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Abstract: Traditional sourdoughs in Bulgaria were almost extinct during the centralized food pro-
duction system. However, a rapidly developing trend of sourdough revival in the country is setting
the demand for increased production and use of commercial starter cultures. The selection of strains
for such cultures is based on geographical specificity and beneficial technological properties. In
this connection, the aim of this study was to isolate, identify and characterize lactic acid bacteria
(LAB) and yeasts from typical Bulgarian sourdoughs for the selection of strains for commercial
sourdough starter cultures. Twelve samples of typical Bulgarian sourdoughs were collected from
different geographical locations. All samples were analyzed for pH, total titratable acidity and dry
matter content. Enumeration of LAB and yeast was also carried out. Molecular identification by 16S
rDNA sequence analysis was performed for 167 LAB isolates, and 106 yeast strains were identified by
ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. The LAB strains were characterized according
to their amylolytic and proteolytic activity and acidification capacity, and 11 strains were selected for
further testing of their antimicrobial properties. The strains with the most pronounced antibacterial
and antifungal activity are listed as recommended candidates for the development of starter cultures
for sourdoughs or other food products.

Keywords: Bulgarian sourdoughs; lactic acid bacteria; yeast; microbial characterization

1. Introduction

Bread and bakery products made with sourdoughs are becoming increasingly popular
in the European market. Some traditional products from this group are registered under
Regulation 1151/2012 [1] with European quality labels as “protected designation of origin,”
“protected geographical indication” and “traditional specialties guaranteed.”

Sourdoughs are microbial ecosystems of spontaneously formed cultures of lactic acid
bacteria (LAB) and yeast in cereal flour and water matrices characterized by extremely
complex dynamics of the mixed culture during the fermentation process [2–5]. The main
processes occurring as a result of the metabolic activity of sourdough microflora are
acidification, formation of specific flavor and dough rising [6–8].

As the mixed microbial cultures in the sourdoughs are formed spontaneously, the
stability of the mature doughs depends on a number of factors: (1) the microflora of the
flour and other ingredients used, as well as the environment; (2) the metabolic activity in
the dough—production of amylolytic and proteolytic enzymes by the microorganisms, and
other physiological characteristics; (3) chemical composition and enzymatic activity of the
flour; and (4) technological process parameters (flour/water ratio, fermentation and storage
temperature, pH and redox potential, number of backsloppings, use of starter cultures
and/or baker’s yeast, etc.) [9–14]. As a result of the heterogeneity of these factors, mature
sourdoughs differ in the diversity of microbial species and metabolic activities [15–19].
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LAB and yeasts in sourdoughs use various carbohydrates and proteins, produce
organic acids and contribute to flavor formation. In addition, controlled proteolysis of
gluten in flour can be used to produce bread suitable for celiac disease patients and con-
sumers with irritable bowel syndrome [20–23]. Moreover, many sourdoughs are prepared
with various wholegrain flours. Due to the composition of dietary fiber and bioactive
compounds in the breads and the rate of starch hydrolysis, metabolic responses positively
affect postprandial glycemia, insulinemia and satiety [24].

A number of beneficial effects of sourdough fermentation are related to product quality
and safety. Homopolysaccharides produced by LAB may have a favorable effect on the
viscoelastic properties of the dough, the structure and shelf life of bread [6,25,26]. Acetic
acid and lactic acid produced during sourdough fermentation also exhibit antibacterial
and antifungal activity [27–29]. In addition to their effect, the production of bacteriocins
helps LAB to dominate the ecosystem and may inhibit the growth of some spoilage-causing
bacilli (the so-called “potato disease”) [30,31].

A number of studies have focused on the antibacterial and antifungal activity of
LAB [32–35]. Magnusson and Schnurer [36] demonstrated in vitro the antifungal potential
of a newly identified Lactobacillus coryniformis strain against different plant pathogenic,
toxigenic and gushing-active Fusarium fungi, as well as production of the proteinaceous
antifungal compound reuterin by the same strain. Lavermicocca et al. [37] reported the
isolation of the antifungal compounds phenyllactic acid and 4-hydroxyphenyllactic acid
from Lactobacillus plantarum. Gerbaldo et al. [38] showed in vitro that the growth of toxi-
genic storage fungi was restricted by two LAB strains Lb. rhamnosus L60 and Lb. fermentum
L23 and attributed this to the combined effect of lactic acid and bacteriocin. Strains Lb.
plantarum F1 and Lb. brevis OG1 isolated from Nigerian fermented food products produced
bacteriocins that had a broad spectrum of inhibition against pathogenic, food spoilage
organisms and various lactic acid bacteria [39]. Muthusamy et al. also demonstrate
that the antifungal activity of LAB is attributed to the production of different inhibitory
compounds—organic acids (mainly lactic and acetic acid), hydrogen peroxide and other
antimicrobial compounds such as bacteriocins [40].

Studies of species diversity in the sourdoughs and population dynamics during fer-
mentation play an important role in understanding the complex fermentation process as
well as producing standardized, high-quality end products [41–43]. A wide variety of
molecular techniques for the identification of LAB and yeast in sourdoughs have been
elaborated, such as random amplification of polymorphic DNA (RAPD) [44,45], restriction
fragment length polymorphism (RFLP) [46], determination of chromosome polymorphism
by pulse-field gel electrophoresis (PFGE), as well as denaturing gradient gel electrophoresis
(DGGE) [47]. The 16S rDNA-based methods are widely used to identify genetic relation-
ships among bacteria [48]. With regards to yeast in sourdoughs, the identification of new
isolates to the species level is achieved by DNA sequencing and analysis of the ITS-5.8S-ITS2
region because of the high level of interspecific sequence variability of ITS [49,50].

In recent years, the use of metagenomic approaches, including innovative mass se-
quencing multi-amplitudes of 16S/ITS/28S rRNA is applied to fully characterize the
ecosystems of sourdoughs. The use of mass parallel sequencing gives the possibility
of sequencing and annotating millions of sequences and thus identifying hundreds of
microorganisms simultaneously in the acidic ecosystem of the dough [51–54].

