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Abstract

Viruses readily mutate and gain the ability to infect novel hosts, but few data are available regarding the number of possible
host range-expanding mutations allowing infection of any given novel host, and the fitness consequences of these
mutations on original and novel hosts. To gain insight into the process of host range expansion, we isolated and sequenced
69 independent mutants of the dsRNA bacteriophage 6 able to infect the novel host, Pseudomonas pseudoalcaligenes. In
total, we found at least 17 unique suites of mutations among these 69 mutants. We assayed fitness for 13 of 17 mutant
genotypes on P. pseudoalcaligenes and the standard laboratory host, P. phaseolicola. Mutants exhibited significantly lower
fitnesses on P. pseudoalcaligenes compared to P. phaseolicola. Furthermore, 12 of the 13 assayed mutants showed reduced
fitness on P. phaseolicola compared to wildtype 6, confirming the prevalence of antagonistic pleiotropy during host range
expansion. Further experiments revealed that the mechanistic basis of these fitness differences was likely variation in host
attachment ability. In addition, using computational protein modeling, we show that host-range expanding mutations
occurred in hotspots on the surface of the phage’s host attachment protein opposite a putative hydrophobic anchoring
domain.
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Introduction

After a long period of steady decline, mortality due to infectious

disease increased over the past several decades, largely because of

the emergence of new infectious diseases including HIV [1,2]. Of

these new diseases, a disproportionate number have been viruses

[3,4]. Because of their high mutation rates and vast population

sizes, viruses have higher probabilities of acquiring the requisite

mutation(s) allowing infection of novel hosts than do other types of

pathogens [5]. A common fear is that a highly transmissible and

virulent virus will spread pandemically among humans, causing

widespread mortality and economic damage. Thus, there is a

strong motivation to understand and predict virus emergence.

Virus emergence is a two-step process. A virus first mutates to

gain the ability to infect a new host, and then fully emerges by

achieving positive population growth on that host via adaptation

[6]. Theoretical modeling has shown that emergence probabilities

are highly sensitive towards the type of mutation(s) required to

productively infect a novel host [7]. Emergence events requiring

single nucleotide substitutions are far more likely to occur than

those that require several simultaneous point mutations or

recombination [8]. While mutations altering virus host specificity

can involve large-scale genomic rearrangements, most virus host

shifts likely entail the modification of a small number of virus

receptor amino acid residues [9]. In fact, single nucleotide

substitutions are often sufficient to expand a virus’s host range

[10]. If this mechanism of host range expansion were common, the

number of host range expanding mutations and their frequency of

appearance would be important parameters governing the

probability of emergence of a potential human pathogen.

Few studies have systematically determined the type, number,

frequency, and fitness consequences of host range expanding
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mutations for any particular virus-host combination [11]. Such

data can aid the parameterization of evolutionary ecological model

of virus emergence. Factoring in other parameters, such as

transmission rates and population densities, may allow quantitative

predictions of the likelihood a particular virus is able to emerge on

a new host. This type of prioritization is critical before allocating

resources to interdict potential pathogenic viruses before they

emerge.

Here we use an experimental model system, the bacteriophage

(phage) 6, to determine number, frequency, fitness and structural

consequences of mutations allowing infection of a novel host.

Phage 6 (family Cystoviridae) is a dsRNA virus with a tripartite

genome divided into Small (2,948 bp), Medium (4,061 bp) and

Large (6,374 bp) segments [12–14]. Mutations allowing 6 to

infect novel hosts have been localized to the gene encoding the P3

protein on the Medium segment [11,15].

Two previous studies have systematically examined 6 host

range expansion [11,15]. Duffy et al. isolated 10 6 host range

mutants on each of three different Pseudomonas host strains

including Pseudomonas pseudoalcaligenes [15]. Genetic sequenc-

ing revealed that all mutations occurred in the P3 attachment

protein. Moreover, the authors reported that 7 of the 9 host range

mutations imposed a fitness cost on the canonical host, indicative

of antagonistic pleiotropy. Ferris et al. isolated 40 6 host range

mutants on P. glycinea, of which 16 contained novel mutations

[11]. The authors used a statistical approach to predict the

existence of a further 39 mutations that were missed by their

screen. In addition, they observed broad fitness costs on the

canonical host in agreement with Duffy et al. [11,15].

Our study builds on each of these earlier studies in order to

present a more complete picture of host range expansion in 6.

