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ABSTRACT: Pd-catalyzed C−N couplings are commonplace in
academia and industry. Despite their significance, finding suitable
reaction conditions leading to a high yield, for instance, remains a
challenging and time-consuming task which usually requires
screening over many sets of conditions. To help select promising
reaction conditions in the vast space of reagent combinations,
machine learning is an emerging technique with a lot of promise. In
this work, we assess whether the reaction yield of C−N couplings
can be predicted from databases of chemical reactions. We test the generalizability of models both on challenging data splits and on a
dedicated experimental test set. We find that, provided the chemical space represented by the training set is not left, the models
perform well. However, the applicability domain is quickly left even for simple reactions of the same type, as, for instance, present in
our plate test set. The results show that yield prediction for new reactions is possible from the algorithmic side but in practice is
hindered by the available data. Most importantly, more data that cover the diversity in reagents are needed for a general-purpose
prediction of reaction yields. Our findings also expose a challenge to this field in that it appears to be extremely deceiving to judge
models based on literature data with test sets which are split off the same literature data, even when challenging splits are considered.

1. INTRODUCTION
Chemistry is in the midst of a data-driven shift.1−3 Many areas
of the broader field experience a surge in development aimed
at utilizing data, from machine learning (ML) models replacing
aspects of computational chemistry and property calculations4

to retrosynthetic planning5,6 to optimizing reaction con-
ditions.7,8 The latter example is a problem particularly suitable
for these new approaches due to the quickly exploding space of
possibilities. The optimization of reaction conditions is a
frequently encountered problem in academia and industry,9

often posing a bottleneck to efficient, fast, and productive
retrosynthesis. Screening over many sets of reaction conditions
is still required to find, for example, acceptable yields. With all
the knowledge stored in reaction databases populated over the
last decades, ML is a promising route to improve the state of
the art for reaction condition optimizations.

Several concepts can be designed to harness data-driven
technology for the purpose of optimizing reaction conditions.
Work by Gao et al.,10 Genheden et al.,11 as well as Li and
Eastgate12 used neural networks that predict the success
probability for a set of substances in each relevant reagent
class. In these approaches, often the accuracy of the top-N
most probable predictions is evaluated, which rates if the
proposed set of N conditions contains the one that achieved
the highest yield. This is a rigorous approach when the
outcome for all possible reagent combinations that the model
could predict is known. However, the metric can also be
computed if the predictions contain combinations for which
the reaction outcome is not measured, assuming the best

conditions are the best known conditions. This assumption is
dangerous and could distort our ability to judge whether the
model can truly rank reaction conditions. In particular, for a
study like this one in which we will use literature databases
where the outcome of most conceivable combinations is not
known, this approach is unsuitable.

Recently, we have also seen great progress in studies using
Bayesian optimization as a foundation,13−15 where a new
model is iteratively built for each new reactant pair based on
the performed measurements. This ansatz is very suited to the
optimization problem in the lab, and promising results have
been reported. However, it is unclear whether the knowledge
of previously performed optimizations can be included to make
use of all available data.

Another route to help select promising reaction conditions is
simply regression of the reaction yield or other desired
properties. Since the model evaluation is generally cheap
compared to training, for most use-cases it should be feasible
to simply iterate over all combinations of reagents and rank
them. This could be followed by grouping and sorting to
accommodate experimental design, which is often limited in
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terms of which combinations can be effectively screened
together. For a model to be useful, it is only necessary to
achieve the correct ranking of conditions and not the exact
numerical target. This approach by default can only be
evaluated if all the considered conditions have actually been
measured, which is more restrictive but then leads to a rigorous
evaluation of the models’ capacity to optimize. Another
advantage of the regression approach is that, provided the
physical descriptors have been used to characterize reagents,
new reagents can be evaluated without having to redesign/
retrain the model since the output is the target and not a set of
pre-fixed categorical probabilities.