The increasing scale of sourdough production sets the demand for controlled processes
to ensure continuous product quality. Therefore, the application of selected starter cultures
is essential to ensure the sustainable production of quality sourdough products. Various
selection criteria are applied to develop industrial starter cultures, such as acidification,
resistance to microbial competitors, adaptation to environmental conditions, antifungal
activity, aroma development, improvement of dough structure and functional properties
contributing to improving the health of the consumers [6,23,29,55]. However, the starter
cultures used are often selected only on the basis of a particular property (e.g., acidification
or flavor formation) and are not sufficiently competitive [5,56].
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In Bulgaria, the traditional preparation of sourdoughs was almost eliminated during
the long years of the centralized political and economic system and, respectively, food
production system. Sourdough products are currently prepared in isolated households or
small bakeries, still preserving old practices, but scientific knowledge about them is lacking.
However, there is a trend of the revival of sourdough technology due to the consumers’
increased interest in sourdough bread and bakery products perceived as “healthier” and
having unique taste, aroma and structure, as well as a significantly longer shelf life.

With regards to this trend, the aim of the present study was to isolate, identify and
characterize lactic acid bacteria and yeasts from typical Bulgarian sourdoughs for a further
selection of strains for commercial sourdough starter culture development.

2. Materials and Methods
2.1. Sourdoughs

Samples from 12 sourdoughs used for the manufacture of typical Bulgarian bread were
collected from different regions. Information about the geographical origin, ingredients
and preparation methods is presented in Table 1. All samples were taken at the end of the
final backslopping and were transported and stored at 4 ◦C before analyses.

Table 1. Ingredients and preparation methods of Bulgarian sourdoughs (no baker’s yeast used).

Sample
Code Depository Flour Origin % NaCl per

Backslopping

% Sourdough
Used in a

Backslopping

No. of
Backsloppings

Time and
Temperature of
Backslopping

01M Bakery Art1, Plovdiv Triticumaestivum, white 1.5 20 3 24 h/22 ◦C
02P1 Bakery The Bread, Plovdiv Secale cereale, wholegrain 2.0 20 3 9 h/28 ◦C
03P2 Bakery Art 2, Plovdiv T. aestivum, white 2.0 20 3 9 h/28 ◦C
04P3 Bakery Art 3, Plovdiv T. aestivum, white 2.0 20 3 9 h/28 ◦C
05S Bakery “8”, Smolyan T. aestivum, white 1.5 25 3 18 h/25 ◦C

06SE Homemade, Selcha T. aestivum/Cicer arietinum (90/10%) 1.5 30 1 18 h/22 ◦C
07B1 Bakery Samun 1, Bansko T. aestivum, white 1.5 25 3 18 h/25 ◦C
08B2 Bakery Samun 2, Bansko T. aestivum, wholegrain 1.5 25 3 18 h/22 ◦C
09B3 Bakery Samun 3, Bansko Triticum monococcum, wholegrain 1.5 25 3 18 h/22 ◦C
10B4 Bakery Samun 4, Bansko Secale cereale, wholegrain 1.5 25 3 18 h/22 ◦C
11R1 Bakery Kusi 1, Ruse T. aestivum, white 2.0 30 7 24 h/30 ◦C
12R2 Bakery Kusi 2, Ruse T. aestivum, white 2.0 30 7 24 h/24 ◦C

2.2. Physico-Chemical Characterization of Sourdoughs

All samples were analyzed for total titratable acidity (TTA), pH and dry matter content.
TTA was analyzed by titration with 0.1 N NaOH to pH of 8.4, and pH was measured by a
pH meter Mettler Toledo FiveEasy FE20. Dry matter was determined by drying 5 g of each
sample at 100–105 ◦C to constant weight.

2.3. Lactic Acid Bacteria and Yeast Enumeration and Isolation

Decimal dilutions of the sourdough samples were prepared with peptone water (1%
(w/v) peptone and 0.9% (w/v) NaCl). Four culture media were used to determine the
total viable counts of LAB in the samples: MRS (Merck, Darmstadt, Germany), MRS-5
(Meroth et al., 2003), M17 (Merck, Darmstadt, Germany) and M17-glucose (containing
0.5% w/v glucose instead of lactose). All media were supplemented with cycloheximide
(0.1 g/L). The plates were incubated under anaerobic conditions (AnaeroGen, Oxoid Ltd.,
Hampshire, UK) at 37 ◦C for 48 h. From each medium, a number of colonies equal to
the square root of the total number recorded in Petri dishes with 15 to 300 CFUs were
randomly selected for isolation. The isolates were examined microscopically and tested by
Gram staining and catalase reaction. Pure cultures were further obtained from the isolates
that were Gram-positive, catalase-negative, nonmotile rods and cocci after sub-culturing in
the respective liquid medium and streaking on agar media. Stock cultures were stored in
Microbank™ vials (Pro-Lab Diagnostics Inc.,Richmond Hill, ON, Canada) at −70 ◦C. The
total viable counts of yeasts in the sourdough samples were estimated on malt extract agar
(MEA) and Sabouraud dextrose agar (SDA) (Merck, Darmstadt, Germany) supplemented
with chloramphenicol (0.1 g/L) at 30 ◦C for 48 h. From each medium, a number of colonies
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equal to the square root of the total number recorded in Petri dishes with 15 to 300 CFUs
were randomly selected for isolation. Morphological characterization of the yeast isolates
was performed by microscopic analysis. The isolates were sub-cultured in malt extract
broth and streaked onto the same agar media. Stock cultures were stored in Microbank™
vials (Pro-Lab Diagnostics Inc.) at −70 ◦C.

