
 

Open Peer Review

F1000 Faculty Reviews are written by members of
the prestigious  . They areF1000 Faculty
commissioned and are peer reviewed before
publication to ensure that the final, published version
is comprehensive and accessible. The reviewers
who approved the final version are listed with their
names and affiliations.

Any comments on the article can be found at the
end of the article.

REVIEW

 The B-side of Xist [version 1; peer review: 3 approved]
Asun Monfort , Anton Wutz
Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland

Abstract
Female mammals express the long noncoding X inactivation-specific 
transcript ( ) RNA to initiate X chromosome inactivation (XCI) thatXist
eventually results in the formation of the Barr body.  encompasses halfXist 
a dozen repeated sequence stretches containing motifs for RNA-binding
proteins that recruit effector complexes with functions for silencing genes
and establishing a repressive chromatin configuration. Functional
characterization of these effector proteins unveils the cooperation of a
number of pathways to repress genes on the inactive X chromosome.
Mechanistic insights can be extended to other noncoding RNAs with similar
structure and open avenues for the design of new therapies to switch off
gene expression. Here we review recent advances in the understanding of 

 and on this basis try to synthesize a model for the initiation of XCI.Xist
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Introduction
The repression of one entire X chromosome in female cells 
achieves dosage compensation for X-linked genes between 
both sexes and has become a paradigm for studying epige-
netic silencing. The mechanism by which hundreds of genes 
are repressed in a coordinated manner has captured the inter-
est of researchers for over half a century but is by no means the 
only aspect of the mammalian dosage compensation system 
that remains a puzzling wonder of biology1. The choice of  
the X chromosome to switch off, either maternal or paternal, is  
widely accepted to be random in placental mammals, and  
recent evidence in mice suggests a stochastic process for which 
a few components have been identified2,3. A mechanism for 
generating randomness is difficult to establish on a molecular  
basis but ultimately may inspire technology as well as cell  
biology. Recent progress in chromatin biology has, however,  
led to considerable insight into the pathways that accompany 
the silent fate of the inactive X chromosome (Xi). It is impor-
tant to state from the outset that once the Xi has been chosen 
and repressed, its silent state is faithfully maintained and  
inherited in all progeny of every embryonic cell. This observa-
tion requires an epigenetic memory that is established at the  
Xi but has not been fully deciphered yet1,4,5. The process of X 
chromosome inactivation (XCI) has been dissected into two  
characteristic phases: 1) a reversible X inactivation-specific 
transcript (Xist)-dependent initiation step, when X linked 
genes become repressed, and 2) a maintenance step when 
gene silencing becomes irreversible and independent of Xist  
(reviewed in 6). Notwithstanding, a faulty initiation of the  
silencing process has consequences for the completion of the 
latter events, which demonstrates the exquisite functional  
coordination that is set in motion by Xist.

The 17 kb long noncoding RNA Xist is expressed from and  
accumulates over the X chromosome, triggering a cascade of  
events that eventually will result in the formation of the het-
erochromatic Barr body7–11. Within the Xist sequence, a number  
of repeat modules, named A to F, have been identified. These  
modules consist of unique multimeric short sequence 
stretches that play a functional role in the inactivation process  
(Figure 1)7,9,12–14. Repeats A to D and F are encoded in Xist exon 
1, whereas repeat E resides in exon 7 (Figure 1A). In the last few 
years, a number of Xist partners have been identified, and their  
specific interaction with one of the repeat modules in Xist has 
been characterized6. This has led to the establishment of a  
preliminary but highly interesting repeat-to-function correla-
tion through which Xist is beginning to be better understood15.  
Here, we review the latest advances in understanding mouse 
Xist, highlighting important insights and raising questions that  
remain unanswered.