We isolated 69 independent 6 mutants able to infect the novel

host, P. pseudoalcaligenes, and sequenced the entire P3 gene for

each of them in order to determine the number, location, and

frequency of host range expanding genotypes. For a subset of

unique mutant genotypes, we quantified plaque size on P.
pseudoalcaligenes, and reproductive capacity (fitness) and host

attachment rate on both the canonical host P. phaseolicola and the

novel host, P. pseudoalcaligenes. Finally, we used protein

structural modeling to predict the effects of host range mutations

on P3 attachment protein structure. Our work comes to

qualitatively different conclusions than earlier work, namely that:

1) the coupon collector’s model, as currently construed, cannot

successfully predict the number of potential host range mutations;

2) there are fewer than expected mutations allowing host range

expansion; and 3) fine-grained host infectibility cannot be

accurately predicted by phylogeny. Furthermore, we show that

6 host range mutations usually occur in hotspots on the face of

the P3 attachment protein opposite a hydrophobic anchoring

domain. We propose that mutations on this surface allow 6 to

bind novel host receptors.

Methods and Materials

Study Organisms and Culture Conditions
Cystovirus 6 used in these experiments is a descendant of the

strain originally isolated from bean straw in 1973 [16]. 6’s host of

isolation was the Gram-negative bacterium, P. syringae pathovar

phaseolicola (ATCC # 21781; hereafter PP) [16]. In our study, we

used a nonpermissive host, P. pseudoalcaligenes East River isolate

A (hereafter ERA), to isolate 6 host range mutants (HRMs). The

ERA receptor to which 6 binds has not been determined, but is

likely the ERA pili. Two other nonpermissive hosts, P. syringae pv.

tomato (hereafter TOM) and P. syringae pv. atrofaciens (hereafter

ATRO), were used in some assays. All bacteria and virus stocks

were obtained from Paul Turner, Yale University, New Haven,

CT.

All phages and bacteria were propagated in lysogeny broth (LB:

10 g NaCl, 10 g Bacto tryptone, and 5 g Bacto yeast extract per

liter of water) at pH 7. Bacterial cultures were initiated by

transferring a single colony from a streak plate into 10 mL LB in a

sterile 50 mL flask capped with a 20 mL beaker. Culture flasks

were incubated with shaking (120 rpm) at 25uC for 18 hours,

allowing bacteria to attain stationary-phase density (,66109 cells

mL21).

Virus Stock Preparation
High-titer phage lysates were prepared by adding 1 mL stock

lysate and bacteria (200 mL of PP/ATRO/TOM or 20 mL ERA)

to 3 mL top agar (LB with 0.7% Bacto agar; stored as liquid at

45uC, solidifies at 25uC), and pouring onto 35 mL bottom agar

(LB with 1.5% Bacto agar) in a sterile Petri dish. After 24 hours at

25uC, the resulting plaques were harvested and resuspended in

4 mL of LB, followed by 10 min centrifugation at RCF = 14006g

to pellet agar and bacterial debris. Bacteria-free lysates were

obtained by filtering the supernatant through a 0.22 mm filter

(Durapore; Millipore, Bedford, MA). Phage particles per mL in the

lysates were quantified via serial dilution and titering. Plaques

were counted on plates where 30–500 plaques were visible. The

number of plaque forming units per mL (pfu mL21) in the original

lysate was obtained by multiplying the number of plaques times

the dilution factor. Lysates were mixed 1:1 (v/v) with 80% glycerol

and were stored at 220uC.

Host Range Mutant Frequency
The frequency of HRMs in a phage population was estimated

by plating a known number of wildtype 6 on a lawn of a

nonpermissive host and counting the resulting number of plaques.

Each plaque represents the descendants of a single HRM in the

parent population. To perform this assay, a single plaque was

picked off a lawn of PP and placed in 1 mL LB. This mixture was

serially diluted and plated on PP to estimate phage pfu mL21.

Subsequently, 107 or (108 for TOM) phages were plated on lawns

of the nonpermissive hosts, ERA, TOM and ATRO. Typically, a

6 plaque contains ,56108 pfu/mL so sufficient phage for

plating were easily obtained [17]. Following 48 hrs growth,

plaques were counted to estimate the number of spontaneous

HRMs among the descendants of a single phage. This assay was

repeated at least twenty times per nonpermissive host strain.

Mutant frequency was calculated by dividing the number of

plaques observed by the initial inocula. The resulting data were

analyzed using a one-way analysis of variance (ANOVA) model

with host as a factor. A Tukey-Kramer honest significant

difference test was applied post-hoc to ascertain significant

differences among mean mutant frequencies on each host type.