2.4. Molecular Identification of Lactic Acid Bacteria by 16S rDNA Sequence Analysis

The total genomic DNA from LAB strains was extracted from overnight cultures
grown in MRS. DNA extraction of LAB was conducted using HigherPurity™ Bacterial
Genomic DNA Isolation Kit (Canvax Biotech, S.L., Cordoba, Spain), according to the man-
ufacturer’s instructions. The quality and concentration of DNA extracts were assessed
by determination of absorbance at 260 nm and 280 nm (Shimadzu UV-VIS, Shimadzu
Corporation, Japan). LAB identification was performed by PCR amplification of the 16S
rRNA gene with conventional PCR (2720 Thermal Cycler, Applied Biosystems, Waltham,
MA, USA) and sequencing of the PCR products. The oligonucleotide primers used in this
study were forward primer LacbF (5′-TGCCTAATACATGCAAGT-3′) and reverse primer
LacbR (5′-CTTGTTACGACTTCACCC-3′) [14], obtained from Metabion (Martinsried, Ger-
many). The PCR analysis was performed in final reaction volumes of 20µL containing
1µLof DNA (50 ng), 0.5 µM of each primer and 8µLof Red-Taq DNA Polymerase Master
Mix (Canvax Biotech, S.L., Spain). The parameters of amplification were the following:
initial denaturation at 94 ◦C for 5 min, 35 cycles of 1 min at 94 ◦C, 45 s at 50 ◦C and 2 min
at 72 ◦C, and final extension at 72 ◦C for 5 min. Further, the obtained amplicons were
stained with Safe View (NBS Biologicals, Huntingdon, England) and separated on 1%
agarose gel carried out in 0.5x TBE buffer (45 mmol/L Trisborate and 1 mmol/L EDTA) for
60 min at 100 V, using a VWR Mini Electrophoresis system (VWR, Darmstadt, Germany)
and MiniBis Pro (DNR Bio-Imaging Systems, Israel) for gel visualization. The PCR prod-
ucts (approximately 1200 bp) were cut out from the gel and purified with Clean-Easy™
Agarose Purification Kit (Canvax Biotech, S.L., Spain). Sequencing of the PCR products
was performed by MicrosynthSeqlab (Göttingen, Germany). The resulting sequences were
analyzed using BLAST algorithm [57] and compared with the nucleotide sequences in the
gene bank database (www.ncbi.nlm.nih.gov, accessed on 8, 10 and 24 March 2021). The
phylogenetic tree was obtained by means of the unweighted pair group method using the
arithmetic average (UPGMA) clustering algorithm [58] and CLC Genomics Workbench
20.0 (https://digitalinsights.qiagen.com).

2.5. Molecular Identification of Yeast by ITS1-5.8S-ITS2 rRNA Gene Sequence Analysis

Prior to DNA extraction, yeast strains were cultured for 24 h on a YMA medium.
Yeast genomic DNA was extracted by Higher-Purity™ Yeast Genomic DNA Isolation
Kit (Canvax Biotech, S.L., Spain). The quality and concentration of DNA extracts were
determined by spectrophotometric measurements using Shimadzu UV-VIS spectropho-
tometer (Shimadzu Corporation, Kyoto, Japan). The ITS-5.8S-ITS2 region was amplified
by forward primer ITS 4 (5′-TCCTCCGCTTATTGATATGC-3′) and reverse primer ITS 5
(5′-GGAAGTAAAAGTGCTAACAAGG-3′) [59], obtained from Metabion (Martinsried,
Germany). The PCR reaction mix contained 1µLof DNA (50 ng), 0.5 µM of each primer
and 8µLof Red-Taq DNA Polymerase Master Mix (Canvax Biotech, S.L., Spain) in total
volume of 20µL. The amplification was carried out in a PCR 2720 Thermal Cycler (Ap-
plied Biosystems, USA) using the following program: initial denaturation at 95 ◦C for
10 min, followed by 35 cycles of denaturing at 94 ◦C for 1 min, annealing at 52 ◦C for 1
min, extension at 72 ◦C for 1 min and final extension at 72 ◦C for 7 min. PCR products
were visualized in 1% agarose gel stained with SafeView (NBS Biologicals, Huntingdon,
England) at 100 V for 50 min using VWR Mini Electrophoresis System (VWR, Germany)
and MiniBis Pro (DNR Bio-Imaging Systems, Israel) for gel visualization. The PCR prod-
ucts (approximately 700 bp) were cut out from the gel and purified with Clean-Easy™
Agarose Purification Kit (Canvax Biotech, S.L., Spain). Sequencing of the PCR products

www.ncbi.nlm.nih.gov
https://digitalinsights.qiagen.com


Microorganisms 2021, 9, 1346 5 of 18

was performed by MicrosynthSeqlab (Göttingen, Germany). The resulting sequences were
analyzed using the BLAST algorithm [57] and compared with the nucleotide sequences
in the gene bank database (www.ncbi.nlm.nih.gov, accessed on 21 and 24 March 2021).
The phylogenetic tree was obtained by the unweighted pair group method using the arith-
metic average (UPGMA) clustering algorithm [58] and CLC Genomics Workbench 20.0
(https://digitalinsights.qiagen.com).