Xist repeat A is silencing
Close to the 5’ end of Xist RNA, multiple repetitions of a  
short, conserved sequence are encountered that have been named 
repeat A9. Each of the 24-nucleotide-long motifs contains small  
sequence inversions that possibly could fold into a double stem 
loop structure. The full mouse repeat A module would then  
comprise eight first-stem and seven second-stem loops13. How-
ever, double-stem loop structures might not form within cells, 
and more complex conformations involving interactions between  
different 24-nucleotide-long core motifs have been proposed.  
Jones and Sattler provide an excellent review of the structure 
of Xist repeat A16. Initial evidence for a role in gene silencing  
stems from a deletion analysis of mouse Xist using a transgenic 
system in embryonic stem cells (ESCs). These studies revealed the  

Figure 1. Repeat modules and interactors of Xist RNA. A) Representation of the mouse Xist gene. Exon1 codes for repeats A–D and F. Exon 
7 codes for repeat E. B) Mouse Xist RNA with its functional A–F repeats and their corresponding direct interactors. Lines indicate the repeats 
predicted to contribute to the initiation and maintenance of XCI. The binding of CIZ1 to Xist has not been fully established and is indicated by 
a question mark. CIZ1, CDKN1A-interacting protein; HNRNPK, heterogeneous nuclear ribonucleoprotein K; LBR, lamin B receptor; SAF-A, 
scaffold attachment factor A; SPEN, Split Ends; RNF20, ring finger protein 20; WTAP, WT1-associated protein.
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requirement of repeat A for the repression of X-linked genes but  
not for localization or spreading of Xist over the X chromosome13.

Recently, the identities of some of the Xist partners responsible 
for repressing transcriptional activity were unveiled. Forward  
genetic screening and biochemical purification of Xist part-
ners, in differentiated and undifferentiated cells, identified 
SPEN as a top candidate responsible for gene repression17–20. 
SPEN is a 400 kDa protein that belongs to the Split Ends fam-
ily of transcriptional repressors. Its mutation in mice causes 
an embryonic lethal phenotype at E12.521. SPEN contains four  
N-terminal RNA recognition motifs (RRMs) and a C-terminal  
conserved Spen paralog and ortholog domain (SPOC) that 
mediates the recruitment of co-repressors and the activation of  
histone deacetylases (HDACs). Different approaches have  
confirmed the direct interaction between SPEN and repeat A of 
Xist17,19,20,22,23. Biochemical purification has shown that SPEN  
interacts with the full-length but not the repeat A mutant form 
of Xist19. Deletion of exons encoding the RRM domains of 
SPEN abrogates the silencing capacity of Xist20. In addition to a 
loss of gene silencing, Xist appears to lose the ability to recruit  
chromatin-modifying complexes of the Polycomb group17,20. A 
pathway for gene repression has been proposed based on the 
known interaction of SPEN with the SMRT co-repressor that 
activates HDAC317. HDAC3-mutant ESCs show partial gene 
silencing upon Xist expression, suggesting that not all gene  
repression is mediated by HDAC324. Taken together, these  
findings make SPEN a well-established silencing factor of Xist,  
though details of the mechanism in XCI remain to be uncovered.

Additional silencing factors for the initiation of XCI might 
be inferred from biochemical experiments that also indicate 
the interaction of RNF20 and WTAP with Xist in a repeat  
A-dependent manner19. WTAP is a component of the RNA  
N-6 adenosine methylation (m6A) complex that also contains 
RBM15, its paralogue RBM15B, and the methyltransferase  
METTL325. RBM15 has been identified independently as an 
Xist-binding partner by genetic screening and biochemical  
purification17–19. Methylation individual nucleotide resolution 
crosslinking and immunoprecipitation (methylation-iCLIP)  
experiments in HEK293T cells revealed 78 m6A residues in the 
human XIST RNA, some of which are localized in the vicinity 
of, and two of which are located within, repeat A26. These 
sites also show prominent binding of the RNA m6A reader  
YTHDC1. In ESCs, synthetic tethering of YTHDC1 to Xist 
was sufficient to complement the depletion of other WTAP 
complex members, which impairs gene repression by Xist. 
These findings indicate that m6A acts as a recruitment signal for  
silencing factors26. However, not all m6A sites are localized 
at repeat A. In addition, a recent study has investigated the  
deletion of most m6A sites at the 5’ end of Xist and observed only 
subtle or no effects on X chromosome-wide gene silencing in 
mouse ESCs27. This suggests that m6A sites in the remaining Xist  
sequence may act redundantly for the recruitment of additional 
silencing factors. In mice, mutations in WTAP, RBM15, and 
YTHDC1 result in embryonic lethality28–30. Although these  
observations are consistent with a potential role in XCI, female-
specific phenotypic dimorphisms have not yet been described.  
Further evidence would be desirable to establish the precise role  
of the WTAP complex at the initiation of X inactivation.