Host Range Mutant Isolation
Each HRM was isolated independently to minimize bias due to

a ‘‘jackpot effect’’ where multiple descendants of the same

mutational event appear in a population [18]. A 6 lysate was

serially diluted and plated on a PP lawn such that only a few

widely spaced plaques appeared on the bacterial lawn. A single

plaque was picked at random and placed in 1 mL LB. After

vortexing, 100 mL of the plaque suspension was added to 20 mL

ERA and 3 mL top agar and plated. Following 48 hrs growth, a

single HRM plaque was picked from the ERA lawn and

suspended in 500 mL LB. 10 mL from this solution was plated

on an ERA lawn to obtain phage lysate for RNA extraction.

Phage Host Range Mutation Frequency
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500 mL 80% glycerol was added to the remainder which was then

stored at 220uC. This protocol was repeated 69 times to obtain 69

independent HRM isolates.

RNA Extraction and Sequencing
To sequence the region of the Medium segment encoding the

P3 protein, 3 mL phage lysate from each mutant was concentrated

by centrifuging at RCF = 100,0006g for 3 hrs at 4uC using a

Beckman TL-100 ultracentrifuge. The supernatant was discarded

and the pellet was resuspended in 150 mL nuclease-free water.

RNA was extracted using a QIAamp Viral RNA Mini Kit

(QIAGEN, Valencia, CA). Phage RNA was reverse transcribed

using random hexamer primers and Superscript III reverse

transcriptase (Life Technologies, Grand Island, NY), and the

resulting cDNA was used as template for PCR. Three sets of

oligonucleotide primers corresponding to bases 1298–2142, 2042–

3052, and 2877–3873 of 6’s Medium segment were used for the

PCR amplification of the region encoding the P3 host attachment

protein. PCR product was purified for sequencing using ExoSAP-

It (Affymetrix, Santa Clara, CA). PCR product was sequenced in

both directions with a minimum of 3-fold replication (6-fold

coverage). Sequencing was performed at the DNA Analysis

Facility on Science Hill at Yale University. Sequence data were

analyzed using Geneious Pro Ver. 5.4 [19] and MEGA Ver. 5.05

[20]. Chromatograms were verified via MacVector Ver. 12.5.1

bioinformatics software.

Mutant Characterization
We phenotypically characterized HRM genotypes by deter-

mining plaque size on ERA, and by assaying reproductive capacity

(fitness) and attachment rates on ERA and PP. Of our unique

mutant genotypes, we did not assay the three mutants whose

mutations were not identified (see Table 1). Furthermore, we only

assayed one mutant in situations where differences between

genotypes were attributable to synonymous amino acid substitu-

tions. Finally, for one mutant, stored frozen lysate degraded due to

a freezer failure following sequencing, and viable phage could not

be recovered for phenotypic characterization. In sum, we

phenotypically characterized 13 of our 17 unique HRM

genotypes.

Plaque Size Estimates
Plaque sizes for 13 HRM genotypes were estimated from digital

photographs of plaques formed on ERA. All LB plates used for

plaque assays were poured at the same time and were weighed to

maintain consistency. Each mutant’s lysate was diluted and plated

such that between 20 to 100 plaques formed on the ERA lawn

after 48 hrs growth. Digital photographs were taken using a

Kodak Gel Logic 440 digital imaging system. ImageJ software

(NIH, Bethesda, MD; http://rsb.info.nih.gov/ij/) was used to

estimate the total area of the plaque. For each genotype, at least 35

plaque size estimates were made across 3 plates.

Mutant Fitness on Native and Novel Hosts
We assayed absolute fitness for 13 of our 6 mutants and the

wildtype on native and novel hosts using traditional plating

methods. Here 105 phages were added to 36108 host cells in

10 mL LB and incubated at 25uC with rotary shaking (120 rpm)

for 24 hrs. All assays were replicated 5x. Bacteria-free lysates were

obtained by centrifuging 3 mL culture at RCF = 2.756g for

10 min to pellet bacterial debris, then passing the supernatant

through a 0.22 mm filter. Phage particles per mL in the lysates

were quantified via serial dilution and titering on host lawns. For

each assayed mutant genotype, we estimated absolute fitness using

the equation, W~ln Nt
Ni

� �
, where Ni is the starting number of

phage and Nt is the total number of progeny phage produced

during the infection period.

Attachment Rate Assays
The rate of attachment to native and novel hosts of 13 mutant

HRM genotypes was measured using a centrifugation method.

This method relies on the fact that, following centrifugation,

attached phages are pelleted with host cells, while unattached

phages remain in the supernatant. The decline of unattached

phage over time is quantified to give the rate of phage attachment

to host cells. In this assay, 103 phages, which were titered on the

same host as the assay host, were mixed with 56109 exponentially

growing host cells in 10 mL LB with 3-fold replication. The

mixture was incubated with orbital shaking for 40 min. Immedi-

ately after mixing and every 10 min thereafter, a 1 mL sample

from the mixture was centrifuged (RCF = 1,7006g) for 1 min to

pellet the cells then 100 mL from the supernatant was plated on a

PP lawn. The attachment rate constant (k) is calculated as

k~
ln ( Nf

Ni
)

Ct

where Ni is the total number of phage added, Nf is the number of

unattached phage, C is the concentration of bacteria, and t is the

incubation time in minutes.