2.6. Screening of the LAB Isolates for Amylolytic and Proteolytic Activity and Acid-Producing
Capacity

The amylolytic activity of the LAB strains was assessed by the agar-diffusion method [60].
All isolated were subjected to qualitative screening for amylolytic activity by cultivation
on solid media containing starch as a major carbon source. The agar-diffusion method
was performed with Starch agar (g/L): wheat starch—10; peptone—5; yeast extract—5;
MgSO4·7H2O—0.25; FeSO4·7H2O—0.01; agar −15; pH 6.8 ± 0.2. In each agar Petri dish,
four wells with 10 mm diameter were made, and the wells were inoculated with 100 µL
24 h MRS medium-cultivated bacterial suspensions. After incubation at 37 ◦C for 48 h, the
plates were treated with iodine solution to form a blue-colored starch-iodine complex. The
diameter of the transparent zones around the colonies of amylolytic bacteria was measured
after color was left to develop for 5 min. The amylolytic index (AI) was calculated as the
ratio R/r, where R was the diameter of the entire clear zone, and r was the diameter of
the agar well with the LAB colony [61]. The proteolytic activity of the LAB isolates was
analyzed by the method of Hébert et al. [62]. The analysis was performed on skim milk
agar (casein 0.5%, yeast extract 0.25%, dextrose 0.1%, skimmed milk powder 2.5% and agar
1.5%). In each agar Petri dish, four wells with 10 mm diameter were made, and the wells
were inoculated with 100 µL 24 h MRS medium-cultivated bacterial suspensions from each
isolate. Results were observed after 48 h incubation at 37 ◦C. The protein hydrolysis index
(PHI) was calculated as the ratio R/r, where R was the diameter of the entire clear zone,
and r was the diameter of the agar well with the LAB colony [61]. The acid-producing
capacity of the LAB isolates was tested by pH measurement (Mettler Toledo FiveEasy FE20)
at the beginning and end of 24 h cultivation in MRS medium.

2.7. Antimicrobial Activity of the LAB Strains

The antibacterial activity of the isolated lactic acid bacteria was tested by the agar
well diffusion method of Yang et al. [63]. Cell-free supernatants (CFSs) were obtained
by centrifugation of 24 h MRS-broth cultures of the tested LAB. The CFSs were consecu-
tively subjected to the following treatments: adjustment of pH to 6.5, boiling for 20 min,
addition of catalase (5 mg/mL) (Merck, Darmstadt, Germany) and treatment with trypsin
(1 mg/mL) (Merck, Darmstadt, Germany). The following test microorganisms were used
in the assay: Bacillus subtilis NBIMCC 3562, Staphylococcus aureus NBIMCC 3081 and
Salmonella enterica NBIMCC 8691. After inoculation of the 5 mm wells with 100 µL of
the respective CFS, the plates were incubated at 37 ◦C for 48 h and the areas of growth
inhibition area were measured. Screening for antifungal activity of the LAB strains was
carried out against spoilage fungi by the agar well diffusion method using CFSs obtained
and treated as described above. Peptone Yeast Extract Agar (Merck, Darmstadt, Germany)
was inoculated with 1 × 104 spores of the mold cultures Penicillium chrysogenum NBIMCC
129, Fusarium graminearum NBIMCC 2294, Rhizopus stolonifer NBIMCC 130 and Aspergillus
nidulans NBIMCC 116. After inoculation of the 5 mm wells with 100 µL of the respective
CFS, the plates were incubated at 28 ◦C for five days and the areas of growth inhibition
area were measured.

2.8. Nucleotide Sequence Accession Number

16s rRNA gene sequences of LAB were deposited in GenBank and assigned the
following accession numbers: MW774565-MW77456, MW694895, MW685418-MW685439,
MW683129-MW683203, MW682282-MW682287, MW682219-MW682281. The yeast ITS5
and ITS2 ribosomal regions determined in this study were deposited in GenBank and
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assigned the accession numbers as follows: MW774571-MW774573, MW756316-MW756319,
MW756228-MW756315, MW756212-MW756227.

2.9. Statistical Analysis

All experiments were carried out in triplicate. Data were subjected to one-way
ANOVA; pair comparison of treatment means was obtained by Tukey’s test (Statistica
8.0 software package). Differences were reported at a significance level of p ≤ 0.05.

3. Results and Discussion
3.1. Physico-Chemical Characterization of Sourdoughs

Samples of a total of 12 typical Bulgarian sourdoughs, all produced without the
addition of commercial yeast, were collected from 5 bakeries and 1 household in Bulgaria.
The selection of sourdoughs was based on the difference of geographical locations, the
difference in raw materials—white and whole-grain wheat (Triticum aestivum) flours, flours
from rye (Secale cereale), chickpea (Cicer arietinum), einkorn wheat (Triticum monococcum)—
used as single raw materials or in combinations, the addition of NaCl and preparation
methods—fermentation time and temperature, number of backsloppings (Table 1). Since
the sourdough tradition was almost lost during the past 60 years and the interest toward
sourdough production was revived only in the past 10 years, most sourdoughs found were
recently initiated (1–2 years) and only a few had been sustained for several years.

All samples were analyzed for pH, total titratable acidity (TTA) and dry mater content
(DM) of the samples are listed in Table 2. The values of pH ranged from 3.58 (sample 10B4)
to 5.11 (06SE). Considering that good quality sourdoughs have pH within 3.5–4.1 [7], nine
of the analyzed samples were with pH values within this interval, with an average of pH
3.69. These values are similar to the pH interval of 3.74–4.28 and 3.41–3.70 reported for
Italian and French sourdoughs, respectively [14,64].

Table 2. Physico-chemical and microbiological characterization of Bulgarian sourdoughs.

Sample pH
TTA,

mL 0.1
NaOH

Dry
Matter, %

MRS MR 5 M 17 M 17 G SA ME

TVC,
cfu/mL

No. of
Isolates

TVC,
cfu/mL

No. of
Isolates

TVC,
cfu/mL

No. of
Isolates TVC, cfu/mL No. of

Isolates TVC, cfu/mL No. of
Isolates TVC, cfu/mL No. of

Isolates

01M 3.78 9.4 53.10 3.2 × 105 4 6.1 × 105 5 7.0 × 105 5 2.1 × 105 3 4.2 × 108 4 5.4 × 108 3
02P1 3.57 11.6 36.20 9.2 × 105 7 4.4 × 105 5 4.3 × 105 4 7.9 × 105 6 6.5 × 1010 5 6.8 × 1010 5
03P2 3.84 9.8 40.30 2.6 × 105 3 2.7 × 105 3 2.7 × 105 3 4.8 × 105 4 6.3 × 109 5 1.1 × 1010 5
04P3 3.60 11.4 37.14 2.8 × 104 3 2.0 × 105 3 1.1 × 105 7 1.1 × 105 2 6.6 × 1010 5 7.0 × 1010 5
05S 3.96 10.4 58.16 3.1 × 1012 4 2.5 × 1012 4 4.2 × 1011 4 2.3 × 1012 3 5.3 × 109 5 5.1 × 108 5