The regression approach has been tested on a variety of data
sets, predominantly focused on reactions from high-throughput
experimentation (HTE), typically on the order of a few
thousand data points. Ahnemann et al.7 created a set of around
4000 HTE reactions spanning a C−N coupling space. Data
splits with their random forest model could achieve an
excellent performance of R2 of around 0.92. When additives
were left out for a test set, the performance dropped to R2 of
around 0.83, which suggests reasonable generalizability, albeit
the other reagents remained the same between training and
test sets. Dong et al.16 also performed a work on this C−N
data set, suggesting that good model performances could also
be achieved with substantially smaller training data set size.
Probst et al.17 introduced a novel reaction fingerprint and
tested it on these data, which achieved a similar or better
performance. Overall, for this dataset, both the training
performance and extrapolation performance to unseen
additives have been tested with a variety of different methods,
all suggesting that ML can push the boundaries of HTE yield
prediction problems. Similar HTE data sets have been
investigated, for example, by Nielsen et al.,18 who could
show good predictive performance for a deoxyfluorination data
set treated with the modeling approach of ref 7. With a set of
novel steric descriptors, Zahrt et al.19 were able to demonstrate
the prediction of enantioselectivity with promising perform-
ance on several test cases, such as unseen substrates and
unseen catalysts. Sandfort et al.20 tested their model variant
utilizing concatenated fingerprints on this selectivity as well as
the yield prediction problem of Ahnemann et al.,7 suggesting
their flexible model could easily be used for different chemical
prediction problems.

Less attention has been dedicated to creating a general-
purpose model aimed at covering larger chemical spaces than
generated in a typical HTE data set. Skoraczynśki et al.21

created a model predicting whether the yield is above a certain
threshold, training on a large set of reactions not restricted to
any specific sub-type. They conclude that the yield prediction
is not possible and attribute this to the descriptors available.
Schwaller et al.22 use the chemical transformer23,24 for
predicting the reaction yields of different splits of the C−N
data from ref 7, as well as random splits of US Patent and
Trademark Office (USPTO) data filtered for C−N cross
couplings. While excellent regression performances could be
achieved for the HTE data, they find that the same approach
gives unsatisfactory results for the USPTO database, which
covers a large chemical space. Probst et al. could improve on
this performance with their differential reaction fingerprints,17

albeit with an overall performance of R2 < 0.2 the prediction on
the USPTO set remains difficult. The results of these works
suggests that a general-purpose yield prediction is a substantial

challenge and might be hindered by either the digital
description of the reaction or the available data.

In this work, we tested whether an ML model trained on
Buchwald−Hartwig C−N coupling25−29 data comprising three
of the largest available reaction databases can achieve a
general-purpose yield prediction. To this end, we investigated a
variety of modeling approaches and data splits, including a
dedicated test set mimicking industrial settings created
specifically for this work. The size of our training data set is
roughly one order of magnitude larger than what has been used
in previous works. While a promising performance could be
reached for even the harder self-consistent splits, the model
was not able to make good predictions on the external set. We
attribute this to strong biases in yield and reagent diversity in
the databases that display opposite tendencies to what is
typically found in the lab.

In Section 2, we describe the different modeling approaches
investigated. This is followed by discussing the prediction
performance for data splits (Section 3.1) as well as an analysis
on whether anything can be gained from dividing the C−N
coupling reaction space further into reasonable sub-types in
Section 3.2. The performance on the test plates is presented in
Section 3.3. We study various factors potentially explaining the
outcome in Section 3.4. We conclude in Section 4.

2. METHODS
As the foundation for this work, we use the cleaned reaction
data set analyzed in ref 30. These reactions comprise the
Reaxys31,32 database from Elsevier, the Scifinder33 database
from Chemical Abstract Services (CAS) as well as patents from
the USPTO.34,35 These have been cleaned regarding several
aspects, for instance, yield availability, availability of chemical
structures of all involved molecules, and an unambiguous
assignment of the role of each involved reagent (i.e., solvent,
base, and ligand). As in ref 30, we do not consider the type of
pre-catalyst in this work. Furthermore, all duplicated entries
have been removed. For a detailed workflow and technical
details, the interested reader is referred to ref 30. In total, we
have around 62 000 unique reactions.

From these data, we train several ML models utilizing
different features:

1. The multiple fingerprint features (MFF) model from ref
20. This one uses a large set of fingerprints of different
types to characterize all the involved molecules.

2. AttentiveFP: A message-passing graph-neural network
(GNN) with an attention mechanism.36 Originally
developed for molecular problems, we expand the
model by using one graph per involved molecule so it
can be applied to reactions.

