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Hydrologic resilience and Amazon productivity
Anders Ahlström 1,2, Josep G. Canadell 3, Guy Schurgers 4, Minchao Wu2, Joseph A. Berry5,

Kaiyu Guan6 & Robert B. Jackson1,7

The Amazon rainforest is disproportionately important for global carbon storage and

biodiversity. The system couples the atmosphere and land, with moist forest that depends on

convection to sustain gross primary productivity and growth. Earth system models that

estimate future climate and vegetation show little agreement in Amazon simulations. Here

we show that biases in internally generated climate, primarily precipitation, explain most of

the uncertainty in Earth system model results; models, empirical data and theory converge

when precipitation biases are accounted for. Gross primary productivity, above-ground

biomass and tree cover align on a hydrological relationship with a breakpoint at ~2000mm

annual precipitation, where the system transitions between water and radiation limitation of

evapotranspiration. The breakpoint appears to be fairly stable in the future, suggesting

resilience of the Amazon to climate change. Changes in precipitation and land use are

therefore more likely to govern biomass and vegetation structure in Amazonia.
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The future evolution of the global land sink of carbon
represents one of the larger uncertainties for climate
change projections. Altogether, tropical rainforests

sequester more carbon than any other biome or land cover class
globally1, 2. The Amazon basin alone accounts for ~40% of both
the global tropical forest land area and above-ground biomass3.
The resilience of the system to climate change depends on the
mechanisms governing the forest–savanna transition. Generally,
the transition follows a moisture gradient controlled by
precipitation (P) and interacting with fire, but the transition can
be abrupt between alternate stable states4, 5. Understanding the
drivers and processes that govern the forest–savanna transition
offers insights into the future resilience of the Amazon and other
tropical forests6–9. It is not clear whether the Earth system models
(ESMs) that are used to project climate and vegetation structure
include the necessary processes to adequately explore the future
of Amazonia (here defined as the Amazon basin and surrounding
semi-arid vegetation).

Amazonia tightly couples the atmosphere and the land
surface10. Global ESMs designed to account for feedbacks
between vegetation and the atmosphere generally perform rela-
tively poorly in the tropics when evaluated against carbon-cycle
observation11, 12. This uncertainty originates from several issues,
mainly terrestrial ecosystem sub-models, biases in climate
generated internally in the ESMs, or both. The effect of climate
biases on uncoupled carbon-cycle simulations has been shown to
have a large impact on Amazonia13. Interpreting future model
scenarios depends, in part, on understanding the basis of
uncertainties and current biases.

Here, we combine empirical data and results from ESMs to
evaluate large-scale ecosystem functioning in Amazonia and
potential changes in the future. We first investigated the climate
bias of the ESMs and their effect on simulated water and carbon
fluxes, and vegetation structure. We find that most differences
among models are related to their internally simulated climate,
particularly P. Using this information, we designed an analysis to
account for climate biases by transforming the spatial informa-
tion from the ESMs to P-based relationships that represent the
hydrologic and ecosystem dependency on P.

We focused on the forest–savanna transition using outputs
from ESMs and independent empirical data. We calculated
dependencies on P in Amazonia using information on evapo-
transpiration (ET), gross primary productivity (GPP), above-

ground biomass (AGB) and tree cover by aggregating these
indicators at intervals of P over the Amazon basin and sur-
rounding semi-arid regions. The resulting functional relation-
ships are especially valuable when analysing empirical data and
ESM outputs because they illustrate the response to P and are
therefore less sensitive to biases in the ESMs. The functional
relationships that we found in empirical data share three main
features: an initial steady increase of ET, GPP, AGB and tree
cover with increasing P, a breakpoint at ~2000 mm annual P,
after which the indicators do not increase with P, and a significant
deviation from the steady increase trend between 1200 and 2000
mm annual P, showing a large and abrupt change in ET, GPP,
AGB and tree cover at the forest–savanna transition. We next
explain the main differences between the empirical and simulated
relationships, showing that models and data agree fairly well on
the functioning and drivers of observed physical and ecological
changes along the forest–savanna transition. The underlying
ecohydrological explanation for the relationship to P that is
shared between vegetation structure and water, and carbon fluxes
offers insights into the future resilience of Amazonia and, more
broadly, of tropical forests, and what factors may cause the moist
forest to shift to a lower biomass state.