06SE 5.11 5.2 55.21 1.7 × 104 8 1.4 × 104 7 3.3 × 105 5 1.6 × 104 7 1.0 × 104 5 2.1 × 104 4
07B1 3.61 12.0 42.02 2.7 × 1011 3 3.6 × 1011 4 9.9 × 108 7 9.2 × 109 6 6.6 × 1010 5 8.0 × 109 4
08B2 4.07 8.1 39.39 1.8 × 1011 2 3.9 × 1011 4 2.9 × 1010 4 8.3 × 1010 6 3.5 × 109 4 2.1 × 109 4
09B3 4.17 8.3 43.50 2.0 × 1011 2 1.5 × 1011 7 9.8 × 1011 6 2.6 × 1011 3 6.4 × 109 5 4.2 × 106 4
10B4 3.58 12.4 33.01 9.7 × 1011 7 9.9 × 1011 6 8.5 × 108 6 3.1 × 109 4 7.4 × 108 5 1.0 × 1010 4
11R1 3.62 10.2 49.86 3.2 × 107 4 1.8 × 1011 2 3.5 × 108 4 1.7 × 108 2 9.8 × 108 5 9.4 × 109 4
12R2 3.64 10.0 53.18 2.1 × 108 2 1.0 × 1011 8 2.6 × 108 3 3.8 × 108 4 3.4 × 109 2 1.9 × 109 3

Total isolates from LAB media: 215 Total yeast isolates: 106

Dry matter content ranged from 33.01 (sample 10B4) to 58.16 (05S) depending on the
sourdough recipe. Although the sourdough sample with the lowest DM (33.01%) was
also with a very low pH value (3.58), DM was not the main factor affecting sourdough
acidification. The lack of direct correlation between DM and pH may be explained with
the effects of the flour types used, diversity of the sourdough microbiota and the baker’s
practices [2].

TTA was also analyzed as an important indicative parameter for fermentation pro-
cesses resulting in organic acid formation. In general, TTA of good quality sourdoughs
ranges from 14 to 16 mL [6]. For eight of the studied sourdoughs (01M, 02P1, 04P3, 07B1,
09B3, 10B4, 11R1 and 12R2), TTA was within this interval, and in most of the cases TTA
formation could be linked to the dry matter content. As an example, the highest acid forma-
tion was observed in the sample with the lowest dry matter (10B4), and the second-highest
DM content sample had the lowest TTA value (sample 06SE). However, other factors are
also important determinants of the organic acid, such as the composition of the fermenting
matrix, physiology of the sourdough microbiome, fermentation conditions, etc. [16].
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3.2. Enumeration of LAB and Yeasts

Microbial characterization of the sourdoughs was carried out by the determination of
lactic acid bacteria (LAB) and yeast counts. Four different agar media (MRS, MRS5, M17
and M17 G) were used for the isolation and enumeration of the presumptive LAB in the
samples to ensure obtaining representative results (Table 2). The observed LAB counts
ranged from 1.4 × 104 (sample 06SE, MRS5) to 9.7 × 109 (sample 10B4, MRS), and 62.5% of
all samples had more than 108 cfu/g presumptive LAB. The differences in LAB counts on
different media may be attributed to the variations of the carbon sources and the different
assimilation capacities of the sourdough microorganisms [65,66]. When comparing the
performance of the culture media, MRS and MRS5 medium harbored the highest cfu
numbers, which confirms other data from studies on bacterial diversity of sourdoughs.
Some researchers also found higher LAB counts on MRS than on MRS5 [14,67].

Yeast counts in the sourdoughs varied from 1.0 × 104 (sample 06SE, SA) to 5.3 × 109

(sample 05S, SA), with 29.2% of the samples showing content of more than 107 cfu/g.
Analysis of most samples resulted in similar cfu numbers on both culture media. The
approximate ratio between LAB and yeasts of the studied sourdoughs was between 100:1
and 10:1. Similar ratios were reported by other authors as well—10:1 in French organic
sourdoughs [68], and 100:1 in sourdoughs type 1 [69,70]. Sourdough sample 06SE was the
only exception with an LAB to yeast ratio of 1:1. This microbial ratio logically resulted in
the lowest organic acid accumulation in the sample (highest pH value of 5.11 and lowest
TTA of 8.2) (Table 2). Again, direct connection with dry matter content was not found.

3.3. Molecular Identification of LAB by 16S rDNA Sequence Analysis

The presumptive LAB isolates selected from the 4 agar media amounted to 215, of
which 167 were proved to be Gram-positive and catalase-negative rods or cocci. The
cultures were purified and were further identified by PCR amplification of the 16S rRNA
gene and sequencing of the PCR products. This approach has become a major tool in the
determination of relationships between bacteria, and it is widely used for identification
purposes [14].

The obtained sequences were processed and subjected to BLAST analysis. Results
showed the presence of three genera—Lactobacillus (51.5%), Pediococcus (44.9%) and Entero-
coccus (3.6%) (Table S1). The most predominant species found were Lactobacillus plantarum
(35.9% of all LAB isolates) and Pediococcus pentosaceus (34.7%). The results corresponded
to the findings of Robert et al. [71]. The authors identified six genera of LAB in tradi-
tional French sourdoughs and reported similar percentages of the most predominant
species—Lactobacillus (39%) and Pediococcus (38%). In contrast to the same study, Lactobacil-
lus brevis and Pediococcus acidilactici were also common in Bulgarian sourdoughs—13.2%
and 9.6%, respectively. Lactobacillus plantarum, Lactobacillus plantarum subsp. plantarum,
Enterococcus faecium, Enterococcus durans and Pediococcus parvulus were also found in the
sourdough samples. Strains of Enterococcus faecium isolated from sourdoughs were associ-
ated with safety and probiotic potential by some authors [72]. All analyzed strains were
identified with a high level of confidence—Lactobacillus spp. (97.57–100%), Pediococcus spp.
(97.20–100%) and Enterococcus spp. (99.07–100%) (Table S1).