3. Our custom model, using four types of features together
with the gradient booster XGBoost.37 The features we
include are: (i) atom-pair fingerprints of length 1024 for
reactants and ligand; (ii) RDKit features,38 describing
various topological aspects for reactants and ligand; (iii)
tabular features for solvents39 and bases (pKA in water
and DMSO as well as base charge); and (iv) a locally
adapted form of topological features for reactants, only
considering a certain radius around the reactive site.
This can be, for instance, the number of atoms, bonds,
or H-bond donors within this radius. For some of the
models, we also tried to refrain from introducing features
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for the reagents and instead treat them categorically with
CatBoost.40,41

In this work, we approach the problem of optimizing
reaction conditions from the regression perspective. While
alternative approaches can be conceived (as mentioned in the
Introduction), the regression of the yield can easily be utilized
for optimization. Provided a model can predict the yield well, it
would be straightforward to perform a virtual screening of
reaction conditions through iteration, subsequently ranking the
results by predicted yield. This actually does not require a
perfect quantitative prediction of the yield, typically rated with
metrics such as the coefficient of determination R2, mean
absolute error (MAE), or root-mean-square error (RMSE), but
only needs the correct order. For this reason, we choose to
evaluate results, unless indicated otherwise, with the Spear-
man’s ranking correlation ρ. ρ takes values between 1 (in
perfect order of the predicted yields) and −1 (predicted yields
are in perfect opposite order to the actual yields). A random
ordering would have ρ ≈ 0.

3. RESULTS AND DISCUSSION
3.1. Database Performance. With the main aim to

predict the reaction yield of C−N coupling reactions, we first
focus on the database reactions. In Figure 1 we show the
Spearman’s ranking correlation ρ for different data splits
(indicated on the x-axis). Different colors represent the
different models outlined earlier.

First, we can recognize that our custom model performs best
in all cases. The GNN achieves a similar but consistently worse
performance, which could be explained by missing the tabular
features to describe solvents and bases, which are not well
encoded in their graphs. Attempts to include these features as
simple feed forward layers in the neural network did not result
in better performance, which could also be due to the resulting
mixed architecture requiring a more sophisticated design. The
MFF model, in this case, trails behind in performance. We
explain this as due to it having the largest amount of features
and memory requirement. Our problem requires the character-

ization of five molecules (both reactants, solvent, base, and
ligand), resulting in about 90, 000 features per reaction for
1024 bit fingerprints. The search for hyperparameters was
difficult due to this excessive memory requirement. Most of the
time, a simple linear LASSO baseline (using our custom
features) is also outperformed by either approach.

Second, the performance depends a lot on the data split.
Separating training and test sets by databases leads to good
performances with ρ values ∼0.6 to 0.75. This is a promising
result since all reactions that were duplicates in different
databases were removed. We note that after de-duplication of
the commercial databases, the training and test sets were still of
comparable size, indicating that all databases provide a large
number of unique reactions to the overall literature data.

Splitting by patents and non-patents, however, leads to a
considerably worse performance. The focus of patent and non-
patent publications can often be very different, with the former
often not having optimized reactions or even sets of screened
reactions as the focus. Also, we anticipate that patent
publications contain many more complex molecules from, for
example, the pharmaceutical industry, while non-patent
reactions more often contain simpler substrates that are used
in publications presenting new methodology. Other regression
metrics for this figure can be found in the Supporting
Information.

As we move from splits by databases to splits by time and
document type, we expect to have more out-of-sample reactant
pairs in the corresponding test set. In line with this, we see a
performance decrease that suggests despite the large training
set size, the models are challenged by out-of-sample reactant
pairs.

Similar works by Schwaller et al.22 and Probst et al.17 gauged
the performance across splits of the USPTO dataset
irrespective of reaction type and reached R2 values ∼0.2. For
Buchwald−Hartwig couplings, we report R2 values of 0.531,
0.604, and 0.386 for the first three splits in Figure 1, that is,
where the USPTO, CAS, and Reaxys databases were the test
sets.