Results
Climate model bias. Combining internally generated climate and
GPP from an ensemble of nine CMIP514 ESMs over Amazonia
reveal large climate biases (Fig. 1). On average, the models show a
negative P bias of −412 mm yr−1 (Fig. 1a). This dry-bias coincides
with low cloudiness and a general overestimation of shortwave
radiation affecting GPP (Fig. 1b, c). Altogether, in a linear
regression, the three main climatic drivers P, shortwave radiation
and temperature explain 93% (R2= 0.93) of the differences in
simulated GPP. The overall dry-bias also leads to a general
underestimation of the extent of Amazon rainforest and the
location of the forest–savanna transition (Fig. 2a–k) as well as
biased predictions of both total AGB (Fig. 2l) and the biomass
that can be lost or gained under future climate change, com-
promising the initial conditions of future simulations of
Amazonia.

The forest–savanna transition. To control for climate biases in
mean P (as the climate variable hypothesised to lead to the largest
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Fig. 1 Earth system model climate drivers and gross primary productivity averaged over the Amazon basin for 1981–2005. a Mean Amazon basin Earth
system model (ESM) gross primary productivity (GPP) dependency on ESM mean annual precipitation. Black represents observation-based reference
Amazon basin mean annual precipitation56, 57 (P), with ESM biases on upper X-axis. b ESM GPP dependency on ESM mean annual downward shortwave
radiation (SwR) and bias relative to shortwave radiation from CRUNCEP58. c ESM GPP dependency on ESM mean annual temperature (T) and bias relative
to temperature from CRUNCEP. In a multiple regression, the three climatic drivers together explain 93% (R2= 0.93) of the differences in simulated GPP
between the ESMs
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biases in ecosystem properties), we transformed spatial infor-
mation from empirical data sources and ESMs into P-based
relationships over the Amazon basin and surrounding semi-arid
regions by aggregating ET, GPP and AGB at P intervals. In this
way, we can compare the functional responses of the simulated
systems to P, uninfluenced by biases in mean Amazon basin P. In
addition to the nine ESMs introduced above, we included ET and
GPP empirically upscaled from global flux tower measure-
ments15, two independent diagnostic estimates of ET16–18, a
remote sensing based estimate of tree cover19 and a satellite-
derived vegetation optical depth (VOD)-based estimate of AGB20

over the Amazon basin and surrounding semi-arid regions
(Fig. 2; Supplementary Fig. 1).

ET from empirical data sets and ET from the ESM ensemble
show a similar response to P; ET initially increases with P until
~2000mm yr−1 after which ET is fairly stable and does not increase
with additional P (Fig. 3a). The general shape and breakpoint of P
at ~2000mm yr−1 are also found in the response of GPP and AGB
to P (Fig. 3b, c), making it the dominant feature determining
hydrology, ecosystem productivity and vegetation state. Previous
studies have identified a similar breakpoint for the emergence of
tropical forests and for tree cover in general, also at ~2000mm
annual P4, 5. The overall shape of the curve is reminiscent of a well-
known hydrological relationship, describing the two regimes of ET

control: a water-limited regime and an energy-limited (radiation)
regime. A separate empirical analysis21 of the current hydrologic
cycle in tropical forests globally comes to a very similar breakpoint
of 2000mm yr−1 (range: 1850–2150mm yr−1) for the transition
from water-limited to radiation-limited (water-saturated) ET
and vegetation productivity. The average breakpoint determined
here using a trend break analysis of the empirical data sets
dependency on P is 2023mm yr−1 with a standard deviation of 128
mm yr−1 (dashed red lines in Fig. 3, breakpoint tree cover: 2075
mm yr−1, Supplementary Fig. 2).