Attachment Protein P3 3D Structure Prediction
Three-dimensional structures of canonical bacteriophage 6

ancestral strain P3 attachment protein were predicted by

homologue modeling based on nucleotide sequences submitted

to the online I-TASSER server (http://zhanglab.ccmb.med.

umich.edu/I-TASSER) [21,22]. I-TASSER generates three-di-

mensional (3D) atomic models from multiple threading alignments

and iterative structural assembly simulations. Default parameters

were used for the I-TASSER submission. The P3 amino acid

sequence was submitted to the transmembrane structure predic-

tion Dense Alignment Surface software (DAS) website (http://

www.sbc.su.se/,miklos/DAS/maindas.html). DAS uses low-

stringency dot-plots of the query sequence against a collection of

non-homologous membrane proteins using a previously derived,

special scoring matrix to identify transmembrane helices of

integral membrane proteins. Default parameters were used for

the DAS submission.

Results

Mutation Frequency
6 HRMs were readily isolated by plating wildtype phages on

lawns of the nonpermissive hosts, ERA, TOM and ATRO. The

frequency in which ERA-infective HRMs appeared in populations

of 6 phages was 1.1561026 (n = 21, SD 65.21961027). This

value is only slightly lower than 6’s spontaneous mutation rate,

2.761026 [23]. Rates on TOM and ATRO were 1.3961027

(n = 21, SD 61.48961028) and 4.4561027 (n = 21, SD6

1.00161027) respectively. We conducted a one-way ANOVA on

log10 mutant frequency with bacterial host strain as a factor, and

found significant differences in mutant frequency across different

host strains (F = 198.54, DF = 2, P,0.0001). A Tukey-Kramer

post hoc test with a= 0.05 revealed that all compared means were

significantly different from each other. Interestingly, HRMs

Phage Host Range Mutation Frequency
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appeared more readily on the phylogenetic outgroup P.
pseudoalcaligenes ERA than they do on other conspecific P.
syringae pathovars such as P. syringae atrofaciens and P. syringae
tomato [24].

We found at least 17 unique genotypes among the 69 ERA

HRMs isolated and partially sequenced (Table 1). Three HRMs

had no mutations in the sequenced region of the genome, thus we

count them as, at a minimum, one unique genotype. Out of a

combined 78 identified mutations from three studies, the majority

resulted in nonsynonymous substitutions in the P3 amino acid

sequence. Only 2 synonymous substitutions were identified

(Table 1). This result conforms to Duffy et al.’s report of only 1

synonymous substitution among 31 mutations [15]. Synonymous

substitution frequencies were similar between the two studies

(2.5% vs. 3.2%).

Mutation Substitution Frequency
Among all nucleotide substitutions identified by our screen, the

estimated transition/transversion bias R was 1.90. At the 8th

residue, at least 5 possible substitutions (G22A, A23G, A23C,

G24T and G24C) allow infection of ERA. However, of all

substitutions observed, the majority were transitions (51 vs. 9).

These results suggest that host range mutations allowing infection

of ERA are heavily biased towards transitional substitutions. The

significance of this finding is not clear, and may simply be a

consequence of spontaneous deamination.

87% (60 of 69) of all mutants possessed a mutation at the 8th

amino acid residue in the P3 protein. Only 9 mutants (4 single, 1

double, 1 triple and 3 unknowns) did not show a mutation at the

8th residue. This imbalance is higher than was observed in Duffy et

al.’s study, where only 14 of 30 mutants isolated on ERA possessed

mutations at the 8th residue [15]. However, we note that Duffy et

al.’s study did not control for the ‘‘jackpot effect’’ and 20 of 30

mutants were isolated from hosts other than ERA. The dominance

of a single residue is not unprecedented. Ferris et al. reported that

12 of 40 mutants isolated on P. glycinea showed a mutation at the

554th residue [11]. Across all 3 studies and 5 different hosts, there

seems to be 3 ‘‘hotspots’’ for host range mutations in 6. 85.4% of

all amino acid substitutions occurred close to the 8th (54.7%), 138th

(16.7%) and 544th (14%) residues (Fig. 1A; Table 2).