RNF20 is a third factor that has been identified to associate  
with Xist RNA in a repeat A-dependent manner19. The RNF20/
RNF40 family of E3 ubiquitin ligases can mediate mono- 
ubiquitylation of histone H2B lysine 120 (H2BK120ub1),  
which is required for mouse preimplantation development and 
ESC differentiation31–33. H2BK120ub1 has been correlated  
with both transcriptional activation34 and repression35 and is pro-
posed to play a role in stabilizing nucleosomes and chromatin  
compaction36,37. Depletion of either RNF20 or RNF40 did not 
impair Xist-mediated silencing in mouse ESCs19. Although a  
combined disruption of both RNF proteins has not yet been  
reported, it is tempting to speculate that RNF20 could contribute  
to chromatin modification and compaction in XCI.

Repression independent of Xist repeat A
Most studies in mouse ESCs have confirmed a key role of repeat 
A in gene repression. However, studies of imprinted XCI in  
extraembryonic cells have uncovered the finding that repres-
sion of several genes on the Xi is apparently independent of 
repeat A. Forced expression of a repeat A mutant Xist from a  
heterologous promoter in trophoblast cells caused repression 
of genes that are not inactivated by the Xist repeat A mutant in  
embryonic cells38. These repressed genes appear to cluster in  
regions of low gene density and are normally expressed at a 
low level on the active X chromosome (Xa). One potential  
explanation for the different requirement of repeat A in ESCs  
and trophoblast cells might come from considering the timing 
of Xist expression relative to gene activity: in the mouse  
embryo, Xist is first upregulated at the four-cell stage, concur-
ring with the zygotic genome activation39. At this stage, not all 
X-linked genes might be fully activated. It is conceivable that 
Xist without repeat A is able to repress some X-linked genes by  
chromatin modifications that normally contribute to the mainte-
nance of gene repression in XCI. Therefore, the repeat A mutant 
Xist would not necessarily use an active silencing pathway 
but rather could rely on the maintenance pathways. Consistent  
with this idea is the finding that the expression of Xist containing 
repeat A has far greater potential for X-linked gene repression in 
trophoblast cells.

The B-side of Xist brings in Polycomb
Mouse Xist repeat B consists of 32 copies of the cytidine-rich 
(A/U)GCCCC motif and functions together with repeat C, which  
contains 14 copies of a 120-nucleotide unit of high similarity40. 
Recent studies have discovered key roles for Xist repeats B and C 
for the recruitment of Polycomb complexes.

Polycomb repressive complexes: shedding light on the 
recruitment mechanism
Xist repeats B and C are required for the recruitment of  
canonical and non-canonical Polycomb repressive complex 
1 (PRC1) and PRC2 to the Xi at the initiation of XCI. Work by 
the Brockdorff lab has unraveled a hierarchy for Polycomb  
complex recruitment by Xist. Initially, Xist repeats B and C  
recruit a non-canonical PRC1 that catalyzes the ubiquitination of 
histone H2A lysine 119. H2AK119ub is bound by RYBP, which 
is a component of a non-canonical PRC1 complex, and leads to 
an amplification and presumably spreading of the H2AK119ub 
mark. PRC2 activity is subsequently recruited and mediates  
H3K27me3. H3K27me3 in turn is recognized by CBX7, which 
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is a component of canonical PRC1 complexes. Therefore, in 
XCI, PRC1 is recruited before PRC2 and multiple interactions  
amplify the spreading of both Polycomb complexes41.

Initial evidence for a role of Xist repeat B in Polycomb recruit-
ment was provided by the discovery of a function for JARID2 in  
XCI42. Da Rocha and colleagues tested the recruitment of  
JARID2 in differentiating ESCs containing inducible Xist 
mutant transgenes with different deletions. Xist lacking repeats 
F, B, and C did not recruit JARID2, leading to a decrease in the  
recruitment of PRC2. Soon after that, JARID2 was identified as 
an essential component for PRC2 recruitment to PRC1-marked  
chromatin43. Using autosomal Xist-inducible transgenes carrying 
a deletion of repeat B plus a partial deletion of repeat C, defined 
as the Xist RNA-Polycomb Interacting Domain (XR-PID),  
researchers reported a strong reduction in the accumulation of 
Polycomb complexes by Xist44. Reassessment of these experi-
ments in an endogenous inducible Xist system in XY ESCs  
showed that both repeat B and repeat C can efficiently recruit 
Polycomb proteins to the Xi and that a double deletion of repeats  
B and C leads to a complete abrogation of the accumulation of 
H2AK119ub and H3K27me3 at the Xi45.