The breakpoint we determined occurs where annual P is
sufficient to recharge water stores to sustain dry-season
transpiration and productivity. The breakpoint is therefore
associated with the annual balance of P and potential ET (PET)
—the land-surface supply and the atmospheric demand for water
—but it is also related to the intensity and seasonality of P and
water gains or losses through lateral flow (run on/off). Above the
breakpoint, where water is readily available, GPP and vegetation
growth are increasingly limited by sunlight as clouds reduce
incoming shortwave radiation22. Empirical data and the ESM
ensemble mean generally agree on the ET, GPP and AGB
response to P, but the empirical data show a sharper decrease
when transitioning from the radiation-limited regime to lower P
levels (Fig. 3). This sharper decline for the empirical data suggests
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the presence of a tipping point, where the moist highly productive
and carbon-dense forest rapidly transitions to a lower biomass
state. The sharp decline in AGB resembles the previously
observed bimodal distribution at the forest–savanna transition5,
which has been suggested to represent alternative stable states4.
Understanding the underlying cause for this missing tipping
point in the ESMs is pivotal for characterizing the system’s
resilience to a potential future drying of the Amazon.

The missing tipping point. The observed sharp transition to a
lower biomass state may be driven by fires5. Vegetation processes
such as mortality23 and fires24 are poorly captured in most
ESMs25. However, land use and forest clearing result in similar
decreases in ET, GPP and AGB; it is unclear to what extent they
contribute to the model-data discrepancies identified here. To
investigate this issue, we combined ET and the vegetation vari-
ables with P and information on land use26.

Above ground biomass in the Amazon basin and surrounding
semi-arid ecosystems shows a bimodal distribution, which causes
the sharp transition (Fig. 4a). The frequency field that combines
P, AGB and land use indicates two dominant states: a high
biomass and low land use state, with P above the ~2000 mm
breakpoint representing relatively pristine tropical forest, and a
lower biomass, high land use state centred at P ~ 1500 mm,
suggesting that land use may drive the apparent tipping point. To
evaluate the influence of land use on the functional relationship
between P and vegetation properties, we increasingly excluded
grid cells based on their fraction of land use and recalculated the
mean relationship. We found that the sharp decline of AGB with
P below the breakpoint decreases when grid cells with high
proportions of land use are removed. Furthermore, the sharp
decline almost disappears when only grid cells with <20% of their
area under land use are included.

We next evaluated the role of fire using a satellite-based
estimate of burned area fraction27, 28 (Fig. 4b). Evaluating all grid
cells, the burned area fraction peaks in the upper half of the
water-limited regime, between 1250 and 2000 mm yr−1, coincid-
ing with the P interval where models and data diverge (Fig. 3).
Removing locations under land use from the analysis shifts the

peak of the distribution towards lower P levels, suggesting that
land use decreases fires in drier regions and increases fires at the
savanna-forest boundary. This shift due to land use would be
consistent with active suppression of fires in dry regions and the
use of fires to clear forest at the land use expansion frontier.

Similar effects of land use were found on ET, GPP and tree
cover19 (Fig. 4c–e). Although ET and GPP change less in heavily
managed locations than AGB and tree cover do, all empirical data
sets suggest that the mean response to P and the transition
between ecosystem states is smooth when removing land use
effects. The shift from a sharp decline to a smooth transition
between ecosystem states when accounting for land use suggests
that there is little risk for a general ecosystem state tipping point.
Instead, the sharp transition is mainly caused by human
transformation of highly productive ecosystems close to the
breakpoint as well as widespread land use in systems with ~1500
mm annual P, which decrease the productivity and biomass in the
semi-arid Cerrado. Our analysis does not exclude the existence of
reported fire-driven bi-modality5, which leads to separate and
stable vegetation states4. Such bi-modality, with biomass at two
distinct states for similar P does not necessarily cause a tipping
point in our analysis of functional relationships, which represent
the average biomass in a given P interval. Overall, however, the
deviation from the hydrological constraint observed here appears,
currently, to be related primarily to land use.