Phenotypic Change Analysis
Changes in mass, electrical charge and hydrophobicity

presumably can alter host receptor binding by changing the

protein’s tertiary structure and altering protein-protein interac-

tions. In Table 3, we compiled the phenotypic characteristics of all

amino acid substitutions allowing infection of ERA observed in

this study and in Duffy et al. [15]. Using this data, we performed a

paired t-test on amino acid mass for each mutation with strain type

(wildtype or mutant) as a factor. Both factors had significant effects

on amino acid mass. Substituted amino acids in mutants had

significantly less mass than the original amino acids in the wildtype

strain (t = 6.73, DF = 77, P,0.0001). This effect was most

pronounced in mutation hotspots (F = 7.25, DF = 71, P,

0.0001). Perhaps lower mass substitutions permit greater flexibility

at the host binding site.

Electrostatic interactions between host and phage proteins are

most likely the basis of phage attachment. If so, we expect that

charge changes incurred by host range mutations should be

consistently in the same direction. A X2 test was used to determine

whether chemical properties of substituted amino acids differed

significantly from the random expectation based on the amino

acid composition of the P3: 9.16% acidic, 8.69% basic, 24.53%

hydrophilic, and 57.45% hydrophobic. We found that mutant

amino acids were significantly more likely to be basic or

hydrophilic than expected by chance (X2 = 110.008, DF = 3,

P,0.0001). Furthermore, the frequency of mutations occurring at

acidic residues was disproportionately high (81/106 or 76%).

Ferris et al. also observed a greater than expected number of loss

of charge mutations [11]. We speculate that these chemical

changes make the P3 protein’s host-binding site more permissive

for binding host receptors.

P3 3D Structure Prediction
Little is known regarding how host range expanding amino acid

substitutions affect phage attachment protein structure. We used I-

TASSER [21,22] and DAS modeling software [25] to predict

structural features of the P3 protein. I-TASSER generates three-

dimensional atomic models from multiple threading alignments

and iterative structural assembly simulations based on homology

to solved structures (Fig. 1B). The predicted model’s confidence

score (C-score) was 22.12, which is intermediate confidence

where scores range from high (2) to low (25) confidence. When

predicting known structures, and using a C-score cutoff .21.5 for

the models of correct topology, both false positive and false

negative rates are below 0.1 [21]. While our C-score did not meet

this threshold, we are confident that the probability of an incorrect

structure is still low. Our view is supported by the ability of the

predicted structure to provide a biologically plausible interpreta-

tion of the mechanistic basis of host range expansion.

DAS modeling software predicts transmembrane protein

segments based on low-stringency dot-plots of query sequences

against a collection of non-homologous membrane proteins using

a previously derived, scoring matrix. Although P3 is soluble [26],

DAS predicted a 21 amino acid hydrophobic membrane-

interactive domain at residues 271 to 291. Based on the fact that,

on the predicted structure, this domain extends out from the P3

core (Fig. 1B), we venture that domain likely anchors the P3

protein to the integral membrane protein P6 [27], thus we will

refer to it as the hydrophobic anchoring domain, or HAD. All host

range mutations occurred on the face opposite the HAD,

suggesting that the opposite surface binds the host receptor, and

that mutations in this region allow infection of novel hosts.

However, this hypothesis assumes that amino acid substitutions do

not substantially alter the protein shape, and that residues on this

face in the ancestor would remain on this face in the mutant.

Figure 1C suggests our conjecture is valid as the E8G mutant’s

predicted structure does not show major structural rearrangements

compared to the wildtype. Interestingly, the most common host

range mutations found in our study alter the surface charge at this

location from negative to neutral, hinting at a proximate

mechanism for host range expansion (Fig. 1C).

Plaque Size
We isolated HRMs by visually identifying and picking plaques

off lawns of the nonpermissive host, ERA. Our results showed that

host range mutations were heavily biased towards the 8th residue.

One possible criticism of our mutant isolation process is that it may

have been biased towards certain mutations simply because these

mutants formed larger plaques that were more likely to be spotted

by the sampler. To test this hypothesis, we determined from digital

photographs the average plaque size for 13 of 17 of our identified

HRMs. Mean plaque size for our mutants ranged from 3.5 to 10.3

mm2 (Table 4). We performed an ANOVA of mean plaque size

with mutant frequency as a factor, and the results confirmed that

plaque size did not predict mutant frequency. While we did find

significant differences in plaque size among genotypes, the two

most frequent genotypes found by our study (E8K and E8G)

Phage Host Range Mutation Frequency
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ranked 4th and 9th respectively in mean plaque size. These data

imply that mutant sampling was not biased. Furthermore, we did

not observe any correlation between fitness and plaque size.