Figure 1. Yield regression results based on training on reaction databases: The y-axis shows Spearman’s ranking correlation ρ for different data
splits and models. The data used for these results was the cleaned reaction set from ref 30, comprising one public and two commercial data sets.
The x-label denotes the training/test part before/after the “|”. The different model types are explained in the Methods section.
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We also took reactions published before 2018 and tested
them on reactions coming thereafter. This time-based split is
perhaps the most realistic estimate of the use-case, as a model
deployed in the lab would likely encounter new chemistry over
time. Our custom model reached a ρ of about 0.5. This is not
perfect, but in our internal assessments of yield rankings, we
find empirically that with a ρ of 0.6 or higher, we can already
perform a helpful prioritization of conditions. With some more
work on the model (such as oversampling to counter the lack
of diversity discussed in a later section), this indicates a useful
model for ranking reaction conditions could be achieved.

3.2. Local versus Global Models. Before moving on to
the results on experimental plate data, we investigated one
more aspect of the database model. In our previous work,30 we
found it helpful to further distinguish different types of
substrates for the reactions. For instance, one can distinguish
the nucleophile by aryls, alkyls, di-aryls, and so forth. The
electrophile can be distinguished by the leaving group and
whether it is connected to an aryl or heteroaryl. This opens the
question of whether there is any benefit to making this
distinction also to the yield predicting model.

Figure 2. Yield regression performance of global and local models: (a) the data was split based on the reaction’s nucleo- and electrophile type (x-
and y-axes) classified in the same manner as in ref 30. Specifically, the electrophile (y-axis) has been classified by the leaving group connected to
either aryl (ARY) or heteroaryl (HAR), while the nucleophile (x-axis) was classified based on the surrounding of the nitrogen. We take 80% of each
subgroup for training and the rest for testing. The global model was trained on all trainable parts, while for each subgroup we also created a local
model only trained on reactions corresponding to that tile. The number displayed is the R2 of the global model of that tile minus the R2 of the local
model. (b) Number of reactions for each subgroup.

Figure 3. Prediction results on experimental test plates. The x-label indicates the test plate number or “CV” for 20 times repeated five-fold cross-
validation across all plates. Different colors indicate different models used: (i) an XGBoost37 (XGB) model using our custom features trained on
the remaining non-test plates; (ii) same as (i) but using categorical encoding with CatBoost40 (CatB) for reagents; (iii) an XGB model using our
custom features trained on the database reactions discussed above (DB all) and (iv) same as (iii) but trained only on reactions with an identified
scale >500 mg (DB filtered).
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In Figure 2 we assess the R2 of models fitted only on a
certain sub-group of reactants (termed local models) versus a
model fitted on all the data. Stratification is applied to ensure
equal parts of all subgroups in the training data of the global
model. The result is very clear as, except for one group, the
performance of the global model is always equivalent to or
better than the local models. This has two positive
implications: (i) it makes handling the model deployment
easier since only one model has to be considered and (ii) the
fact that there seems to be synergy from combining different
sub-groups of reactions means that our model was able to learn
those synergies, that is, it has learned to some extent the
underlying chemistry.

3.3. Performance on Test Plates. The data splits from
Figure 1 were aimed at testing the generalizability of the
trained models. The variability of the performance as well as its
absolute value (e.g., for the time-based split) allows no final
conclusion as to whether the model could actually serve as a
starting point for a development that could be deployed in a
lab. For this reason, we also created a set of 768 reactions from
8 screening plates that serve solely as a test set for our model.
For each plate, we use a different pair of reactants, which were
selected with the commercial availability in mind. We verified
that none of the reactant pairs were present in our reaction
database, so they can serve as entirely unseen reactions. Each
plate was screened with a different set of reaction conditions
from common industrial choices for solvents, bases, and
ligands. These data are provided as part of this publication. We
hope that the community can use this data set for their own
modeling approaches as either an external training or test set.

We use these data in two ways for assessing the model as
well as the training data (database or plate data) performance.

Figure 3 shows the results from a leave-one-plate-out approach,
where seven of the eight plates were used for training and the
remaining for testing. The red bars correspond to models using
our custom features trained on the seven corresponding
training plates. We tried both using numerical features for
reagents (with XGBoost37) or treating them categorically (with
CatBoost40). The green bars are the results from the previously
discussed model trained on all database reactions. In addition
to this, a version that was trained only on reactions that had an
identifiable scale of >500 mg was also performed. The last
group of bars refers to the plate data not split by plate but with
20 times repeated five-fold cross-validation of the entire plate
data.

