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Abstract: Hypertension is a multifactorial disease that affects approximately one billion

subjects worldwide and is a major risk factor associated with cardiovascular events, includ-

ing coronary heart disease and cerebrovascular accidents. Therefore, adequate blood pressure

control is important to prevent these events, reducing premature mortality and disability.

However, only one third of patients have the effective control of blood pressure, despite

several classes of antihypertensive drugs available. These disappointing outcomes may be at

least in part explained by interpatient variability in drug response due to genetic polymorph-

isms. To address the effects of genetic polymorphisms on blood pressure responses to the

antihypertensive drug classes, studies have applied candidate genes and genome wide

approaches. More recently, a third approach that considers gene-gene interactions has also

been applied in hypertension pharmacogenomics. In this article, we carried out a compre-

hensive review of recent findings on the pharmacogenomics of antihypertensive drugs,

including diuretics, β-blockers, angiotensin-converting enzyme inhibitors and angiotensin

II receptor blockers, and calcium channel blockers. We also discuss the limitations and

inconsistences that have been found in hypertension pharmacogenomics and the challenges

to implement this valuable approach in clinical practice.
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Introduction
Cardiovascular disease is the leading global cause of death, accounting for approxi-

mately 17 million deaths annually.1 Hypertension is one of the most common

cardiovascular diseases and it is a major risk factor for coronary heart disease

and cerebrovascular accidents, which can lead to premature mortality, morbidity

and significant economic costs.2 Studies indicate that within the next 20 years, the

number of individuals affected by hypertension will increase by 60% to a total of

more than 1.5 billion subjects.3 Despite the increasing public awareness of hyper-

tension and its complications, the rates of adequate blood pressure control (<140/

90 mmHg) among patients receiving antihypertensive therapy remain

unsatisfactory.4 The reasons for these disappointing outcomes are complex, but

include medication non-adherence, which may be due to adverse effects or treat-

ment costs, and interindividual genetic variability.5

Indeed, genetic factors can affect blood pressure increases by 30–50%.6,7

Therefore, over the past two decades, many genetic studies have aimed to clarify

the causal genes of hypertension. In these studies, several genetic polymorphisms,

including single nucleotide polymorphisms (SNPs), variable number of tandem
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repeats, microsatellites and insertions/deletions (I/D), were

found associated with hypertension.8 Moreover, these stu-

dies have shown that genetic factors are involved not only

in the blood pressure elevation, but also contribute to the

large interindividual variability in response to antihyper-

tensive treatment, opening a window of opportunity for

pharmacogenomic investigation and potential individuali-

zation of drug therapy.5 In fact, considering the low rates

of blood pressure control, the ability to identify the most

effective antihypertensive agent for an individual patient

prior to initiation of therapy has potential to be beneficial.9

Successful examples of targeted antihypertensive therapy

based on genetics include the personalized treatments

available for most forms of monogenic hypertension.10,11

Regarding essential hypertension, the risks of a genetic-

guided approach for prescription of antihypertensive drugs

would be relatively low, considering that the current

method for selection of antihypertensive therapy is predo-

minantly empirical, and frequently involves a trial and

error approach to find the optimal regimen for a given

patient.9 Thus, the goal of hypertension pharmacoge-

nomics is to use genetic information, in addition to other

pertinent clinical or demographic parameters, to select the

right antihypertensive therapy and the most favorable dose

to maximize the drug efficacy and reduce the risk for

adverse effects.5

In order to identify potential genetic predictors of anti-

hypertensive responses, two main approaches have been

applied: a hypothesis-driven approach on the candidate

genes, encoding proteins involved in signaling pathways

affected by antihypertensive drugs, and an unbiased hypoth-

esis-free approach with genome-wide association studies

(GWAS), supported by the randomness basis of frequentist

statistics.12,13 During the past decade, GWAS have over-

come the application of candidate gene approach, resulting

in the identification of several previously unknown candi-

date loci or genes, but the advantages and limitations of this

method in hypertension pharmacogenomics compared to

the hypothesis-driven approach are still under debate.13 In

addition to these strategies that focus on single-locus ana-

lysis, a third approach that takes into account gene-gene

interactions has been recently applied in pharmacogenomic

studies.14 This strategy considers the biological complexity

underlying drug response and evaluate potential epistatic

interactions that may predict how a patient will respond to

a given treatment.15 In this review article, we summarize

the recent findings on the pharmacogenomics of

antihypertensive drugs and discuss current insights and

future directions of this field.

Studies On The Pharmacogenomics
Of Hypertension
Here, we review the pharmacogenomics of the most com-

monly prescribed antihypertensive agents in clinical prac-

tice, including diuretics, β-blockers, angiotensin-converting
enzyme inhibitors and angiotensin II receptor blockers, and

calcium channel blockers. A search was performed in the

PubMed database for original articles focusing on the

effects of genetic polymorphisms on blood pressure

responses to the antihypertensive drug classes described

above. The search terms used were: “Antihypertensive ther-

apy”, “Pharmacogenomics and Pharmacogenetics”, “[each

antihypertensive drug class] and pharmacogenomics”. The

literature search was limited to full-text articles in the

English language. In addition, the reference lists of identi-

fied articles were searched for further papers.

Diuretics
Diuretics are the first-line drugs of choice for most patients

with hypertension.2 Their mechanism of action involves

the increases in sodium excretion (natriuresis) and

decreases in extracellular volume, leading to a reduction

in cardiac output. Although the initial antihypertensive

effects of these drugs are in fact due to diuresis, their

long-term effects are maintained due to decreases in vas-

cular resistance, possibly resulted from an inhibition of

sympathetic nervous and/or renin-angiotensin systems.16

Given the different mechanisms underlying the effects of

diuretics, several candidate genes may predict individual

responses to these drugs.