The relationship between the identified LAB was established by using cluster analysis.
The obtained phylogenetic tree is presented in Figure S1. All strains of Lactobacillus plantarum
and Lactobacillus plantarum subsp. plantarum were closely related to each other. They also
show a high level of similarity with some representatives of Lactobacillus brevis. These
results are in agreement with other studies [14,71]. The strains from Enterococcus species
were grouped separately. The representatives of Pediococcus species were also grouped in a
different cluster. The clustering of the strains was not related to the products they were
isolated from.
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3.4. Molecular Identification of Yeasts by ITS1-5.8S-ITS2 Region Sequence Analysis

The Internal Transcribed Spacer (ITS) regions of yeast ribosomal DNA (rDNA) are
highly variable sequences of great importance in distinguishing yeast species by PCR anal-
ysis [50]. A total of 106 yeast isolates obtained from Bulgarian sourdoughs were subjected
to ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. Results show that the analyzed
yeast strains belonged to five genera—Saccharomyces, Kazachstania, Pichia, Kluyveromyces
and Yarrowia (Table S2). Saccharomyces cerevisiae was the most predominant species (86.8%)
and it was found in all analyzed samples. These results were in agreement with other
studies [73–75]. Five strains were identified as Kazachstania barnettii, one strain was Kazach-
stani ahumilis, and four strains belonged to Kluyveromyces marxianus. The identification
was made with a high percentage of confidence (98–100%). The presence of Kazachstania
barnettii in sourdoughs was also reported by Minervini et al. [14]. Very few authors have
so far reported the occurrence of Y. lipolytica in sourdoughs, but it is found as a minor but
quite regular part of the microbiota of other fermented food products of plant origin. The
presence of Y. lipolytica in sourdoughs is always along with S. cerevisiae, most probably due
to its lacking of fermentative metabolism [76,77].

All yeast isolates from several sourdoughs (05S, 08B2, 10B4, 11R1 and 12R2) were
identified as Saccharomyces cerevisiae, which could be attributed to the limitations of the
culture-dependent method applied.

A phylogenetic tree of the identified yeast strains is presented in Figure S2. The results
show that all yeast species found have a high level of similarity, which is in agreement with
the results of Peterson and Kurtzman [78]. The representatives of different species were
separated in some clusters, but the species are nevertheless closely related.

3.5. LAB Selection

The main selection criteria for LAB strains for sourdough applications is their ability to
assimilate starch as a single carbon source by the production of amylolytic enzymes, ability
to degrade proteins and acidification of the dough matrix [14,79]. The results presented
in Table S3 show that more than 25% of the isolated LAB have good amylolytic activity.
The amylolytic index (AI) of 22.75% of the strains was between 4 and 5, and four strains
showed AI values > 5. The highest AI was exhibited by representatives of Pediococcus
pentosaceus, Lactobacillus plantarum, Lactobacillus brevis, Enterococcus faecium and Enterococcus
durans, with Pediococcus pentosaceus 12R2192 reaching AI of 5.79. High amylolytic activity
of Bulgarian strains isolated from sourdoughs was observed in our previous studies as
well [48,80]. It is interesting to note that despite the low number of identified Enterococcus
spp. representatives, five out of the six strains had amylolytic indexes above 4.

During sourdough fermentation, LAB may release small peptides and free amino
acids as a result of their strain-specific proteolytic systems. The proteolytic activities of LAB
are important not only for their development in a cereal matrix but also for the potential
to decrease gluten and other anti-nutritional factors and release bioactive peptides and
essential amino acids that contribute to human well-being [53]. Proteolytic activity is a
very important starter culture characteristic since the extent of proteolysis during lactic
acid fermentation is strongly related to the structure, the organoleptic characteristics, the
digestibility and the shelf life of the sourdoughs [17]. In the present study, the isolated LAB
strains were also characterized with regards to their proteolytic activity. Results show the
strong proteolytic activity of 70.66% of the isolates, with a protein hydrolysis index (PHI)
of 4–5. The PHI values observed for 25.15% of the strains range between 5 and 6, and the
strain Pediococcus pentosaceus 12R2192 reached a PHI of 6.68. The analysis demonstrated
that all LAB strains isolated from the Bulgarian sourdoughs were able to hydrolyze proteins
in an agar medium.

Acid-producing capacity is a major property assessed in strain selection for starter
cultures since it determines the fermentation time, the physico-chemical and organoleptic
characteristics of the product, as well as its shelf life. In the current study, almost 30% of
the isolated LAB strains showed high acidification capacity, with estimated differences
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between pH values at inoculation and at the end of the fermentation higher than 1.7. The
numbers of the isolates with ∆ pH of 1.7–1.8 and 1.8–1.9 were similar and represented 16.77
and 11.97% of the total identified LAB, respectively. The representatives of Lactobacillus
plantarum subsp. plantarum showed significantly lower acidification capacity, while the
highest acid-producing ability (1.91 ± 0.02) was observed for strain Lactobacillus brevis
07B198.

Based on comparative analysis of the results from the above three criteria, the fol-
lowing strains were selected for further research for potential food and biotechnology
applications: Pediococcus pentosaceus 07B1109, Pediococcus pentosaceus 12R2192, Lactobacillus
plantarum 08B212, Lactobacillus plantarum 08B217, Lactobacillus brevis 01M22, Lactobacillus
brevis 04P3167, Lactobacillus brevis 06SE269, Lactobacillus brevis 07B198, Enterococcus faecium
12R226, Enterococcus faecium 12R232 and Enterococcus durans 09B374.

3.6. Antibacterial Activity of the LAB Strains

Sourdoughs are usually prepared by hand and there is a high risk of dough contami-
nation with microorganisms from the environment and the personnel. B. subtilis is a typical
contamination issue for the bread industry, especially during the warm seasons, since
it decreases bread shelf life by causing the so-called “rope” of bread (stringy strands of
mucilage, stickiness, unpleasant flavor and taste) [81], while Staphylococcus aureus (Gr+)
and Salmonella enterica (Gr−) are common pathogens which may be transferred from the
personnel during raw materials handling [82].