The results vary and seem rather inconsistent. Overall, the
performance is poor, sometimes even achieving a negative
ranking correlation. The leave-one-plate-out results are only
good for plate 7, with no obvious chemical or other reason
behind that. The database model has reasonable performance
only for plates 1 and 8, and we also note that the scale-filtered
model performs worse overall. The cross-validation split
achieves an excellent performance when the model is trained
on plate data, but this is the only split where the training and
test sets are very similar by construction. When the literature
data is used to train the model (green bars for CV split), the
ranking correlation drops to 0.

These results are in contrast to the results seen in the
database splits. While the poor performance of the models
built with plate data can be explained by a rather small training
set that is not able to cover chemical diversity at all, it is
particularly disappointing to see that the data from reaction
databases cannot improve on this. To test whether a dataset
starting from our plate reactions and using active learning to

Figure 4. Diversity mismatch between the database reactions and the test plates: (a) Cumulative amount of reactions covered by considering the
top N solvents/bases/ligands and (b) histograms of the yields. The first column is for the entire database, the second for the subset of reactions
with a scale of >500 mg, and the third is for our experimental test set (not included in other columns).
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selectively include portions of the literature can improve the
predictive performance (see the Supporting Information), but
no consistent upgrade could be achieved. In what follows, we
try to rationalize this and identify the most likely issue.

3.4. Diversity Mismatch. The first possible explanation for
the poor generalizability of the database model is to question
the featurization of the reactions and the model choice.
However, we have tested three sets of different molecular
features, including the graph description via neural networks.
While we cannot rule out the existence of a better treatment of
reactions from the ML aspect, it seems unlikely that the poor
performance is due to this. Furthermore, we have tested our
custom feature set with the amination data from Doyle and co-
workers.7 Despite the fact that our model has no capability to
treat generic reagents (such as the additive used in that work),
we achieve a similar performance (see the Supporting
Information) to the published metrics from several groups.20,22

While it would be interesting to see modeling approaches that
are entirely different (such as SMILES-based transform-
ers23,24), we do not believe that the choice of the ML model
is the main reason for the poor performance we observe in
Figure 3.

Instead, we see the main culprit in the data itself. The most
striking evidence for this can be found in Figure 4a. The curves
show how many solvents, bases, or ligands are needed to cover
a certain fraction of reactions in the data. A steep curve
indicates a stark bias where only very few reagents are needed
to cover most reactions. In contrast, if the reagents would
cover the data points uniformly, the line would be straight and
less steep. We observe a strong mismatch between our
database (first two columns) and the plate reactions (third
column), the latter displaying a much better diversity. Since
our plates were designed explicitly to mimic the industrial
setting and with complete disregard to the database
composition, we conclude that the reagent diversity of the
databases is too biased to properly cover such a use-case. We
propose this is a major obstacle for creating a general-purpose
yield-prediction model, even though the amount of available
reactions in databases seems large.

The mismatch is also clearly observed in the yield, which
was the target variable in our case (see Figure 4b). In
agreement with everyday experience in the lab, the plates
mostly result in low-yielding reactions. On the other hand, the
database is skewed to high-yielding reactions. We also note
here that we tried oversampling techniques42 to counter both

the yield mismatch and the reagent diversity, but none of these
improved the model performance (see the Supporting
Information). We can also see that selecting only reactions
performed on a high scale (second column in Figure 4)
effectively has an even worse reagent diversity and yield skew.
This is likely due to the lack of incentive to publish or even
perform a low-yielding reaction on a high scale. While this, of
course, is reasonable from an experimental viewpoint, it is a
further obstacle to obtaining suitable reaction data for ML. In a
similar recent study, Strieth-Kalthoff et al.43 also found the lack
of negative data (which are, in our case, low yielding reactions)
to be an obstacle for predictive modeling.