The most commonly used diuretic is the thiazide diure-

tic hydrochlorothiazide, which acts by inhibiting the

sodium chloride cotransporter expressed in the distal con-

voluted tubule of the nephron.17 Considering the substan-

tial inter-individual variation in the antihypertensive

responses to hydrochlorothiazide, a large number of stu-

dies has evaluated polymorphisms in candidate genes or in

GWAS as predictors of blood pressure responses to this

drug (Table 1). In this regard, the ADD1 gene was one of

the first candidate genes examined for antihypertensive

responses to thiazide diuretics.18,19 The ADD1 gene

encodes α-adducin, a cytoskeleton-associated protein that

modulates ion transport.20 Interestingly, it was found that

carriers of the Trp allele for the Gly460Trp (rs4961)
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polymorphism in the ADD1 gene showed a reduced base-

line plasma renin activity and a better antihypertensive

response to hydrochlorothiazide treatment compared to

Gly/Gly homozygotes.19 A subsequent study found evi-

dence suggesting that the rs4961 polymorphism may mod-

ulate renal sodium handling by changing ion transport

Table 1 Summary Of Studies On The Pharmacogenomics Of Diuretics

Gene Polymorphism Study Type Study Population Main Findings Reference

ADD1 rs4961 Candidate gene Caucasians (n=58) Trp allele carriers have lower renin levels and

better responses to hydrochlorothiazide treatment

19

ADD1 rs4961 Candidate gene Caucasians (n=268) Change in ionic transport across the cell

membrane with consequent decreased blood

pressure in Trp allele carriers

21

ADD1 rs4961 Candidate gene Caucasians (n= 87) 460Trp allele carriers have better responses to

hydrochlorothiazide

22

ADD1 rs4961 Candidate gene Caucasians (n=396) Polymorphism did not modify blood pressure levels

after use of diuretics

24

GNB3 rs5443 Candidate gene African Americans

(n=197) and

Caucasians (n=190)

T allele carriers have better responses to

hydrochlorothiazide

27

GNB3 rs5443 Candidate gene Caucasians (n=39) T allele carriers have better responses to

hydrochlorothiazide

28

eNOS Glu2983Asp Candidate gene African American

(n=289) and

Caucasians (n=290)

GG genotype carriers have better responses to

hydrochlorothiazide, with decreased diastolic

blood pressure

29

NEDD4L rs4149601 GWAS Caucasians (n=5152) G allele carriers have better responses to

hydrochlorothiazide

36

NEDD4L rs4149601 and

rs292449

GWAS Caucasians (n=768) G-C haplotype carriers have better responses to

hydrochlorothiazide

37

Chromosome

12q

rs317689,

rs315135 and

rs7297610

GWAS African Americans

(n= 194) and

Caucasians (n= 195)

ATT and ATC haplotypes carriers have worse

responses to hydrochlorothiazide

38

Chromosome

12q

rs317689,

rs315135 and

rs7297610

GWAS African Americans

(n=147) and

Caucasians (n=224)

ATT haplotypes carriers have worse responses to

hydrochlorothiazide

39

BEST rs61747221 GWAS African Americans

(n=242) and

Caucasians (n=119)

A allele carriers have better responses to

hydrochlorothiazide

40

PRKCA rs16960228 GWAS Caucasians (n=228) A allele carriers have better responses to

hydrochlorothiazide and higher baseline PRKCA

expression

23

VASP rs10995 GWAS Caucasians (n=228) G allele carriers have better blood pressure

responses to hydrochlorothiazide and increased

mRNA expression of VASP

42

ALDH1A2 rs261316 GWAS Caucasians (n=314) T allele was associated with uncontrolled blood

pressure following treatment with a thiazide

diuretic/β-blocker combination

43
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across the cell membrane.21 While the association between

rs4961 polymorphism and the antihypertensive responses

to thiazide diuretics has been confirmed by some later

studies,22 lack of association was observed in others.23,24

Another gene that has been evaluated for hydrochlor-

othiazide responses is GNB3, which encodes β3-subunit of
the G-protein.25 This family of proteins is critical for many

physiological and pharmacological responses once they

mediate signal transduction from membrane receptors to

a wide range of intracellular effectors.25 Interestingly, it

was reported that the T allele for C825T (rs5443) poly-

morphism in the GNB3 gene is related to an RNA splice

variant that lacks the nucleotides 498–620 of exon 9,

resulting in structural modifications in the β3-subunit of
G-protein and potentially affecting signal transduction.26

Indeed, the T allele for this polymorphism was associated

with better antihypertensive responses to hydrochlorothia-

zide with a gene-dose effect,27 and this association was

further confirmed by an independent study.28 However,

another study with a larger sample size failed to replicate

these findings,29 and therefore the association between the

rs5443 polymorphism and hydrochlorothiazide responses

remains unclear.