LAB are capable of producing antimicrobial compounds such as organic acids, H2O2
and bacteriocins, which is the basis of the natural biopreservation of fermented foods [83].
Therefore, the use of sourdough starter cultures able to inhibit contaminating spoilage
and pathogenic bacteria is an important strategy for ensuring the quality and safety of
sourdough products.

The antibacterial activity of 11 LAB strains isolated from Bulgarian sourdoughs against
the three bacterial species related to bread quality and safety was determined by the well
diffusion method after various treatments of cell-free supernatants to reveal the nature of
this activity. The applied treatments included pH adjustment to evaluate the role of organic
acids, boiling for 20 min and use of trypsin to assess the inhibitory activity of potential
bacteriocins of protein nature, and catalase treatment to assess the effect of H2O2 [84].

The ropiness-causing B. subtilis was inhibited by all the examined LAB. The highest
inhibitory activity of the SFCs towards B. subtilis was observed for strains Lb. plantarum
08B217 (74 mm zone) and Lb. brevis 07B198 (70 mm zone), followed by Enterococcus durans
09B374 and strain Lb. brevis 01M22 (66 and 65 mm zones, respectively) (Figure 1A).

Adjusting pH from 3.9–4.4 to 6.5 led to a significant decrease (by 33 to 52%) of the
antimicrobial activity of the isolates. The highest reduction was observed for strains 08B212,
07B1109 and 12R226—62%, 52% and 51%, respectively. These findings confirm that the
antibacterial effect of the strains is mostly attributed to organic acid production. On the
other hand, boiling of CFS, which aimed to denature potential protein compounds with
antibacterial activity, resulted in an even higher decrease in inhibition of B. subtilis by all
LAB strains, which indicates that such compounds contribute more significantly to the
antibacterial activity of the strains compared to organic acid production. Todorov and
Dicks [85] reported that bacteriocin ST44AM remained stable at 100 ◦C for 120 min, but the
activity of this bacteriocin was reduced after exposure at 121 ◦C for 20 min. Similar results
were reported for a bacteriocin produced by Lactobacillus CA44 [86] and also thuricin 7
from B. thuringiensis BMG1.7 [87].

In the present study, trypsin treatment of the CFS resulted in an even bigger decrease
of the antimicrobial effect for all strains except for 08B212 и01M22. These observations also
suggest that the inhibition of the test hygiene indicators/pathogens is aided by protein
components. The addition of catalase also affected the growth of B. subtilis compared to
the controls (by approximately 11 to 33%), but its effect was much weaker than the effect of
organic acids and the protein antimicrobial compounds (Figure 1A).
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Figure 1. Antibacterial activity of selected LAB from Bulgarian sourdoughs against Bacillus subtilis NBIMCC 3562 (A),
Staphylococcus aureus NBIMCC 3081 (B) and Salmonella enterica NBIMCC 8691 (C).
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The highest antibacterial activity of the LAB cell-free supernatants towards S. aureus
was observed again for Lb. brevis 01M22 (80 mm zone) and Lb. plantarum 08B217 (78 mm
zone), followed by strains Pediococcus pentosaceus 07B1109 and 12R2192 (with 68 and 65 mm
zones) (Figure 1B).

With regards to inhibition of S. enterica, the best results were registered for strains Lb.
brevis 07B198 (83 mm zone), Lb. brevis 04P3167 (78 mm) and P. pentosaceus 12R2192 (76 mm
zone) (Figure 1C).

Comparison of inhibitory activity against the two pathogens shows that boiling and
trypsin treatment of the strains supernatants had a much more significant effect on the
inhibition than pH adjustment and catalase treatment. Boiling decreased inhibitory activity
towards S. aureus and S. enterica by 48–67% and 49–66%, respectively, and the effect of
trypsin treatment of the supernatants decrease the pathogen inhibition by 55–74% for
S. aureus and by 63 to 81% for S. typhimurium (Figure 1B,C). This observation clearly
indicates that the antibacterial activity against S. aureus and S. enterica is mostly due to
the production of antimicrobial compounds of protein nature. The treatment of the CFSs
with catalase affected the inhibition activity less than the treatments with high temperature
and trypsin, which again confirms that the inhibitory activity of the studied LAB strains is
mainly attributed to protein substances.

Yang et al. [63] carried out a study on the antimicrobial effect of eight LAB isolates
producing bacteriocin or bacteriocin-like substances on several Gram-positive, Gram-
negative bacteria and fungi. They reported that the untreated CFS inhibited all test bacteria
and fungi except for E. coli, but pH neutralization and H2O2 elimination resulted in the
loss of the inhibitory effect towards almost all test microorganisms.

Moreover, the obtained results show that several of the isolated LAB strains—Lb. brevis
01M22, Lb. brevis 07B198, Lb. plantarum 08B217 and P. pentosaceus 12R2192—were repeatedly
most active against the test spoilage and pathogenic bacteria, making them good candidates
for sourdough starter culture development.

3.7. Antifungal Activity of the LAB Strains

The potential application of LAB as biopreservation agents in various branches of the
food industry has received much attention in the past 10 years. Despite the accumulated
data, there is still much to be studied in terms of strain characterization, active compounds
and concentrations, strain-matrix effects, processing effects, etc. In this connection, the
antifungal activity of the LAB strains isolated from Bulgarian sourdoughs was also tested in
the present study against representatives of the most common cereal-contaminating fungi—
Penicillium chrysogenum, Fusarium graminearum, Rhizopus stolonifer and Aspergillus nidulans.
All untreated CFSs showed various levels of inhibitory activity against the tested fungi
(Figure 2), but the experimental data indicates that organic acid production was the most
significant factor affecting fungal growth since after pH adjustment of the CFSs, the average
growth zone reduction was 67% for P. chrysogenum, 69.4% for F. graminearum, 77.4% for Rh.
stolonifer and 72.1% for A. nidulans. Muthusamy et al. [40] studied the antifungal activity
of Lb. plantarum strains against A. clavatus, A. flavus, P. chrysogenum and F. oxysporum and
attributed their high inhibitory effect mostly to the production of acidic compounds such
as organic acids. The same conclusion was made by Russo et al. [88] after studying the
antifungal activity of Lb. plantarum isolates. The main organic acids to which the antifungal
effect of LAB was attributed by some studies, are lactic, acetic and phenyllactic acids [89,90].
A study on the active compounds produced by Lb. plantarum [91] revealed another group
of pH lowering substances—3-hydroxy fatty acids, which also had an inhibitory effect
against fungi.