Further evidence for the mismatch between the database and
the plate reactions can be obtained via dimensionality
reduction. In Figure 5 we visualize all chemical reactions
from these sets in a two-dimensional space via t-distributed
stochastic neighbor embedding (t-SNE).44 The three panels
are obtained by considering either the computed features of (i)
all involved compounds, (ii) only the reactants, or (iii) only
the reagents. While in the first panel, it seems that the plate
reactions are rather intermixed with the database reactions, this
is the opposite if only considering reactants or reagents. In
particular, the reagent visualization (third panel) reveals that
there are a few big clusters in the databases (which correspond
to the few most commonly used conditions), and the plate
conditions seem rather isolated from them. Recently, Beker et
al.45 found similarly that an ML model trained to predict the
best reaction conditions for Suzuki−Miyaura couplings cannot
outperform the baseline spanned by simply picking the most
popular choices, which suggests the model could only learn the
pre-induced reagent popularity of the training data. Together
with the yield bias, we mainly attribute our models’
generalization failure to this reagent bias.

There is also an aspect that was not investigated further by
us: the databases contain reactions from thousands of different
labs and experimenters. While the measurement of a yield is
already a procedure that is rarely accurate to the third decimal
place, this will introduce further noise on the yields. Take, for
instance, the type of yield that was measured (isolated or from
liquid chromatography−mass spectrometry), which was not
distinguishable in the data fields (perhaps this is possible by
analyzing reaction procedure texts with a lot of additional
effort). We have worked with the assumption that these effects
will likely induce an upper bound to the model performance.
However, these “hidden” experimental parameters could have a

Figure 5. Visualization of the feature space of reactions. Shown are the first two components of a t-SNE dimensionality reduction with a perplexity
of 50. The first picture includes features for both reactants and reagents, while the other two are only considering features for either reactants or
reagents.
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much stronger impact than anticipated. Further work to
quantify and remedy such error sources is needed.

4. CONCLUSIONS
In this work, we assessed whether the combined entries from
three of the largest reaction data providers can be used to train
a generalizable yield prediction model for C−N cross-
couplings. With three disparate modeling approaches, we
assessed the performance on different data splits, including by
database, by patent-type, or by publication time. Considering
the difficulty of the overall task of yield prediction, a promising
performance was achieved (best ranking correlations around
0.75 and best R2 around 0.65), which suggests creating general-
purpose models for yield prediction is within reach.

However, putting the resulting models to the test on a
dedicated experimental set of plate reactions created in our lab,
the performance could not be transferred. We attribute this
result to the lack of reagent and yield diversity as uncovered by
our investigation. Improving the data situation for the
approach chosen in this work is likely difficult. The data we
used resulted from several decades of lab work. While we know
that the amount of reactions added to the databases grows
exponentially,30 it is unlikely that any improvement to the
reaction diversity is made quickly. The incentive to publish
low-yielding or even failed reactions is generally low, and we
hope the result of our study contributes to improve this. It will
be interesting to see what advances promising initiatives such
as the open reaction database46 can bring in this regard.

Another important lesson from this work is that judging
reaction yield prediction models can be extremely deceiving
when only literature data is involved. Dedicated experimental
test sets are rare, and subsequently, researchers in the field
apply certain data splits to mimic realistic test sets. After the
results displayed earlier, we believe this is an impossible task
and the resulting test sets will always retain hidden biases from
the literature data that are not present in typical lab
experiments. It is very likely that this finding also applies to
other fields where data comes from experiments with
numerous lab-related parameters. We hope the plate data set
provided with this work can be utilized by other researchers as
a benchmark set to train or test their own approaches.

Overall, it seems that alternative data-driven approaches for
the optimization of reaction conditions are favorable. While
works which focused on smaller chemical spaces reported
more favorable outcomes, general-purpose yield predictions
from literature data seem unrealistic at the moment, even if
these data are larger by orders of magnitude. Furthermore,
HTE studies avoid the noise coming from experiments being
performed in different environments by default. Therefore, it
seems that labs that aim to integrate ML models need to gather
their own data sets that are created with the required chemical
diversity in mind. Recent reports by Xu et al.47 and Rinehart et
al.48 also reinforce the viability of this route. The chemical and
pharmaceutical industries would greatly benefit from pre-
competitive collaboration where high quality and high-diversity
reaction data are shared in an intellectual-property-preserving
manner, such as federated learning.49,50
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Glorius, F. A structure-based platform for predicting chemical
reactivity. Chem 2020, 6, 1379−1390.
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