The ESM simulations presented here were forced with the
same land use information26 used in the empirical analysis of
land use effects presented above. ESMs therefore accounted for
the land use and land use change by prescribing land clearing,
pastures and croplands, but their ensemble mean P dependency
does not show the decrease that is caused by land use (Fig. 3). The
reason that ESMs do not correctly capture the effects of land use
is their considerable biases in the spatial distribution of P (Fig. 5).
These spatial P biases lead to a biased relationship between P and
land use (Supplementary Figs. 4 and 5), which results in the
incorrect replacement of carbon-dense moist forest with managed
agricultural or grazing lands in most ESMs. All ESMs except for
HadGEM2-ES inaccurately predict P at levels associated with
semi-arid savannas over large parts of central Amazon (Fig. 5).
HadGEM2-ES in turn, as the sole ESM that predicts realistic P, is
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the only model to accurately capture the effect of land use
(Supplementary Fig. 3). This general insufficiency to provide
climate that allows moist tropical forest differ between the ESMs.
Two ESMs (CanESM2 and GFDL-ESM2M) incorrectly predicted
semi-arid climate over the entire Amazon basin. Another two
ESMs (CCSM4 and CESM-BGC) predict a reasonable areal
coverage of water-saturated climate associated with moist forest
but simulated incorrect spatial distribution, which extended into
the agricultural zone and leads to incorrect clearing of forest.
Therefore, the ESMs generally predict tropical forest extent and
Amazonian biomass that are too low compared to observations
(Fig. 2). Furthermore, due to their spatial P biases, most ESMs do
not accurately capture the influence of land use in their functional
P relationships, which explains the disagreement between the
ESMs and empirical data.

Future changes. Future climate change is predicted to increase
PET29 and intensify the seasonality of P30, both of which could
shift the hydrological breakpoint to wetter levels of P. However,
the ESMs considered here do not show a marked shift in their ET
dependency on P even under RCP 8.5 (Fig. 6a), suggesting that
the potential effect of climate change on the breakpoint may be
relatively small. Increased CO2 concentrations are predicted to
increase water use efficiency (WUE), shifting GPP upwards, but
the location of the breakpoint between the regimes is not directly
affected by WUE in these simulations (Fig. 6b). The ESM
ensemble predicts an increase in ecosystem water use efficiency
(eWUE; GPP/ET) of ~30% between 1981–2005 and 2081–2100
(Supplementary Fig. 6). This increase in eWUE originates

primarily from an increase in plant WUE (GPP/transpiration),
which is induced by CO2 fertilisation and/or effects on canopy
conductance (Supplementary Figs. 6–8).

The WUE increase indicates relatively large GPP resilience to
drying by maintaining current GPP even under large reductions
in P (Fig. 6b). The effect of WUE on GPP is relatively constant
over the entire P range, which is illustrated by the good
agreement between the simulated future GPP response in ESMs
to P and the concurrent empirical GPP response to P when
scaling it with the ESMs WUE increase (Fig. 6b). Although the
ESMs predict a future increase in GPP for all P levels, predicted
increases in AGB are isolated to a narrow P range above the
breakpoint (Fig. 6c). In contrast to GPP, AGB does not increase
in the water-limited regime. This difference in WUE-induced
increases decouples growth from productivity changes,
echoing empirical studies reporting increased WUE but not
growth31, 32.

Discussion
We have shown that ESMs can accurately predict Amazon forest
structure and functioning after their biases in internally generated
climate are corrected. The ecohydrologic constraint is found in all
data sets and in the global fully coupled ESMs. This important
ecohydrological relationship and its breakpoint provide insights
into how Amazonia may respond to climate change. Moreover,
biases in internally generated climate explain most of the differ-
ences between ESM predictions of water and carbon fluxes, and
ecosystem state and structure. The general dry-bias of ESMs
compared with observations implies that most ESMs predict too
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much of the Amazon to be water-limited, explaining previously
reported uncertainties and lack of agreement with empirical
data11, 12. Recent studies highlights ESM difficulties in simulating
atmospheric convergence, convection33 and low-level cloud
cover34, which likely explain at least part of the dry-bias shown
here. The relatively consistent response of ET to P across the
ensemble suggests that most ESMs would provide reasonable
land-surface feedbacks if provided with unbiased climate.
Although we have not identified the underlying cause of biases in
the ESM climate predictions, our findings suggest that under-
estimated annual ET from the land-surface is not the dominant
cause of the climate biases.