To understand this mechanism in detail, it was crucial to identify 
the non-canonical Polycomb group ring finger (PCGF) proteins 
PCGF3 and PCGF5, as they are required for the recruitment 
of Polycomb complexes by Xist46. Fluorescence recovery after  
photobleaching (FRAP) experiments showed PCGF3/PCGF5 
to form stable interactions with Xist RNA domains, and a  
double Pcgf3/5 deletion resulted in the loss of Xist-dependent 
H2AK119ub1 and H3K27me3 deposition46. Notably, Pcgf3/5 
double mutant mice present a female-specific lethality at E9.5,  
consistent with their requirement for dosage compensation46.  
Xist repeats B and C have been linked to PCGF3/5–PRC1  
through hnRNPK, which has been independently identified as 
an Xist interactor19,47 and shown to be required for Polycomb 
protein recruitment19. hnRNPK is essential for early embryo  
development48. It presents several KH RNA-binding domains 
that are predicted to mediate interaction with Xist repeats B 
and C and a K protein interactive region (KI) required to bind  
PCGF3/5–PRC149. It has been shown that deletion of repeats 
B and C abolishes the interaction of Xist RNA with hnRNPK 
and secondarily with PCGF3/5–PRC145. These experiments  
establish hnRNPK as the RNA-binding protein that links Xist to  
non-canonical PRC1, leading to a change of previous views  
from a direct binding of Polycomb proteins to RNAs50,51.  
PCGF3 and PCGF5 associate with hnRNPK and a catalytic 
RING protein for marking entry sites with H2AK119ub44. The 
requirement of hnRNPK for early embryo development makes 
studies of its function difficult. However, synthetic tethering 
of hnRNPK, but not KI mutant hnRNPK, to transgenic Xist  
that lacks the XR-PID region restores the recruitment of 
H2AK119ub44. In the future, it might be interesting to more 
specifically disrupt interactions between hnRNPK and Xist or 
PCGF3/5–PRC1 to understand if repeats B and C could have  
additional functions that have not yet been discovered. Taken 
together, these findings provide strong experimental support for 
a pathway of Polycomb recruitment by Xist. A modular archi-
tecture of Xist is also suggested, with repeats B and C forming a  

recruitment site for hnRNPK and Polycomb complexes. More 
research will be needed to understand to what extent Polycomb 
complexes contribute to gene repression and in particular if they 
function in maintaining gene silencing on the Xi.

Darkness in the mechanism of spreading
Studies in ESCs indicate that Xist might initially localize in  
spatial proximity to its genomic locus in regions pre-marked with 
PcG decoration and low transcriptional activity52. From these 
initial “entry sites”, Xist triggers the formation of a repressive  
compartment that is devoid of marks of active transcription  
including RNA polymerase II53. These initial events are  
followed by the recruitment of Polycomb proteins to the Xi  
and a conformational change that subsequently permits spread-
ing and silencing of gene clusters with high transcriptional  
activity52,53. Notably, the Xist mutant lacking repeat A is able 
to recruit Polycomb complexes to the Xi, suggesting that gene  
repression is not required for Xist localization and Polycomb 
recruitment4. Recent evidence supports and extends this view,  
showing that repeat A mutant Xist localizes and mediates  
decoration over most of the Xi except for regions where active 
genes reside24. Similar observations were made with HDAC3-
mutant ESCs showing that spreading of Polycomb complexes 
is not observed over active gene loci. These results directly  
compare transcriptional activity with PcG recruitment and  
suggest that they are mutually exclusive. Zylicz et al. observed 
that deletion of repeat A causes a reduction in the deposition 
of H2AK119ub over the Xi. However, this effect was not  
recapitulated in HDAC3-mutant ESCs where PRC1 recruitment 
was unperturbed24. These findings might provide a stringent 
test for the proposed mechanism for Polycomb recruitment and 
potentially also suggest a contribution from Xist repeat A in  
Polycomb recruitment.