Given that the antihypertensive effects of diuretics are

in part due to renin-angiotensin system inhibition,16 some

studies have tested whether polymorphisms in the gene

encoding the angiotensin converting enzyme (ACE) affect

the responses to these drugs. In a study evaluating the I/D

polymorphism in intron 16 of ACE gene in 87 never-

treated hypertensive patients, Sciarrone et al found that

individuals carrying the I/I genotype had better antihyper-

tensive responses to hydrochlorothiazide compared to

those carrying the D/D genotype.22 A later study in the

Han Chinese population showed that this polymorphism

affects hydrochlorothiazide responses in a gender-specific

manner, since better antihypertensive effects were

observed in men carrying the D/D genotype and women

carrying the I/I genotype.30 These associations were not

replicated in a study including 208 hypertensive Finnish

men.31

The NEDD4L has also been considered a candidate

gene for hydrochlorothiazide responses. This gene

encodes a ubiquitin ligase that targets the epithelial

sodium channel for degradation, therefore affecting

sodium reabsorption in the distal nephron.32 Consistent

with its function, studies have shown that polymorphisms

in NEDD4L gene affect salt sensitivity, plasma renin

concentrations and susceptibility to hypertension.33–35

To test the effects of NEDD4L variants on the responses

to antihypertensive drugs, the NORDIL (Nordic

Diltiazem) Study evaluated Caucasian hypertensive

patients randomized to beta-blockers or thiazide diuretics

and followed-up for six months.36 Interestingly, it was

found that G allele carriers for the rs4149601 polymorph-

ism in NEDD4L gene have better antihypertensive

responses to hydrochlorothiazide and β-blockers than

patients with the AA genotype.36 These results were

significantly replicated in white subjects in subsequent

studies.37 In addition, better blood pressure responses to

hydrochlorothiazide was observed in white hypertensive

patients carrying increasing copies of the G-C haplotype

of NEDD4L gene (for the SNPs rs4149601 and rs292449,

respectively).37 These findings, however, were not repli-

cated in African Americans.37

The Genetic Epidemiology of Responses to

Antihypertensives (GERA) study was the first GWAS

on the pharmacogenomics of hypertension therapy.38

While no significant associations were observed in

Caucasians, this study identified a region of chromo-

some 12q associated with the antihypertensive responses

to hydrochlorothiazide in African Americans. The

authors found that haplotypes on this chromosome com-

posed by SNPs rs317689, rs315135, rs7297610 near

lysozyme (LYZ), YEATS domain containing 4

(YEATS4), and fibroblast growth receptor substrate 2

(FRS2) were significantly associated with diastolic

blood pressure responses to hydrochlorothiazide. The

ATT and ATC haplotypes composed by these SNPs

were more frequent in poor responders than in good

responders. The SNP rs7297610 had the most significant

individual value, and it was suggested to drive the

observed association. Consistently, these results were

replicated in an independent population of 291

African-Americans and 294 Caucasians,38 therefore vali-

dating the findings. Interestingly, these results were also

replicated in a later study enrolling 746 hypertensive

subjects from Pharmacogenomics Evaluation of

Antihypertensive Responses (PEAR) study,39 suggesting

that haplotypes composed by SNPs rs317689, rs315135,

rs7297610 may be potential predictors of hydrochlor-

othiazide responses. In addition, the chromosome 12q

was recently re-sequenced in participants from GERA

and PEAR studies and a novel missense SNP,

rs61747221 in the BEST3 gene was significantly asso-

ciated with blood pressure responses to hydrochlorothia-

zide treatment.40 In this study, subjects carrying AA
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+AG genotypes for this polymorphism showed better

antihypertensive responses to hydrochlorothiazide com-

pared to GG carriers.

In order to identify novel genes affecting the antihy-

pertensive responses to hydrochlorothiazide, Turner et al

conducted genome-wide association meta-analyses com-

bining the results from independent white hypertensive

populations: PEAR, GERA, NORDIL, and Genetics of

Drug Responsiveness in Essential Hypertension Study

(GENRES).23 By using this approach, they provided sub-

stantial evidence of associations between the SNP

rs16960228 in PRKCA gene and blood pressure responses

to hydrochlorothiazide. The A-allele carriers showed con-

sistently better antihypertensive responses to this drug.

Moreover, this study provided functional evidence that

the A-allele for the SNP rs16960228 is associated with

higher baseline PRKCA expression.23

More recently, several novel SNPs have been asso-

ciated with blood pressure responses to hydrochlorothia-

zide in GWAS. Hiltunen et al identified four new SNPs

affecting hydrochlorothiazide response (rs3825926,

rs4867623, rs321329 and rs321320) in subjects from

GENRES, PEAR and GERA studies.41 Another GWAS

including individuals from PEAR and PEAR-2 studies

tested 1082 SNPs, prioritized according to their biologi-

cal function, using RegulomeDB, haploreg and GWAVA

software packages.42 The results from the prioritization

analysis showed the SNP rs10995 in the VASP gene

(encoding the vasodilator-stimulated phosphoprotein) as

the most likely functional SNP, among SNPs tested, that

has been associated with hydrochlorothiazide responses.

The G allele for this SNP was associated with greater

blood pressure responses to hydrochlorothiazide and

increased mRNA expression of VASP.42 Consistently,

these findings were replicated in an independent cohort

treated with the thiazide diuretic chlorthalidone, thus

validating the associations.42 Also employing a GWAS

approach, Magvanjav et al found that the SNP rs261316

in the ALDH1A2 gene was associated with uncontrolled

blood pressure following treatment with a thiazide diure-

tic/β-blocker combination in white participants of the

PEAR study.43 These findings were further validated in

a replication study including subjects from INVEST

study.43 Taken together, these findings highlight GWAS

as an efficient approach to identify novel polymorphisms

involved with the antihypertensive responses to hydro-

chlorothiazide. Further studies are still required to

confirm the functional relevance of the SNPs identified

in the mentioned GWAS.

β-Blockers
Although β-blockers are no longer considered as first-line

antihypertensive pharmacotherapy by the Joint National

Committee (JNC8) hypertension guidelines,2 they are still

widely prescribed and retain an important place in the man-

agement of hypertension for certain subgroups of patients.44

β-blockers decrease myocardial contractility, heart rate and

cardiac output.45 In addition to the cardiac effects, the anti-

hypertensive effects of these drugs result from the blockage

of their targets on juxtaglomerular cells of the kidney,

decreasing renin secretion and thereby leading to a reduced

production of circulating angiotensin II.45,46

The primary protein target of all β-blockers is the

β1-adrenergic receptor, encoded by ADRB1.47 This gene

contains two common and widely studied genetic poly-

morphisms that lead to changes in the encoded amino

acids: rs1801252, which leads to a serine to glycine

change at the position 49 of the protein (Ser49Gly), and

rs1801253, which results in the arginine to glycine change

at the position 389 of the protein (Arg389Gly).47 These

two polymorphisms show important evidence for func-

tional impact once they affect intracellular signaling

mediated by the β1-adrenergic receptor.48 Indeed, the

ancestral alleles (Ser49 and Arg389) for these polymorph-

isms are both associated with improved intracellular

responses to β1-adrenergic receptor agonists compared to

variant alleles.48 Despite the functional relevance, there is

no consensus for the association between Ser49Gly or

Arg389Gly polymorphisms and antihypertensive

responses to β-blockers (Table 2). In a study including

white, African American, and Hispanic individuals, car-

riers of Arg/Arg genotype for Arg389Gly polymorphism

had better blood pressure responses to the β-blocker meto-

prolol compared to subjects carrying the Gly allele.49 In

addition to the genotypic findings, the authors observed

that the haplotypes composed by Ser49Gly and

Arg389Gly polymorphisms affect the blood pressure

responses to metoprolol. Similar results were also found

in Chinese hypertensive patients treated with the β-blocker
carvedilol.50 In the opposite direction, Chen et al recently

reported that subjects carrying the Gly/Gly genotype for

Arg389Gly polymorphism show greater antihypertensive

responses to metoprolol.51 Regardless of these positive

findings, lack of association between Ser49Gly or

Arg389Gly polymorphisms and blood pressure responses
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to β-blockers was reported in two European prospective

studies.52,53
In addition to polymorphisms in genes that modulate

the pharmacodynamics of β-blockers, variants in genes

Table 2 Summary Of Studies On The Pharmacogenomics Of β-Blockers

Gene Polymorphism Study Type Study Population Main Findings Reference

ADRB1 rs1801253 Candidate gene Caucasian (n=29), African

American (n=10) and Hispanic

(n=1) population

Arg/Arg genotype carrier have better blood

pressure responses to metoprolol

49

ADRB1 rs1801253 Candidate gene Chinese population (n=86) Arg/Arg genotype carriers have better blood