The empirical data sets used here have their own uncertainties.
Uncertainties in individual data sets are difficult to assess because
they originate in part from sparse observations (e.g. flux towers35

or weather stations36, 37) and from clouds interfering with
satellite observations in the wet season38. Our approach to
address the uncertainty includes using multiple independent
empirical data sets that represent both ecosystem fluxes and
states. All data sets show a similar breakpoint between water and
radiation limitation (Supplementary Fig. 2). This breakpoint,
apparent from the functional relationships between different
ecosystem states and fluxes, and precipitation is also similar to the
breakpoint found previously using interannual variations in
ecosystem productivity and a gravity informed water balance
model21. Altogether, the coherence in the existence and location
of the breakpoint across ET, GPP, AGB and tree cover and
previous work lends support to the existence of a breakpoint with
a value close to 2000 mm annual P.

Our assessment of future changes in Amazonian ecosystems is
described as a response to P and does not assess the mean
ecosystem response to changing climate. We thereby control for the
large uncertainty between simulated changes in climate, especially P
(Supplementary Fig. 9), which is a large cause for reported divergent
future predictions of Amazonian ecosystem fluxes and structure39, 40.
However, the ability of ESMs to accurately simulate Amazon
responses to future climate may be compromised by relatively poor
representation of drought mortality and disturbances25, 41, leading to
large uncertainties in vegetation turnover42 and resulting biomass.
Uncertainties in the models’ ability to capture the occurrence and the
ecosystem response to potentially more extreme weather and hotter
droughts may also affect the future responses to P presented here.
This potential impact of increased drought mortality remains to be
evaluated and requires a new generation of ESMs with land models
that include detailed representation of vegetation dynamics,
disturbances and mortality, with accurate predictions of future
climate and weather extremes.

Future potential expansion of the water-limited regime under
climate change poses risks for the carbon storage and biodiversity
of the moist regions of Amazonia. The state of art ESMs used here
account for feedbacks between the atmosphere and land surface
under climate change and do not simulate any marked changes to
the value of the ecohydrological breakpoint, suggesting resilience
of the Amazon forest to climate change. However, a potential
upward shift of the hydrological breakpoint would have a similar
effect as a decrease in mean P, increasing the extent of the water-
limited regime. Given the importance of the breakpoint and the
relatively crude resolution of the global ESMs presented here, we
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suggest that future more detailed studies need to be performed to
confirm the stability of the breakpoint.

Besides a shift in the breakpoint, changes in either the mean or
variability of P could shift the Amazon towards the water-limited
regime. These changes could occur in three ways. First, a decrease
in mean annual P could push the entire Amazon or sub-regions
towards the water-limited regime. However, evaluating simulated
Amazon P change from a larger ensemble of 21 ESMs and general
circulation models (Supplementary Table 1) under RCP
8.5 shows no agreement for such a transition (Supplementary
Fig. 9). About half of the models (12/21) predict a drying, but
there is no apparent relationship between their current perfor-
mance and their predictions of future P, making an assessment of
the likelihood of drying difficult. Second, even with no change in
long-term mean P, increased variability or stronger extremes43

imply larger or more common departures into the water-limit
regime. In addition, because the system responds more strongly
to a decrease in P than to an increase, the response to increased
interannual variations is asymmetrical and would likely decrease
mean GPP44. Third, a recent statistical analysis links the current
performance of climate models to a future strengthening of the
dry season30. Years of large fires have been found to co-occur
with drought and water-limited conditions45, 46, and a longer dry
season increases the time spent in the water-limited regime where
fires can occur. The impact of a more prominent water-limited
regime due to one or more of these factors could be amplified by
WUE-induced increases in GPP, which would provide more
flammable material for fires and further contribute to a shift to
the lower biomass state.

Our results reconcile models and data, and highlight the domi-
nant role of the eco-hydrologic constraint in Amazonia. We found
that climate biases, especially in precipitation, limit the current
ability of individual models to represent the Amazon and likely
other tropical forests accurately. Interactions between precipitation
biases and land use are another cause of discrepancies among
models and between models and empirical data sets. Although
future CO2 effects on WUE will likely increase GPP, increased
climate variability can reduce carbon accumulation in Amazonia.
The hydrological regime and its relationship to the breakpoint
identified here may ultimately govern Amazon biomass and vege-
tation structure of native ecosystems.