Mutant Fitness on Original and Novel Hosts
The fitness consequences of host range expanding mutations

will play a large role in the ability of these mutants to persist in

host populations [28]. With this in mind, we estimated the

absolute fitness of 13 of our mutant genotypes on the canonical

host, PP, and the novel host, ERA (Table 4). A one-way ANOVA

of absolute fitness with strain as a factor revealed significant

differences among strain fitness on both ERA (Fig. 2A; F = 40.64,

DF = 12, P,0.0001) and PP (Fig. 2B; F = 3.515, DF = 12,

P = 0.0008), but mean fitness on ERA was not correlated with

mean fitness on PP nor was fitness on ERA correlated with the

number of mutations a mutant possessed. In fact, genotypes

containing multiple mutations tended to be less fit than those with

single mutations, although this trend was not significant. Matching

Figure 1. Spatial models of 6 P3 protein mutants. Panel A: Three host range mutation hotspots (accounting for 86% of all mutations) are
highlighted in this linear representation of the 648 amino acid sequence of the 6 P3 gene. The remaining 14% of mutations are not shown. Panel B:
Space-filling representations of the 6 P3 protein are shown as predicted by I-TASSER. Colored regions correspond to the mutation hotspots
depicted in Panel A. A putative hydrophobic anchoring domain (HAD) is shown in orange. In our model, the hydrophobic anchoring domain
penetrates 6’s outer lipid membrane to bind inner membrane protein P6. Panel C: Surface electrical charges of E8G mutant contrasted with
ancestor. Space-filling representations showing predicted surface electrical charges for the 6 E8G host range mutant and its ancestor were
estimated using I-TASSER. Positively- and negatively-charged regions are depicted in blue and red respectively. Arrows indicate the predicted
location of the mutated 8th residue. The most prominent difference between the mutant and the ancestor is the greater surface positive charge at
the presumed host binding domain.
doi:10.1371/journal.pone.0113078.g001
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previous results, fitness on PP was, in all but one case, less than

that of the ancestor [11,15]. These results are indicative of

antagonistic pleiotropy, implying a tradeoff in fitness between

infection of PP and ERA. In addition, the coefficient of variation

(i.e. standard deviation/mean; CV) in mutant fitness was

considerably greater on ERA as opposed to PP (CV: 0.402 versus

0.015). This suggests that mutations expanding the host range

have a much wider range of fitness effects on the novel host.

Attachment Rate
Bacteriophages initiate infections of host cells by binding to

receptors on the surface of the bacterial outer membrane. As such,

the host attachment rate is a critical factor in the ecological success

of a phage. We measured the rate of phage attachment to the

original and novel hosts for 13 mutant genotypes (Table 4). A one-

way ANOVA of the rate of attachment to ERA with mutant

genotype as a factor revealed significant differences among the

strains (F = 10.17, DF = 12, P,0.0001). In addition, we regressed

attachment rate against mutant fitness on ERA to determine if the

two were correlated. Since our HRMs most likely differ only by

mutations in the P3 host attachment protein, we expected that

improved attachment would lead to increased fitness. Indeed, for

13 mutant strains whose fitnesses and attachment rates were

estimated, fitnesses on ERA were correlated with ERA attachment

rates (Fig. 3; F = 11.91, DF = 1, P = 0.0062). However, the linear

regression model accounted for roughly half of the variance in

attachment rate (R2 = 0.54). These results are not surprising given

the difficulty of precisely estimating the 6 attachment rate.

Nevertheless, the results conform to our expectation of a positive

correlation between fitness and host binding ability. By contrast,

attachment rates of the various mutants to PP were not

significantly different, nor were they correlated with mutant

fitnesses on this host. These results might be expected given the

relatively narrow range of fitness differences on PP (Fig. 2;

Table 4).

The rates of attachment to PP were significantly greater than

attachment rates to ERA (One-way ANOVA: F = 216.7, DF = 1,

P,0.0001). This latter result matches expectations since mutant

fitness on PP is approximately an order of magnitude greater than

that on ERA [17]. Presumably, the switching of receptor types and

the lack of adaptation to an ERA receptor may account for the

significant differences in mutant fitness on the different host types.

However, attachment rates to PP and ERA were not correlated,

implying that mutations that increase binding to ERA do not

necessarily increase or decrease binding to PP.

Discussion

6 Host Range Mutation Frequency
Understanding the genetic basis of virus host range expansion is

critical to predicting the emergence of potentially dangerous

viruses. The genetic distance a virus must cross to gain the ability

to infect a novel host may be a dominant factor determining the

probability of emergence. Not all viruses readily infect novel hosts

[29]. For example, many mycobacteriophages isolated on Myco-
bacterium smegmatis are unable to infect M. tuberculosis, even

when large numbers of phage are plated [30]. Presumably

infection of M. tuberculosis requires several simultaneous muta-

tions or even the recombination of whole genes or gene systems.