pressure responses to carvedilol

50

ADRB1 rs1801253 Candidate gene Chinese population (n=261) Gly/Gly genotype carriers have greater

antihypertensive responses to metoprolol

51

ADRB1 rs1801252 Candidate gene Caucasians (n=233) Ser49Ser homozygotes showed a non-

significant tendency to have a better response

to bisoprolol

52

ADRB1 rs1801253 or

rs1801252

Candidate gene Caucasians (n = 340) There was no association of the

polymorphisms with the blood pressure

response to atenolol

53

CYP2D6 *4 Candidate gene Caucasians (n= 1533) * 4/4 * genotype carriers have better blood

pressure responses to metoprolol

57

CYP2D6 *3, *4, others Candidate gene Caucasians (n=84) There was association of the polymorphisms

with the blood pressure response tometoprolol

58

CYP2D6 *2,*3, others Candidate gene African Americans (n=84),

European Americans (n=125),

Asians (n=1) and others (n=8)

There was no association between CYP2D6

variants and blood pressure responses to

metoprolol

60

CYP2D6 rs1065852 Candidate gene Chinese population (n=93) There was no significant association between

CYP2D6 gene polymorphisms and treatment

outcome with metoprolol

61

CYP2D6 *2, *3, others Candidate gene White (n=39), black (n=9) and

Latino-Hispanic (n=2)

population

There was no significant association between

CYP2D6 variants and blood pressure

responses to metoprolol

62

SLC25A31 rs201279313 GWAS African Americans (n=318) Heterozygous patients have better

antihypertensive responses to β-blockers

63

FGD5 rs294610 GWAS Caucasians (n=201) A allele carriers have better blood pressure

responses to metoprolol

64

SLC4A1 rs45545233 GWAS Caucasians (n=434) C allele carriers have worse responses to

β-blockers

64

ACY3 rs2514036,

rs948445, and

rs2514037

GWAS Caucasians (n=228) The SNPs rs2514036, rs948445, and

rs2514037 are associated with blood

pressure responses to bisoprolol

41

BST1 rs28404156 GWAS Caucasians (n=1254) A allele carriers have better blood pressure

responses to β-blockers

66

KLOTHO rs36217263 GWAS Filipinos (n=76) Deletion of at least one copy of allele A for

rs36217263 in the KLOTHO gene is associated

with poor response to β-blockers

67
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regulating their pharmacokinetics are also potential candi-

dates to impact the antihypertensive responses to these

drugs. One of these candidates is the gene encoding the

cytochrome enzyme CYP2D6, which is a major responsi-

ble for metabolizing β-blockers.42 Because there are evi-

dences suggesting that the CYP2D6 polymorphisms affect

the pharmacokinetics of β-blockers,54–56 some studies

have evaluated whether these variations translate into

variability in their effects. In fact, there are studies show-

ing associations of CYP2D6 genotypes and blood pressure

responses to β-blockers.57,58 Based on these evidences, the

Pharmacogenetics Working Group of the Royal Dutch

Pharmacists Association has established therapeutic dose

recommendations for metoprolol based on CYP2D6

genotypes.59 However, other studies have suggested that

there is no sufficient evidence for the clinical utility of

CYP2D6 genotyping to guide metoprolol therapy in

hypertension,60 since lack of association between

CYP2D6 variants and blood pressure responses to this

drug and other β-blockers has been observed in some

studies.56,60–62

Recently, several GWAS have found polymorphisms

affecting blood pressure responses to β-blockers (Table 2).

Using this approach, Gong et al evaluated 318 African-

American hypertensive participants from PEAR and

PEAR-2 studies treated with β-blockers and observed that

individuals carrying one variant allele (a deletion in the

intronic region) for the SNP rs201279313 in SLC25A31

gene (which encodes ADP/ATP translocase 4) have better

antihypertensive responses to β-blockers compared to sub-

jects carrying two wild-type alleles.63 Moreover, they also

found that subjects carrying the deletion allele of

rs11313667, located in the intronic region of LRRC15

gene (encoding leucine rich repeat containing 15) show

greater blood pressure responses to β-blockers compared

to individuals carrying two wild-type alleles. Importantly,

these associations were replicated in an independent cohort

of PEAR study,63 thereby validating these findings.

Given that black subjects have different antihyperten-

sive responses to β-blockers compared to Caucasians,

recent GWAS have focused on this last population.41,64,65

Hiltunen et al identified the SNPs rs2514036, rs948445,

and rs2514037 in the ACY3 gene (coding for aminoacylase

III) associated with blood pressure responses to the

β-blocker bisoprolol in Caucasians.41 In a later replication

study, only the SNP rs2514036 was found associated with

blood pressure responses to atenolol.65 Another GWAS

evaluating European-Americans participants from

PEAR-2 study found that the A allele carriers for

rs294610 polymorphism in the FGD5 gene (which

encodes for FYVE, RhoGEF and PH Domain

Containing 5) show better blood pressure responses to

β-blockers. Consistently, these findings were replicated in

European-Americans participants from PEAR study. In a

secondary replication approach, the authors performed a

meta-analysis between PEAR-2 and PEAR studies with an

independent cohort from PEAR and identified an addi-

tional single nucleotide polymorphism (rs45545233) in

the SLC4A1 gene (encoding for Solute Carrier Family 4

Member 1) associated with poor responses to β-blockers.64

More recently, Singh et al carried out a GWAS involving 5

randomized clinical trials consisting of 1254 patients with

hypertension of European ancestry and identified A allele

for the SNP rs28404156 in the BST1 gene associated with

better blood pressure responses to β-blockers.66

Consistently, these findings were successfully replicated

in 3 additional randomized clinical trials.66

In addition to African Americans and European-

Americans, recent studies have used GWAS approach to

identify genetic polymorphisms associated with blood

pressure responses to atenolol in other populations. This

is the case of a study performed by Sy et al, which

investigated the association of genetic variants with anti-

hypertensive responses to β-blockers among Filipinos.67

Interestingly, they found that the deletion of at least one

copy of allele A for rs36217263 polymorphism in the

Klotho gene is associated with poor response to β-block-
ers. Further studies are required to test if these findings can

be replicated in independent cohorts of Filipino subjects.

