProtKB and neXtProt.

3.4 Patterns between databases
As we have shown previously, and in this paper, it is possible to de-

tect patterns of reuse within databases, and that in some cases these

patterns appear to be related to errors of percolation. Further, we

know that, in some cases, sentence percolation can also be seen be-

tween databases. This raises the question as to whether we could de-

tect patterns that occur between databases.

Fig. 2. Example of sentence which follows the missing origin pattern. Here,

the sentence originates in InterPro entry IPR004086 before later appearing in

entry IPR005430. It remains in this entry even when then sentence is removed

from IPR004086. Interestingly, we note that the sentence occurs in PRINTS

both before and after it exists in InterPro

Table 4. Table summarizing the distribution of all unique sentences

shared between the analyzed databases

Database combination Total sentences

UniProtKB 526 435

neXtProt; UniProtKB 83 868

InterPro 82 968

neXtProt 26 539

PROSITE 23 182

PRINTS 10 064

TIGRFAMs 9661

InterPro; PRINTS 7751

InterPro; PROSITE 5790

InterPro; TIGRFAMs 3681

InterPro; UniProtKB 435

InterPro; neXtProt; UniProtKB 151

PROSITE; UniProtKB 71

InterPro; PROSITE; UniProtKB 26

neXtProt; PROSITE; UniProtKB 20

InterPro; PRINTS; UniProtKB 20

InterPro; neXtProt; PROSITE; UniProtKB 19

InterPro; PRINTS; PROSITE 14

TIGRFAMs; UniProtKB 14

InterPro; TIGRFAMs; UniProtKB 9

InterPro; neXtProt; PRINTS; UniProtKB 4

neXtProt; TIGRFAMs; UniProtKB 3

InterPro; neXtProt; TIGRFAMs; UniProtKB 2

InterPro; TIGRFAMs; PROSITE 2

InterPro; neXtProt; PRINTS; PROSITE; UniProtKB 1

InterPro; PRINTS; PROSITE; UniProtKB 1

PRINTS; UniProtKB 1

PRINTS; PROSITE 1

PRINTS; TIGRFAMs 1

Table 3. Table summarizing the number of sentences following the

transient and missing origin propagation patterns for each

database

Database name Missing origin Transient Possibly transient

UniProtKB 8355 42 460 25 582

InterPro 2689 4094 1293

neXtProt 35 5148 773

PROSITE 132 2644 21

PRINTS 81 206 363

TIGRFAMs 17 563 63

Note: Sentences classified as possibly transient are those which appear a

single time in the latest version of the database.
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While we do have algorithms for pattern detection within a data-

base, the same process turns out to be considerably harder between

databases, mostly because of the lack of co-ordinated release dates.

If a database record contains a sentence which is removed between

two releases, for example, should it be considered present only till

the first release, or till just before the second? When comparing two

databases, these problems are significant, as the second database

may have undergone several releases subsequently.

As a result of these issues, we have not yet been able to ad-

dress the question of pattern occurrence systematically between

all databases. However, we have been able to find specific ex-

amples by inspection. We show one of these in Figure 3. In this

case, a sentence appears first in PRINTS (in around 1999), and

then later in 2000 appears, presumably by percolation, in

InterPro first in one record (IRP001055) and then later in 2008

in another (IPR018298). Around the same time, it disappears

from the original entry.

Interestingly, it is not possible to detect the occurrence of this

pattern just by considering a single database. In PRINTS, the sen-

tence occurs at one point, then stops later. In InterPro, it continues

to occur in all records that it has percolated to. It is only by consider-

ing the removal from PRINTS, and the continued occurrence in

InterPro that we see an instance of the missing origin pattern. This

does suggest that cross-database comparisons may reveal more

knowledge than the consideration of a single database.

Of course, inspection of this form is not a scalable mechanism for

detecting instances of these patterns; however, without co-ordinated

release dates, automation is hard to achieve. Despite this, our initial

analysis indicates that there are examples of reuse patterns that are de-

tectable between different databases and, indeed, patterns that are

only detectable by considering multiple databases.

4 Discussion

It is often said that knowledge in bioinformatics is frequently reused,

and moves through the database infrastructure. In this paper, we

have attempted to investigate this in as direct a manner as possible,

by looking for exact reuse of sentences between different databases.

As a result of this we have found that, indeed, reuse of knowledge

within bioinformatics databases is extremely common. In the most

extreme case for a manually curated database, UniProtKB/Swiss-

Prot, some 91% of the sentences occur more than once. For

TrEMBL, this is even more skewed where unique sentences number

less than 1% of the total sentences. To our knowledge, this demon-

strates the first system attempt to detect, investigate and record the

impact of this knowledge flow.