SMCHD1: a player in Xi architecture
One of the downstream effects of the recruitment of Polycomb 
complexes by Xist is the recruitment of SMCHD1 to the Xi. 
SMCHD1 was initially identified in a genetic screen in mice as 
a key player in XCI. SMCHD1-null embryos present a female- 
specific lethality between E10.5 and E13.5, with derepression of 
genes and hypomethylation of CpG islands on the Xi54–56. The  
interaction between Xist and SMCHD1 was also described  
through proteomics screening in MEFs47, although this is likely 
not direct, as it depends on hnRNPK57. Recruitment of SMCHD1 
is dependent on Xist expression57,58. Xist repeats B and C are  
required for recruiting SMCHD1 to the Xi in ESCs at the  
transition between the initiation and the stable maintenance 
phase of XCI57. Studies in female mouse embryonic fibroblasts  
(MEFs) suggest that SMCHD1 recruitment by Xist is dependent 
on PRC1 and H2AK119ub57. Notably, the mutation of Smchd1  
results in a stronger recruitment of H3K27me3 to the Xi59. At 
present, it is not clear how SMCHD1 can be recruited by PRC1 
but insulate from the effects of PRC2. Furthermore, additional 
roles for Smchd1 have been proposed in remodeling the 3D  
architecture of the Xi58–61. SMCHD1 has been postulated to  
regulate the transient reorganization of the Xa chromatin 
towards a bipartite Xi structure58. Studies in Smchd1-deficient 
MEFs have shown that the overall structure of the Xi is largely  
unaffected in the absence of SMCHD1. However, genes that 
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are reactivated become reorganized in a manner that resembles  
more the Xa than the Xi. Importantly, the Polycomb depend-
ence of SMCHD1 recruitment to the Xi would suggest a  
requirement of Polycomb complexes for the establishment of 
a memory for the maintenance of XCI. Taken together, these 
data demonstrate that Xist repeats B and C can engage different  
effectors and they do this through hnRNPK and a non-canonical 
PRC1.

Repeat D directs Xist to the Xi
One important factor for the precise localization of Xist RNA to 
the Xi is scaffold attachment factor A (SAF-A/Hnrnpu)62. SAF-A  
binding has been described at the repeat D of Xist63. Repeat D 
contains multiple copies of a 290-nucleotide-long motif that can  
mediate interaction with SAF-A. However, repeat D might not 
be the only element that contributes to Xist localization. Earlier 
studies indicated that several regions of Xist act in parallel or  
redundantly to Xist RNA localization13. However, it remains 
to be shown if repeat D is sufficient for Xist localization or if  
other interactions are also required22.

Repeat E keeps Xist in focus
Xist repeat E consists of 50 highly variable copies of  
20–25-nucleotide-long units that have been implicated in Xist  
localization in differentiated cells and maintenance of XCI40.  
Insight into repeat E function comes from the identification 
of CIZ1 as a protein that is recruited to the Xi in somatic cells.  
CIZ1 is a nuclear protein that progressively associates with the 
Xi in a Xist-dependent manner during female ESC differen-
tiation. Although Ciz1 mutant mice do not show developmental  
defects, a highly penetrant lymphoproliferative disorder has 
been reported in adult females64. This hematopoietic phenotype  
is consistent with an earlier report of leukemia development 
in female mice, when Xist is conditionally mutated in the blood 
system65. The blood cell diseases have further been linked with  
dosage compensation defects64,65, suggesting a special context 
for XCI in blood cells66,67. Systematic deletion experiments 
over different Xist regions in ESCs and MEFs unveil that CIZ1  
recruitment depends on repeat E64,68. Deletion of Xist repeat E 
in ESCs does not impair Xist localization or the recruitment 
of Polycomb complexes64,69. However, in Ciz1-mutant female  
MEFs, Xist is delocalized and Polycomb complexes are not  
recruited to the Xi. These defects in somatic cells are accom-
panied by a partial de-repression of X-linked genes64,68.  
Importantly, delocalization of Xist has also been observed in  
hematopoietic cells from Ciz1-mutant mice.

A recent study has uncovered an independent function for  
repeat E in the recruitment of the ASH2L Trithorax group  
protein69, but the function of ASH2L for gene repression on  
the Xi remains largely unclear. Recruitment of ASH2L depends on 
Xist localization but is independent of repeat A5. Taken together, 
current evidence suggests that repeat E acts as a binding site 
for factors that contribute to XCI maintenance. The cell-type- 
specific effects of the Ciz1 mutation are intriguing. It would be  
interesting to explore if a mutation of repeat E would resemble 
the Ciz1 mutation in mice. Alternatively, other repeat E binding  
factors could be involved in either maintenance or transition to 
maintenance of XCI.