Angiotensin-Converting Enzyme
Inhibitors And Angiotensin II
Receptor Blockers
The renin-angiotensin system is well known for its modula-

tion of the blood pressure and sodium homeostasis.68 These

effects are coordinated through integrated mechanisms in

the kidney, cardiovascular system and the central nervous

system.68 The cascade that results in the physiologic effects

of renin-angiotensin system involves the renin-mediated

conversion of angiotensinogen into angiotensin I, which is

further cleaved by angiotensin-converting enzyme (ACE),

to produce angiotensin II, the final effector of the system.69

Angiotensin II directly regulates blood pressure by stimu-

lating angiotensin II type 1 receptor (AT1R) receptors pre-

sent in the vasculature, kidney and central nervous system,
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leading to vasoconstriction, sodium reabsorption, and

increases in sympathetic tone.69

Two different classes of drugs targeting the renin-

angiotensin system are widely prescribed to treat hyper-

tension: ACE inhibitors, which preclude the formation of

angiotensin II, and angiotensin II receptor blockers (ARB),

which bind to AT1R, thereby antagonizing the effect of

angiotensin II. Not surprisingly, genes encoding compo-

nents of the renin-angiotensin system are the most likely

candidate genes for a pharmacogenomic approach on these

drugs (Table 3). The most studied polymorphism of these

genes is the I/D in intron 16 of ACE.70 Indeed, D allele of

this polymorphism seems to be associated with higher

levels of ACE in Caucasian71 and Asian72,73 populations,

but not in African-Americans.74 Accordingly, this allele

has also been associated with cardiovascular75–78 and

renal79,80 disease. However, conflicting results have been

found regarding to the antihypertensive responses to ACE

inhibitors or ARB. This is because the D allele was asso-

ciated with better antihypertensive responses to these

drugs in some studies,81,82 while the I allele was asso-

ciated with those effects in others;83–85 in addition, several

studies have shown no effects of this polymorphism on

blood pressure responses to ACE inhibitors or ARB.86–89

Many factors, including study population, sample size, and

possible interethnic differences in the distribution of I/D

ACE polymorphism could explain these discrepancies.

Other candidate genes that are part of the classical cas-

cade of the renin-angiotensin system and therefore could

affect the antihypertensive responses to ACE inhibitors and

ARB include AGT and CYP11b2 genes. The AGT gene

encodes angiotensinogen, and the most studied polymorph-

ism of this gene is the SNPMet235Thr (rs699), which results

in a threonine instead of a methionine in codon 235 of the

protein.90 However, similar to the I/D polymorphism in ACE

gene, there is no consensus regarding the effects of this

polymorphism on the antihypertensive responses to ACE

inhibitors or ARB.85,87–89,91,92 The CYP11b2 gene encodes

aldosterone synthase, the enzyme that catalyzes the final step

of aldosterone synthesis in juxtaglomerular cells.93 One

important polymorphism in this gene is the SNP −344C/T
(rs179998), which was shown to affect aldosterone levels

and hypertension susceptibility.94–97 Interestingly, the

−344C/T polymorphism has been found associated with

blood pressure responses to ARB,92,98–100 although it is still

not clear which variant contributes to greater responses. In

fact, while this effect was attributed to the C allele of this

SNP in some studies,99,100 the same effect was associated

with the T allele in others.92,98 Studies with larger popula-

tions are required to interpret the findings more conclusively.

In addition to the renin-angiotensin system inhibition,

the beneficial effects of ACE inhibitors and ARB are

associated with several pleiotropic effects.101–103 Indeed,

many of these effects are related to the vasodilation pro-

duced by nitric oxide (NO) as a result of endothelial NO

synthase (NOS3) activation.104,105 NOS3 is the dominant

NO synthase in the vasculature and polymorphisms in the

gene encoding this enzyme have been associated with

hypertension and other cardiovascular alterations.106–108

The pharmacogenomic relevance of NOS3 for ACE inhi-

bitor and ARB responses has been shown in different

studies. One of these studies focused on hypertensive

patients treated with the ACE inhibitor enalapril.109 This

study observed higher frequencies of the C allele for the

NOS3 SNP −786T/C (rs2070744) in patients with good

responses to this drug as compared with those patients

classified as poor responders.109 In line with these find-

ings, another study showed that the ARB olmesartan pro-

motes increased NO formation in endothelial cells that are

homozygous for C allele of this polymorphism compared

to heterozygous cells.110 Therefore, both enalapril and

olmesartan seem to have more significant effects in the

presence of C allele for −786T/C polymorphism, suggest-

ing that hypertensive subjects carrying this allele may have

better responses to these drugs. More recently, the T allele

for the NOS3 SNP −665C/T (rs3918226) was associated

with greater responses to enalapril, whereas the A allele

for the NOS3 tagSNP rs3918188 and the CAG haplotype

involving NOS3 tagSNPs were associated with the oppo-

site effect.111 Additionally, different proteins have been

described to contribute to NOS3 activation promoted by

ACE inhibitors, including bradykinin receptor B2

(BDKRB2), protein kinase C (PKC) and vascular endothe-

lial growth factor (VEGF).105,112,113 Taken this into con-

sideration, we have recently shown that polymorphisms in

genes encoding BDKRB2, PKC and VEGF affect the

antihypertensive responses to the enalapril109,114,115

(Table 3). Taken together, these findings clearly suggest

that genetic variability in NOS3 gene or in genes that

contribute to NOS3 activation may affect the responses

to ACE inhibitors and ARB.

In addition to the candidate gene approach, GWAS

have also identified genetic predictor of response to

drugs targeting the renin-angiotensin system (Table 3).

This is the case of a study enrolling 372 Italian hyperten-

sive subjects treated with the ARB losartan and further
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Table 3 Summary Of Studies On The Pharmacogenomics Of Angiotensin-Converting Enzyme Inhibitors And Angiotensin II Receptor

Blockers

Gene Polymorphism Study Type Study Population Main Findings Reference

ACE Insertion/

Deletion

Candidate gene Malay population (n=144) DD genotype carriers have greater response to

enalapril or lisinopril than ID and II genotypes

81

ACE Insertion/

Deletion

Candidate gene Greek population (n=104) DD genotype carriers have greater response

to fosinopril

82

ACE Insertion/

Deletion

Candidate gene Caucasians (n=86) I allele carriers have greater response to

irbesartan, with reduction in diastolic blood

pressure

83

ACE Insertion/

deletion

Candidate gene Japanese population

(n=57)

DD or ID genotype carriers have greater the

plasma ACE activity and better response to

imidapril

84

ACE Insertion/

deletion

Candidate gene Malay population (n=142) I allele carriers have better response to

lisinopril or enalapril, with decreased systolic

and diastolic blood pressure

85

ACE Insertion/

deletion

Candidate gene Japanese population

(n=60)