This reuse is, perhaps, a reflection of evolution of these data-

bases. By itself, it is not necessarily a problem, however, it is a cause

for concern. It does mean that the annotation is heavily denormal-

ised—that is, what is effectively the same data is stored multiple

times within a single database. This presents significant difficulties

during updates; if a duplicated piece of knowledge needs to be

updated with respect to a single record, then perhaps it also needs to

be updated with respect to another.

We have previously shown that it is possible to detect errors or

low-quality annotation, resulting from this denormalization, by

looking for specific patterns of provenance in the database (Bell

et al., 2013). In this paper, we have shown that two of these pat-

terns, the missing origin and transient patterns, are also present

within other databases; in the case of the missing origin pattern, this

is clearly in the systematic representation of species names. Further,

we have shown that reuse also occurs between databases although,

in general, this happens at a fairly low-level. Even here, though, it is

possible to detect patterns between databases where they are not de-

tectable from a single database.

The work described here shows the value and importance of his-

torical records, and that this value is also relevant to the present. We

have previously made extensive use of historical records when looking

at trends in database word usage (Bell et al., 2012), as have others to

determine when a database might be complete (Baumgartner et al.,

2007), or to assay the accuracy of predictive tools (Gross et al.,

2009). These analyses have dealt with both the structured (GO) and

unstructured (comments) components of annotation. This demon-

strates that an accurate record of the past is useful to increase our

understanding of the current state of the annotation; truly, under-

standing the past is useful to correcting the errors of the present.

However, there are important limitations. In our previous work,

we were more able to investigate some of the instances of annotation

patterns in detail, and demonstrate that they were actually errors. In

this work, we were greatly aided by the existence of UniSave

(Leinonen et al., 2006) which allowed us to rapidly and efficiently

investigate the historical record. UniProtKB is unusual in providing

this form of tool however.

We can compare this to Wikipedia which includes a more com-

plete feature set with respect to versioning than any of the bioinfor-

matics databases that we have analyzed (with UniProtKB coming a

notable second best). It does demonstrate that it is possible to store

a fine-grained full version history for even a very large knowledge

base. That it is searchable using the current schema is an added

bonus and would greatly help this form of analysis; in fact,

Wikipedia has been used as the basis for analysis of historical re-

sources (Viégas et al., 2004). Interestingly, in the last few years,

PFAM has moved toward using Wikipedia as the main mechanism

for maintaining their textual annotation (Punta et al., 2012); while

we do not believe this was the original intention, from the point-of-

view of this analysis, this move should increase the quality of the his-

torical data available.

The second critical limitation of our work is that we are not

looking directly at provenance but inferring from the occurrence of

identical sentences. In our work, we have erred on the side of cau-

tion by using direct string matching; this is a very useful tool for two

reasons: firstly, it is computationally very simple, and extremely

scalable and secondly it gives a high-level of confidence that a match

does actually demonstrate knowledge flow. It is, however, also a

Fig. 3. An example of a sentence in InterPro which does not follow any propa-

gation pattern. However, if you also consider PRINTS, and the sentence was

copied from PRINTS into InterPro, then the sentence technically follows the

missing origin pattern. This would have significant impact on the potential

correctness of sentences in all databases
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very blunt tool, and we are likely to be missing many examples of in-

formation flow. Small changes to sentences, including grammatical

or textual corrections, will break the provenance trail; indeed, we

have a direct example of this happening. Moreover, when tracking

provenance between databases, we suspect that database authors

have a positive incentive to alter text to avoid issues of copyright or

plagiarism, inadvertently making the provenance even harder to

track.

A third issue with tracking provenance is the difficulty of dating

individual sentences. Databases are normally developed continu-

ously, but only released periodically, and it is the releases that we

have tracked. These problems are exacerbated between databases,

as the release date is the only information we have to infer the direc-

tion of the travel of knowledge. Taken together, these limitations

mean that our understanding of provenance is heuristic and may be

wrong. In short, our ability to exploit this knowledge is curtailed by

the limited provenance information that is stored.

There are practical steps that current database provider could

take which could increase our knowledge. Most software engineer-

ing projects make use of version control, which can store practically

unlimited provenance of source code. Wikipedia (and, therefore,

also PFAM) use the same technology for their textual annotation.

This may provide a simple solution for many biological databases; it

would, at least, address the requirement for fine-grained date infor-

mation. Alternatively, a more formal model of provenance (such as

PROV (Missier et al., 2013)) might be used, which could potentially

provide a more fine-grained dataset describing the relationships be-

tween sentences explicitly. This is also likely to be necessary for

larger databases such as TrEMBL, which may be less suited to ver-

sion control systems because of their size, automatic generation and

relatively low levels of textual annotation per entry.

Despite these limitations, we have shown that knowledge

flows between databases even when there is not a formal link be-

tween them. While this raises the spectre that some of the know-

ledge in these databases may be circular, we have also shown that

it is possible to detect patterns which may lead to mechanisms of

error detection, which should increase the quality of knowledge in

biology.
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