By contrast, many viruses are able to infect novel hosts via single

nucleotide substitutions [10,31–36]. This minimal genetic distance

Table 2. Host Range Substitution Hotspots in Q6 P3 Proteina.

Substitution This Study Duffy Ferris N Frequencyb Combined Frequencyb

G5S 0 0 2 2 1.3% 54.7%

E8K 23 4 1 28 18.7%

E8G 28 9 5 42 28%

E8D 4 0 0 4 2.7%

E8A 5 1 0 6 4%

Q130R 7 0 0 7 4.7% 16.7%

A133V 0 9 0 9 6.0%

D145G 0 0 3 3 2.0%

N146S 0 0 6 6 3.9%

D533A 0 0 1 1 0.7% 14.0%

D535N 0 0 1 1 0.7%

D554G 3 1 8 12 8.0%

D554A 1 0 1 2 1.3%

D554V 0 0 1 1 0.7%

D554N 0 0 2 2 1.3%

L555F 1 0 1 2 1.3%

Others 9 6 7 22 14.7% 14.7%

Total 81 30 39 150 100% 100%

Amino acid substitutions close together in the primary sequence are grouped together. We combine data from this study with two other studies of Q6 host range
expansion. N is total number of times a substitution was observed across all studies. Frequency is percentage of total substitutions a particular substitution was
observed. Combined frequency is percentage of total substitutions constituted by substitutions in a particular region of the primary sequence. Others category includes
substitutions found outside substitution hotspots.
aData compiled from this study, Duffy et al. 2006 and Ferris et al. 2007 [11,15].
bSome frequencies rounded off to nearest tenth percent.
doi:10.1371/journal.pone.0113078.t002
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can easily be traversed because viral population sizes and mutation

rates allow them to search available sequence space rapidly. The

phage 6 is an excellent model to study virus emergence via single

nucleotide substitutions because such HRMs are easily isolated,

sequenced, and characterized in the laboratory [11,15].

In this study, we found that 6 HRMs appear on ERA at a rate

(1.1761026) slightly lower than the estimated 6 mutation rate of

2.761026 per nucleotide per generation. Thus our figure seems

somewhat low given that there are multiple possible mutations

allowing host range expansion in the 6 genome (Table 1).

However, Chao et al.’s estimate was derived from the frequency of

revertants from an amber mutation (sus297), and it was assumed

that there was only one way to revert [23]. If there are multiple

ways to revert from Chao’s et al.’s amber mutation, then theirs is

an overestimate of the mutation rate. Moreover, Chao et al.

estimated the mutation rate at a single locus, but the mutation rate

may vary across the genome [37,38]. At any rate, it is clear that,

given their potentially enormous population sizes, 6 HRMs can

be isolated relatively easily.

Our results indicate that there is considerable variation in the

ability of 6 to mutate to infect nonpermissive host strains. While

there are certainly strong coarse-grained trends in infectivity, e.g.,

6 seems mainly restricted to the pseudomonads [39], infectivity

within this group is currently unpredictable. Phage 6 is better

able to mutate to infect P. pseudoalcaligenes ERA, a distant

relative of P. syringae pv phaseolicola [24], than two pathovars

from the same species, P. syringae pv tomato and P. syringae pv

atrofaciens [40]. Duffy et al. and Cuppels et al. found many

examples of other P.syringae pathovars nonpermissive for 6 even

at high plating densities [15,39]. For example, Duffy et al. were

unable to isolate HRMs on at least 8 P. syringae pathovars despite

plating over 1010 6 phages on each pathovar [15]. Similar results

were obtained by Cuppels et al. [39]. It would appear that

phylogeny is a poor predictor of infectivity, at least at the fine scale

level within the pseudomonads. 6’s ability to expand its host

range appears to be somewhat idiosyncratic, which is to be

expected given myriad possible outcomes for parasite-host

coevolution [41]. It may be that the P. syringae strains have

experienced recent coevolution with 6 or its close relatives, and

thus have acquired resistance to infection to these phages. By

contrast, more distantly Pseudomonads may not have recently

experienced consistent 6 infection, therefore remain relatively

sensitive to this virus.

The frequency of mutants lacking mutations in the P3 (4.3%)

was similar to that found in Ferris et al.’s study (2.5%) [11]. These

results provide strong evidence that the P3 sequence is the

primary, but not exclusive, determinant of host range among

phage 6 [42]. While it is tempting to speculate that additional

host range mutations might be found in membrane fusion protein

P6, Duffy et al. sequenced the P6 for 30 6 HRMs and found no

mutations [15]. As of publication, no other candidate genes for

host range expansion on ERA have been explicitly identified in 6;

however one study has reported that a mutation allowing infection

of ERA was localized to the large segment [43]. This segment

contains a gene encoding an RNA-dependent RNA polymerase

and genes associated with RNA packaging and procapsid assembly

[12].