DD genotype carriers have greater response

to enalapril

86

ACE Insertion/

deletion

Candidate gene Caucasians (n=102) There were no associations with ACE

inhibitors treatment outcome

87

ACE Insertion/

deletion

Candidate gene Caucasians (n=63) There was no significant association of the

polymorphisms with the blood pressure

response to atenolol, lisinopril and nifedipine

89

CYP11B2 rs179998 Candidate gene Caucasians (n=86) TT genotype carriers have better response

to irbesartan

98

CYP11B2 rs179998 Candidate gene Chinese population n=98 CC+CT genotype carriers have better

response to valsartan

99

NOS3 rs2070744 Candidate gene Brazilian population

(n=106)

C allele carriers have better response to

enalapril

109

NOS3 rs2070744 Candidate gene Human umbilical vein

endothelial cells were

isolated into primary

cultures from Caucasian

n=18

Homozygous endothelial cells for the allele

C have better response to olmesartan, with

increased NO formation

110

NOS3 rs3918188 Candidate gene Brazilian population (n=101) Carriers of AA genotypes of rs3918188 have

worse response to enalapril

111

NOS3 rs3918188 Candidate gene Brazilian population

(n=101)

Carriers of AGG haplotype have better

response to enalapril

111

BDKRB2 rs1799722 Candidate gene Brazilian population

(n=106)

Carriers of TT genotype is associated with

worse response to enalapril

109

BDKRB2/

PRKCA/NOS3

rs1799722 Candidate gene Brazilian population

(n=104)

Epistatic interaction where carriers of GG of

rs16960228 (PRKCA), TC or TT of

rs2070744 (NOS3) and CC of rs1799722

(BDKRB2) are associated with worse

response to enalapril

114

(Continued)
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replicated in two independent populations.116 In this

GWAS, the authors found the GG genotype for the SNP

rs10752271 in CAMK1D gene (encoding calcium/calmo-

dulin dependent protein kinase 1D, involved in aldosterone

synthesis) associated with better blood pressure responses

to losartan.116 Another GWAS identified multiple loci

influencing antihypertensive response to the ARB cande-

sartan in subjects from GERA study.117 The associations

were observed with the SNPs rs11020821 in FUT4 gene

(encoding fucosyltransferase 4), rs3758785 in GPR83

gene (encoding G protein-coupled receptor 83), and

rs11649420 in SCNN1G gene (encoding sodium channel,

non-voltage-gated 1, gamma subunit).117 Replication in

independent populations is required to make these findings

more robust. Additionally, a further GWAS involving

GENRES participants found the SNP rs3814995 in

NPHS1 gene (encoding nephrin, a transmembrane protein

that is a structural component of the slit diaphragm in the

kidney and an important contributor to blood pressure

regulation) associated with improved blood pressure

responses to losartan.41 Consistently, this association was

also replicated in GERA2 and Italian hypertensive patients

treated with the Angiotensin receptor blocker losartan

(SOPHIA) populations.

Calcium Channel Blockers
Calcium channel blockers (CCB) constitute a heteroge-

neous class of drugs commonly prescribed to treat a

wide array of cardiovascular conditions, including

hypertension.118 Although all agents in this class act by

blocking calcium channels, each subclass binds at a spe-

cific location. While the subclass of dihydropyridines,

such as nifedipine and amlodipine, has vascular selectivity,

verapamil has cardiac selectivity, and diltiazem can act

both in the heart and blood vessels.45 Given that blood

pressure responses to CCB are widely variable,119 studies

have investigated potential genetic polymorphisms that

could contribute to this variability. Consistent with CCB

mechanism of action, studies have shown that polymorph-

isms in genes encoding different ion channels, such as

voltage-gated calcium channel α1C (CACNA1C), α1D

(CACNA1D) and β2 (CACNB2), large-conductance cal-

cium and voltage-dependent potassium channel β1

(KCNMB1), and ERG potassium channel (KCNH2) affect

the antihypertensive responses to CCB or the risk of

adverse cardiovascular outcomes120–124 (Table 4).

In addition to explore polymorphisms in genes impli-

cated in CCB pharmacodynamics, studies have also tested

Table 3 (Continued).

Gene Polymorphism Study Type Study Population Main Findings Reference

PRKCA rs16960228 Candidate gene Brazilian population

(n=104)

GG genotype carriers have better response

to enalapril, with a decrease in mean and

diastolic blood pressure

114

VEGFA rs699947,

rs1570360 and

rs2010963

Candidate gene Brazilian population

(n=102)

Carriers of CA and AA genotypes of

rs699947 polymorphism and AGG haplotype

have better response to enalapril

115

CAMK1D rs10752271 GWAS Caucasians (n=372) GG genotype carriers have better blood

pressure responses to losartan

116

SCNN1G rs11649420 GWAS White Americans (n=198) GG genotype carriers have better response

to candesartan

116

GPR83 rs3758785 GWAS African Americans

(n=193)

GG genotype carriers have better response

to candesartan

117

FUT4 rs11020821 GWAS White Americans (n=198) The polymorphism rs11020821 is associated

with better blood pressure responses to

candesartan

117

Nphs1 rs3814995 GWAS Caucasians (n=203) The polymorphism rs3814995 (Glu117Lys)

is associated with better blood pressure

responses to losartan, with decreased

systolic blood pressure

41

Oliveira-Paula et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Pharmacogenomics and Personalized Medicine 2019:12350

http://www.dovepress.com
http://www.dovepress.com


the effects of variants in genes regulating CCB pharmaco-

kinetics on the antihypertensive responses to these drugs.

Calcium channel blockers are largely metabolized in the

liver via the cytochrome P450 3A5 (CYP3A5),125,126 and

therefore, studies have examined if polymorphisms in the

gene encoding this enzyme affect CCB responses.

Contrary to the functional CYP3A5*1 allele, the

CYP3A5*3 variant has a 6986A>G mutation in intron 3

that results in a splicing defect in CYP3A5 mRNA and a

nonfunctional protein.127 Another mutation (14690G>A)

in exon 7 of CYP3A5 gene (CYP3A5*6) also leads to a

splicing defect and deletion of exon 7, thereby resulting in

Table 4 Summary Of Studies On The Pharmacogenomics Of Calcium Channel Blockers

Gene Polymorphism Study Type Study Population Main Findings Reference

CACNB2 rs2357928 Candidate gene Caucasians (n=2284) Patients with GG genotype treated with verapamil

have a higher risk of adverse cardiovascular outcomes.