Xist repeat F makes the lamina connection
Xist repeat F was not included in the initial description of Xist9 
but has been more recently defined as a short fragment that is  
located just 3’ of repeat A. Repeat F is composed of two 
copies of a 10-nucleotide-long G/C-rich sequence motif  
(UGGCGGGCUU)40 and appears to function together with 
a region near repeat E as a binding site for lamin B receptor 
(LBR)70. LBR is a 60 kDa integral membrane protein embedded 
in the inner nuclear membrane that associates with lamin 
B and tethers heterochromatin to the nuclear periphery71.  
Mutation of Lbr has been described to result in an embryonic 
lethal phenotype with incomplete penetrance, but a female- 
specific phenotype has yet to be described72,73. LBR was 
identified as a direct binder of Xist through a biochemical  
screening approach17. RNA interference (RNAi)-mediated  
depletion of Lbr in ESCs was reported to cause an impairment 
of gene repression by Xist. These observations were further  
corroborated by showing that deletion of the LBR-binding 
sites of Xist resulted in a loss of gene repression70. Tethering of  
LBR to Xist lacking the LBR interaction site could restore  
silencing activity. In addition, tethering a mutant form of LBR 
that lacked the RNA-binding domain to Xist complemented the  
silencing defect. Notably, LBR does not possess a canonical 
RNA-binding domain and associates with Xist through a novel  
surface. LBR might contribute to gene repression by mediating 
an association with the nuclear lamina. It is conceivable that also 
an association with a repressive heterochromatic environment  
at the nuclear lamina or reshaping of the 3D architecture of 
the Xi might play a role in XCI. However, a recent study has  
investigated a deletion of the Lbr gene in ESCs and observed  
only subtle silencing defects27. In addition, after removal of 
the entire Xist repeat F, only minor defects in gene repression 
were observed. These observations are conflicting with earlier  
observations and suggest that additional evidence will be  
necessary to understand the requirement of Lbr for gene 
silencing. Nevertheless, repeat F might provide a binding site  
for Xist partners that engage additional mechanisms that are  
not yet fully understood.

Conclusion
The understanding of chromosome-wide silencing on the  
molecular level has seen impressive advances over the past 
few years. Progress has been driven by the development of new 
methodology in RNA protein biochemistry and mammalian  
genetics. A large number of factors have been identified that  
cannot all be discussed in this review for space reasons. We 
focus here on factors that have been implicated and shown to be  
relevant for understanding Xist function. The current under-
standing suggests that Xist RNA might act as a link between  
different functional effector complexes. Engaging a number 
of molecular activities would then bring about the astonishing  
properties of Xist, namely its ability to specifically localize over 
the Xi and its ability to trigger chromosome-wide chromatin  
modifications and gene repression. This poses the following 
question: is the current knowledge of known Xist effectors  
sufficient for reconstitution of Xist function? The identification 
of the binding sites within Xist could make experimental testing  
possible as of today (Figure 1B). Certainly, one would include 
some form of repeat A for engaging the gene silencing  
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pathway. An important question here is whether tethering of 
SPEN would fully substitute for all functions of repeat A or  
whether WTAP and METTL3 would be required too.

For repeats B and C, the situation appears less clear. Would  
Polycomb engagement be required for initiating gene repression?  
There is evidence that XCI could initiate without Polycomb  
recruitment, and a repeat B and C mutant Xist can initiate 
gene repression45. However, this view might change during the  
maintenance phase of XCI. Without repeats B and C, SMCHD1,  
and likely other factors, would not be recruited and establish-
ing an epigenetic memory could potentially fail. This idea 
would suggest a role for Polycomb complexes in establishing a  
repressive memory in XCI, which is consistent with the  
traditional view of Polycomb function. Notably, interactions of 
the PRC2 subunits Ezh250 and Suz1251 with Xist repeat A have  
previously been observed in vitro. However, the relevance of 
these observations for XCI remains unclear. Although Polycomb  
proteins might bind RNA directly, the requirement of hnRNPK 
in XCI suggests that these interactions are not sufficient in cells. 
Early studies have further proposed a role for repeats B and C 
in Xist localization. Jeon et al. implicated YY1 as a DNA- and  
RNA-binding protein that bridges Xist repeats B and C RNA to 
repeat F DNA, facilitating the localization of Xist74. Consistent 
with this observation, peptide linked nucleic acids and locked  
nucleic acids complementary to repeat C sequences also induced 
delocalization of Xist75,76. These observations are puzzling when 
one considers that the deletion of repeats B and C does not  
abrogate Xist localization or spreading at the initiation of  
XCI13,45. To reconcile these conflicting interpretations, one might 
consider different cellular contexts or experimental conditions 
similarly to the cell-type-specific requirement of Ciz1 for Xist  
localization64.