It is interesting to note that for almost all LAB strains, catalase treatment was found to
be the second important factor involved in antifungal activity against the test fungi. Results
show that P. chrysogenum was affected by H2O2 at the lowest level compared to the other
three fungi species. The average decrease of the clear zones compared to controls was 32.7%,
while it was much higher for F. graminearum (49.5%), followed by Rh. stolonifer (51.1%)



Microorganisms 2021, 9, 1346 12 of 18

and A. nidulans (55.3%), which had the highest susceptibility to this compound. These
observations are in agreement with other studies on antimicrobial activity of LAB, where
inhibition was attributed to the highest extent to organic acid and H2O2 production [63].

Strain E. faecium 12R226 had activity against P. chrysogenum and F. graminearum, with
zones of 31 and 34 mm, respectively (Figure 2A,B). However, it had a limited effect against
Rh. stolonifer and A. nidulans (Figure 2C,D), which is in agreement with the relatively rare
reports for antifungal activity of enterococci, especially isolated from sourdoughs [92]. The
activity towards Penicillium spp. was totally eliminated after pH adjustment, while the
CFS was still active after boiling, trypsin and catalase treatment. These observations clearly
show that the antifungal activity of E. faecium 12R226 is mostly attributed to organic acid
production. The presence of heat- and trypsin-sensitive components is also indicated by
approximately 21.7 to 30.6% average clear zone reductions after the respective treatments
of the LAB supernatants. However, these effects were at a much lower level compared to
pH and H2O2 production.
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Figure 2. Antifungal activity of selected LAB from Bulgarian sourdoughs against Penicillium chrysogenum NBIMCC 129 (A),
Fusarium graminearum NBIMCC 2294 (B), Rhizopus stolonifer NBIMCC 130 (C) and Aspergillus nidulans NBIMCC 116 (D).

The activity of almost all LAB strains against F. graminearum was higher compared to
the other test fungi, with clear zones within 30 to 36 mm (Figure 2B). Belguesmia et al. [93]
reported antifungal activity of E. durans isolated from Mongolian cheese. In our study,
strain E. durans 09B374 was active against all tested fungi, with the highest activity (40 mm
zone) towards Aspergillus spp. (Figure 2C).

Apart from the observed susceptibility trends for the test fungi, the antifungal activity
of the tested sourdough LAB was also strain-dependent. Results show that several strains
were noticeably more effective—Pediococcus pentosaceus 12R2192 against P. chrysogenum
and Rh. stolonifer, Lactobacillus brevis 04P3167 against Rh. stolonifer, Lactobacillus plantarum
08B217 against P. chrysogenum and F. graminearum, Lb. plantarum 08B212 against Rh. stolonifer,
Enterococcus faecium 12R232 against P. chrysogenum and Rh. stolonifer, E. faecium 12R226
against F. graminearum, and E. durans 09B374 against A. nidulans. Lactobacillus brevis
01M22 was the most effective strain, showing high results against three of the test fungi:
Fusarium sp., Rhizopus sp. and Aspergillus sp. These results indicate potential candidates
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for the development of starter cultures with good biopreservation capacity for sourdoughs
or other food products.

Other studies have also reported the production of antibacterial and antifungal com-
ponents by LAB from sourdoughs that can improve the safety and shelf life of final
products [11]. Results in Figures 1 and 2 clearly show that the isolated LAB from Bulgarian
sourdoughs are effective against the tested bacterial pathogens and fungi representatives,
and their inhibitory activity is due to different mechanisms, which is important to take into
account when selecting LAB strains for commercial sourdough starter cultures.

4. Conclusions

Twelve samples of typical Bulgarian sourdoughs produced without the addition of
commercial yeast were collected from different locations in Bulgaria and subjected to
physico-chemical and microbial characterization. It was found that pH (3.58–5.11), TTA
(5.2–12.4) and dry matter content (33.01–58.16%) of the samples were not directly correlated,
which could be attributed to the flour types used, diversity of the sourdough microbiota and
the baker’s practices. The LAB counts ranged from 1.4 × 104 to 9.7 × 109 cfu/g, and yeast
counts in the sourdoughs varied from 1.0 × 104 to 5.3 × 109 cfu/g, with ratios of 100:1 and
10:1between the two microbial groups in the samples. Molecular identification of 167 LAB
isolates and 106 yeast strains revealed the diversity of these groups in Bulgarian sourdoughs.
Based on the results for amylolytic and proteolytic properties and acid production capacity,
11 LAB strains were selected and tested for antibacterial and antifungal activity. Results
from the study showed that the strains were effective against the tested bacterial pathogens
and fungi based on different mechanisms, which is important when selecting LAB strains
for commercial sourdough starter cultures. The strains Lb. brevis 01M22, Lb. brevis 07B198,
Lb. plantarum 08B217 and P. pentosaceus 12R2192 were most active against both the tested
bacteria and fungi. The other LAB strains with the most pronounced antifungal activity
were Lb. brevis 04P3167, Lb. plantarum 08B212, Enterococcus faecium 12R232, E. faecium
12R226 and E. durans 09B374, which makes them good candidates for the development
of active starter cultures with good biopreservation capacity for sourdoughs or other
food products.
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