120

KCNMB1 Val110Leu Candidate gene Caucasians (n=5979) Leu110 allele is associated with a decreased risk of

adverse outcomes among patients with hypertension

and coronary artery disease

121

KCNMB1 Glu65Lys Candidate gene Caucasians (n=5979) Lys65 allele carriers achieve blood pressure control

earlier than Glu65Glu genotype

121

CACNA1D rs312481 Candidate gene Japanese population

(n=161)

GG genotype carriers have better response to

calcium channel blockers

122

CACNA1D rs3774426 Candidate gene Japanese population

(n=161)

CT + TT genotypes carriers have better response to

calcium channel blockers

117

CACNA1C rs52797 Candidate gene Japanese population

(n=161)

GA + AA genotypes carriers have better response to

calcium channel blockers

117

CACNA1C rs2239050 Candidate gene Caucasians (n=120) GG genotype carriers have better response to

amlodipine or felodipine

118

KCNH2 rs1137617 Candidate gene Chinese population

(n=370)

CT+TT genotypes carriers have better response to

azelnidipine or nitrendipine, with decreased of systolic

and diastolic blood pressure

124

CYP3A5 rs776746 Candidate gene Chinese population

(n=75)

CY3A5*3/3* genotype carriers have better response

to amlodipine

129

CYP3A4 rs2246709 Candidate gene African Americans

(n= 164)

C allele carriers have better response to amlodipine 131

CYP3A5 CYP3A5 * 3, *6 Candidate gene African Americans,

Caucasians and

Hispanics (n=722)

Blacks and Hispanic participants carrying the ancestral

allele (*1) show better response to verapamil

132

PICALM rs588076 GWAS Japanese population

(n=93)

C allele carriers of rs588076 have better response to

amlodipine

133

TANC2 rs2429427 GWAS Japanese population

(n=93)

G allele carriers have better response to amlodipine 133

NUMA1 rs10898815 GWAS Japanese population

(n=93)

C alleles carriers have better response to amlodipine 133

APCDD1 rs564991 GWAS Japanese population

(n=93)

C alleles carriers have better response to amlodipine 133

PLCD3 rs12946454 GWAS Caucasians (n=3863) TT genotype carriers have better response to

diltiazem treatment

134
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a protein truncation.127 Despite the role of CYP3A5 in

CCB metabolism, the effects of these CYP3A5 variants

on CCB responses are not clear. Indeed, Zhang et al and

Huang et al found the CYP3A5*3 allele associated with

better antihypertensive responses to the CCB amlodipine

in the Chinese population.128,129 However, no associations

between CYP3A5 variants and CCB effects were observed

in Koreans130 and African-Americans.131 These discrepan-

cies may be explained by the fact that amlodipine

responses can be influenced by ethnicity as a result of

genetic factors, environmental factors and their interaction.

Besides amlodipine, studies have also investigated the

influence of CYP3A5 polymorphisms on blood pressure

responses to the CCB verapamil. Langaee et al addressed

this question by using a haplotype approach, with any allele

containing either (*3) or (*6) designated as nonfunctional.132

The authors observed that the number of CYP3A5 functional

alleles was marginally associated with blood pressure

responses to verapamil in blacks and Hispanics, but not in

whites, with the effect being largely driven by worst

responses in the carriers of two functional alleles.

Along with the candidate gene approach, some GWAS

have shown SNPs associated with blood pressure

responses to CCB (Table 4). Using this strategy, Kamide

et al133 found that the alleles C for rs588076, G for

rs2429427, C for rs10898815 and C for rs564991 of the

PICALM, TANC2, NUMA1 and APCDD1 genes, respec-

tively, are associated with antihypertensive responses to

CCB in Japanese hypertensive patients. Consistently, these

findings were further replicated in an independent

Japanese population.133 Taking advantage of previous

GWAS findings, another study identified the SNP

rs12946454 of PLCD3 gene (which encodes phospholi-

pase C, delta 3) associated with blood pressure responses

to the CCB diltiazem.134 Interestingly, the authors found

an additive effect for increasing copies of T allele for this

SNP and more intense blood pressure reductions

(1.53 mmHg per allele for systolic blood pressure and

0.73 mmHg per allele for diastolic blood pressure) after

diltiazem treatment. However, replication of these findings

in independent populations is still pending.

Gene-Gene Interactions In The
Pharmacogenomics Of Hypertension
The two main approaches frequently used in pharmacoge-

nomic studies (candidate gene and GWAS) evaluate asso-

ciations between individual genes and the drug response.

However, these approaches may overlook the associations

that can only be detected when the combinations of multi-

ple genomic regions are examined.135,136 Indeed, a lot of

the genetic predisposition to drug response phenotypes

seems to be hidden in multigenic and multifactorial com-

plex traits.137 Therefore, novel approaches that consider

the interactions among polymorphisms from different

genes within drug response pathways should be considered

in pharmacogenomic studies.

One of these approaches involves the use of the multi-

factor dimensionality reduction, a machine learning

method that detects the high-order gene-gene interactions

with the use of relatively small sample sizes.138–140 Using

this method, Silva et al showed that interactions between

NOS3 and BDKRB2 polymorphisms affect the antihyper-

tensive responses to enalapril.109 Interactions between

these genes are expected, as both proteins encoded by

them are involved in the same signaling pathway modu-

lated by ACE inhibitors. Interestingly, it was found that,

although the CC genotype for the rs1799722 BDKRB2

polymorphism was not associated with the antihyperten-

sive response to enalapril at single-locus analysis, gene-

gene interaction analysis showed that the CC genotype for

this polymorphism combined with the TT genotype for

rs2070744 NOS3 polymorphism was more frequent in

poor responders to enalapril, while the combination of

BDKRB2 CC genotype with NOS3 TC genotype was

more frequent among good responders.109 These findings

are underestimated when single BDKRB2 genotypes alone

are analyzed, thus highlighting the relevance of gene-gene

interaction analysis.