Repeat D could be handy for engineering RNAs that mimic 
the localization of Xist77. However, it remains to be shown if  
repeat D is sufficient for Xist localization or other interactions 
are also required such as with LBR. A prominent role of Xist  
repeat E in the maintenance but not in the initiation step of 
XCI has been uncovered through the identification of Ciz1. We  

speculate that both repeat D and repeat E could be important 
for the maintenance of XCI, where they might recruit factors 
independent of gene silencing but dependent on a chromosomal 
memory that is imposed by Polycomb complexes. Thus, repeats 
D and E of Xist could act as docking sequences for factors that 
preserve the integrity of heterochromatin of the Barr body and  
facilitate Xist localization in a cell-type-specific manner. Taken 
together, the current understanding of molecular interactions 
of Xist appears to provide a detailed guide for reconstitution of  
Xist function. Performing these experiments will be important 
for establishing if the main mechanistic components have indeed  
been identified or key factors are still missing. In the latter case, 
a number of unstudied proteins from the list of Xist interactors  
represent a resource for further exploration.

Xist tunes the chromatin
Progress in understanding the molecular functions of Xist 
has moved the field towards a new frontier: the chromatin.  
Conceptually, Xist can be seen as a sender of a message. 
This view would predict a receiver on the chromosome. How  
X-linked gene promoters are inactivated on the chromatin level 
remains an open question. Just a few hundred molecules of 
Xist accumulate over the Xi and are capable of switching active  
genes and regulatory regions from an open into a closed  
chromatin configuration along an entire chromosome. This  
switch implies that the chromatin has the ability to read instruc-
tions from Xist and coordinate gene repression. Although some  
of these instructions come in the form of histone modifica-
tions, it remains unclear how silencing is spread. It is enticing to  
speculate if a domino-like effect might be triggered by Xist 
that perpetuates changes along the chromatin fiber. Would this 
make histones domino pieces? Histone exchange can facilitate  
switching an active into a repressive chromatin configuration 
through the removal of actively marked histones. Besides, 
gene silencing is accompanied by compaction of the chromatin  
fiber and prevents regulatory proteins from binding and trig-
gering transcriptional events. We speculate that nucleosome 
assembly and chromatin dynamics might be important aspects 
for silencing and spreading of repressive chromatin modifica-
tions (Figure 2). The factors that allow chromatin to respond to 

Figure 2. A proposed model for Xist triggering the heterochromatinization of a genomic fragment in a domino-like effect. Xist RNA 
induces local chromatin modifications that spread along the chromosome through an unidentified inter-nucleosomal communication 
mechanism.
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the messages of Xist remain to be discovered. Identification of  
these components can be predicted to have wide implications for 
the understanding of gene regulation in mammals.

The molecular pathways used by Xist for the generation of a  
silent and stable Barr body are starting to be elucidated, albeit  
much remains to be understood. Disrupting X-linked gene 
silencing leads to female embryonic lethality, showing the  
importance of this phenomenon for the survival of mammalian 
species. Functional characterization of the different effectors  
engaged by Xist can advance our understanding of the strik-
ing mechanisms that were selected by nature to warrant gene 
silencing for survival. This knowledge can be exploited thera-
peutically for the treatment of genetic disorders where a gene 
overdose impairs the correct function of cells, such as Down 
syndrome cell pathogenesis77, X-linked diseases78, or approaches 
involving cell reprogramming79. Thus, further unraveling the  

mechanisms used by Xist and its effectors for silencing and  
heterochromatinization will contribute to advances in science and  
medicine.
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