Methods
Earth system models and their results. Outputs from nine ESMs contributing to
the Coupled Model Intercomparison Project phase 5 (CMIP5)14 were analysed
(Supplementary Table 1). We used CO2 concentration-forced historical realisations
and future projections following Representative Concentration Pathway 8.5
(RCP 8.5) CO2 concentration47 and land use change scenarios26. All ESM outputs
were interpolated to a common 0.5 × 0.5° grid using nearest neighbour interpola-
tion. In addition to the ESMs used in the full analysis, precipitation outputs from
an additional 12 climate models were used to investigate future precipitation
changes (Supplementary Table 1). The majority of these additional 12 models did
not include representations of dynamic vegetation and carbon cycle. For both GPP
and AGB, we analysed the time period 1982 through 2005 for the historical period
and 2081 through 2100 for the future period.

To facilitate comparison of above ground carbon with the empirical data set, we
removed the reported root carbon from total vegetation carbon. For two ESMs
(GFDL-ESM2M and MPI-ESM-LR), root carbon was not available. For these two
ESMs, we estimated root carbon based on the remaining models’ root-to-total
vegetation fraction (0.1566). This fraction was calculated over the entire region of
analysis.

Empirical data products. Empirical estimates of GPP and one of the ET products
originate from upscaled FLUXNET eddy-covariance tower measurements15. The
overall upscaling procedure involves three main steps: (I) processing and quality
control of the FLUXNET data48, 49 and aggregating the half-hourly flux data to
monthly means. (II) Training a machine-learning-based regression algorithm
(Model Tree Ensembles, MTEs50) for tower observations using site-level
explanatory variables and satellite observed fraction of absorbed photosynthetic
active radiation (fAPAR). Explanatory variables (n= 29) include fAPAR from the
SeaWiFS sensor, climate variables, vegetation type from the IGBP classification and
information on photosynthetic pathway. (III) Applying the established MTEs for
global upscaling, using gridded data sets of the same explanatory variables.
Individual model trees (n= 25) were forced for each biosphere-atmosphere flux
using gridded monthly inputs from 1982 through 2011. The median over the
25 estimates for each pixel and month is used as the best estimate of a biosphere-
atmosphere flux for further analysis.

In addition to the ET from upscaled flux tower measurements, we used MODIS
ET16 and GLEAM v3.0a17, 18 as additional, independent estimates of ET. MODIS
ET combines a modified Penman–Monteith equation51 with satellite-based remote
sensing data and climate information at 5 min spatial resolution (1/12°). GLEAM
v3.0a combines satellite-based remote sensing with the Priestley–Taylor equation52,
the Gash53 analytical interception model and climate data at 15 min spatial
resolution (1/4°).

The AGB data set3 originates from satellite-based vegetation optical depth
data20. Information on VOD was linked to AGB by an empirical relationship
between VOD and tropical AGB54. Using the empirical relationship, VOD was
translated to AGB globally. We used the full available period, 1993 through 2012,
using precipitation representing the same years in the comparison between
empirical AGB and P. The tree cover data set origins from Landsat satellite remote
sensing data with 30 m spatial resolution19. Trees were defined as trees that are
taller than 5 m.
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We used burned area from the Global Fire Emissions Database version 4
(GFED4s), which is based on an updated version of ref. 27 with burned area from
ref. 28 and small fire burned area from ref. 55, summing the reported monthly
burned area fraction to annual amounts. The annual time series were then averaged
over the time period 1997 through 2014 and compared against precipitation
averaged over the same time period.

Data harmonisation and geographical boundaries. All data were resampled to a
common grid with a resolution of 0.5° × 0.5° in longitude and latitude. The analysis
was performed over the Amazon hydrological basin as well as over the surrounding
semi-arid regions as defined by ref. 1 between latitudes 16° N and 20° S over South
America (Supplementary Fig. 1).

Data availability. The data that support the findings of this study are all publicly
available from their sources. Processed data, products and code produced in this
study are available from the corresponding author upon reasonable request.
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