Following up on this study, we have recently investi-

gated the involvement of PRKCA gene (encoding PKCα) in
the interactions described above.114 Interestingly, we

described that such combinations between BDKRB2 and

NOS3 genes found to be associated with antihypertensive

responses to enalapril were significant only when combined

with the GG genotype for the rs16960228 PRKCA

polymorphism.114 These gene-gene interactions are in line

with the signaling cascade that, at least in part, contributes

to the antihypertensive effects of ACE inhibitors.105 The

inhibition of ACE leads to enhanced bradykinin levels,

which activate bradykinin receptors on endothelial cells.105

The activation of these receptors stimulates PKCα, which
then activates NOS3, resulting in vasodilation due to

increased NO production.113,141,142 The evaluation of circu-

lating nitrite levels (a marker of endogenous NO formation)

may be a possible approach to clarify the cellular
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mechanisms underlying the effects of BDKRB2, PRKCA

and NOS3 interactions on enalapril responses. Indeed,

NOS3 polymorphisms were shown to affect plasma and

blood nitrite concentrations.106,107 However, additional stu-

dies are required to test the effects of gene interactions

within this pathway on circulating nitrite levels in patients

treated with ACE inhibitors. Taken together, these findings

suggest that gene-gene interaction analysis is a promising

approach that should be considered in the pharmacoge-

nomics of hypertension.

Concluding Remarks And Future
Directions
In this article, we have reviewed the recent pharmacoge-

nomic literature for the main classes of antihypertensive

drugs currently in use (i.e., diuretics, β-blockers, ACE

inhibitors, ARB, and CCB). While a number of studies

support an important contribution of genetic polymorph-

isms on blood pressure responses to antihypertensive ther-

apy, some studies have failed to detect significant effects

or replicate previous findings. These inconsistencies may

be related to interethnic differences in the distributions of

polymorphisms tested/identified, or to epigenomic altera-

tions that could mask the contribution of DNA sequence

variants.143 Moreover, the inconsistencies may be attribu-

ted to heterogeneous phenotypes. In this case, variability

in the etiology and mechanisms involved may explain the

differences in observed phenotype, thereby reducing the

possibility of successfully detecting associations between

genetic polymorphisms and antihypertensive responses.

Therefore, it is critical that subjects are carefully pheno-

typed and maybe surrogate markers of disease should also

be examined. Another issue that can lead to inconsistent

results is the effect of the previous treatments. The persist-

ing antihypertensive effect after stopping therapy may

preclude pharmacogenomic studies enrolling previously

treated patients without an adequate washout period from

getting reliable findings. To avoid this issue, studies should

be preferentially performed in recently diagnosed patients

that have never been treated before.

The inconsistencies and limitations observed in studies

of pharmacogenomics of hypertension may be also depen-

dent on the type of strategy applied. In fact, vast majority

of studies discussed here applied two different approaches:

gene candidate and GWAS. During the past decade, the

shift from gene candidate approach to GWAS has

been noteworthy. However, the large and inevitably

heterogeneous sample size required for GWAS may pre-

clude these studies from disentangling the complex genet-

ics basis of hypertension, which consists of dynamic

interactions among genetic/environmental aspects that

may change with aging. This could help to explain the

fact that some significant results found in candidate-gene

studies, usually performed in more homogeneous cohorts,

are not necessarily found in GWAS. On the other hand, the

candidate gene approach prevents the identification of

novel candidate loci or genes that could impact hyperten-

sion therapy. Taking this into consideration, Manunta et al

propose to integrate the candidate gene with GWAS

approach, in order to minimize their respective

limitations.13 A possible strategy to fully exploit the phar-

macogenetic relevance of a given polymorphism and

therefore increase the chances of defining clinically sig-

nificant benefits would be testing the significant results

found in GWAS in more homogeneous cohorts, in parallel

with mechanistic studies to validate the biological signifi-

cance of the pharmacogenetic findings.

Other than improving approaches that focus on single-

locus analysis, another promising strategy to overcome the

limitations of hypertension pharmacogenomics is the inves-

tigation of interactions among polymorphisms from differ-

ent genes within drug response pathways.14 Indeed, the

polygenic nature of hypertension indicates that single loci

may not be the best clinical target for all individuals.144 The

studies discussed in this article highlight the relevance of

evaluating the interactions among multiple loci when study-

ing complex traits, which is the case of antihypertensive

response phenotypes. Given that these ideas are relatively

new in the pharmacogenomics of hypertension, further stu-

dies in different populations are required to replicate the

findings reported by the studies presented here. Another

strategy that also takes into account the polygenic nature

of hypertension is the use of genetic risk score (GRS). This

approach has recently been developed to evaluate the

impact of multiple blood pressure-associated variants on

blood pressure levels, risk of hypertension, and other cardi-

ovascular diseases.145,146 Interestingly, GRS analysis

showed that all blood pressure-elevating alleles combined

could increase systolic blood pressure by 10 mm Hg and

increase the risk of cardiovascular events.145,146 Therefore,

this seems to be a promising strategy to be used in future

studies on hypertension pharmacogenomics.

Despite the issues described above, it is reasonable to

suggest that data from several genes shown in the studies

discussed in this review provide valuable genetic
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information for hypertension pharmacogenomics research.

In order to provide a realistic estimate on how much varia-

tion of responses to antihypertensive therapy may be

explained by genetic markers, a systematic review and

meta-analysis involving the recent studies on hypertension

pharmacogenomics would be required. This would help to

translate the research findings into clinical practice to

improve hypertension therapy, which remains a challenge.

In addition, given that a significant number of hypertensive

patients require more than one drug to achieve the thera-

peutic goals, increasing the number of studies focusing on

drug combinations, although not an easy task, would also

help to approximate hypertension pharmacogenomics to the

clinical practice. In fact, while a lot of progress was

achieved in the clinical application of pharmacogenomics

in oncology and anticoagulation therapy, the same has not

been seen in hypertension therapy.147 In this regard, anti-

hypertensive agents do not have serious or lethal side

effects such as those of anticancer drugs or warfarin. In

addition, cancer is a condition where drug efficacy may

have immediate influence on short-term survival. All these

reasons may explain the lack of motivation in personalizing

medicine for hypertension therapy, resulting in patients

often taking an antihypertensive drug that is less effective

than required. To start changing this paradigm, several

academic medical centers are already piloting programs to

implement hypertension pharmacogenomics in clinical

practice.148,149

Indeed, an efficient pharmacogenomic strategy to get

hypertensive patients on the most effective and well-toler-

ated drug regimen would be extremely valuable. This

would result in less patient visits to readjust the treatment,

fewer drugs per patient, and a more cost-effective

approach than the trial and error in current practice. An

adequate blood pressure control would prevent cardiovas-

cular and renal events and improve the quality of life and

longevity of hypertensive patients.
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