The number of ways a virus can mutate to infect a novel host is

an important parameter in predicting its potential for emergence

[28]. Using a method based on the coupon collector’s problem of

statistical theory, Ferris et al. estimated the total number of

possible mutations that allow 6 to infect a novel host, P. glycinea
[11]. The coupon collector’s problem can be informally stated as:

Given n coupons, how many coupons will need to be sampled

before each coupon is observed at least once [44]? One

assumption of the coupon collector’s problem is that all coupons

are equally likely. This assumption does not hold for genetic

mutations as some types are more likely than others are. Ferris et

al. accommodate this simplification by adjusting the equation to

account for differences in the probabilities of transitions and

transversions. Since they found 19 distinct genotypes among their

40 independent samples, they estimated that further sampling

Figure 2. Mutant absolute fitness on canonical and novel hosts.
Panel A: Absolute fitness of 13 6 host range mutants on the novel
host, ERA. Each point is the mean of 5 replicate measurements of
fitness. Bars are 61SE. Panel B: Absolute fitness of 13 6 host range
mutants on the canonical host, PP. Each point is the mean of 5 replicate
measurements of fitness. Fitness of wildtype 6 is shown by the dotted
line for comparison. Bars are 61SE.
doi:10.1371/journal.pone.0113078.g002

Figure 3. Mean ERA attachment rate (k) is plotted against
phage 6 fitness on ERA. Attachment to ERA was correlated with
fitness on ERA for 6 host range mutants. Each point is the mean of 3
replicate measurements. Dotted lines show 95% confidence intervals.
doi:10.1371/journal.pone.0113078.g003
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would uncover an additional 36 mutations [11]. If Ferris et al.’s

estimates are correct, it would mean that 1.3% of all possible

nonsynonymous substitutions in P3 confer the ability to infect

ERA (i.e., 55 of 4,380 potential nonsynonymous changes expand

host range).

Although their HRMs were isolated on a different host, P.
glycinea, both their study and ours found similar frequencies of

transitions among all mutations (90% in Ferris et al., 84% in our

study). However, out of 69 HRMs, we found only 17 distinct

genotypes. Ferris et al. isolated almost the same number of distinct

genotypes in half as many samples [11], which may be a

consequence of the different hosts of isolation. Since Duffy et al.

observed 10 unique genotypes out of 30 isolates (33% unique) [15]

and we observed at least 17 unique genotypes out of 69 (26%

unique), the implication is that more unique genotypes would be

found with further sampling. However, a closer inspection of our

data suggests otherwise. 8 of 17 of our unique genotypes were only

unique because of second- or third-site mutations. If we consider

only those mutations that are sensu stricto necessary for infection

of ERA, we only find a combined 13/99 (13%) unique genotypes

among our and Duffy et al.’s study [15]. In fact, we only found 3

unique sensu stricto substitutions not found by Duffy et al. study

and they found 6 not identified in ours.

If 1.3% of all possible nonsynonymous substitutions allowed 6

to infect ERA, we would expect to see more unique genotypes

among our isolates. Our results also indicate that some mutations

occur far more frequently than expected by chance even if

differences in transitions and transversions are accounted for. One

possibility is that low fitness HRMs are eliminated by within

plaque selection and consequently are not represented in the

mutant collection sampled. We have no means to ascertain the

validity of this hypothesis at this point, but it could be an

interesting question to approach by deep sequencing of single

HRM plaques. However, at the same time, it seems likely that

additional factors that are not currently well understood, such as

RNA structure, codon bias and variation in the mutation rate

across the genome, influence the probability of mutation at any

particular locus. Nonetheless, Ferris et al.’s method is a valuable

step forward towards the estimation of an important parameter

relevant to virus emergence.

Mutation Hotspots
We found that mutations expanding the host range of phage 6

were more likely to appear in certain regions of the P3 gene than

others. Such mutation hotspots have been observed among virus

drug resistance [45–47], host range [48,49], hemagglutinin [50],

capsid [51], and core antigen genes [52] among others. Mutation

hotspots are evidence of strong positive selection for substitutions

that provide an adaptive advantage in a particular environment

[53,54]. Growth on a novel host should impose strong positive

selection for nonsynonymous substitutions at loci associated with

host range expansion. Thus, we can use the frequency of

mutations found in our survey to identify regions of the P3

protein that are important in attachment to a host receptor. 85.4%

of all mutations identified by our study and by Duffy et al. [15]

were found in just three regions (near 8th, 133rd and 554th residues)

of the P3 gene (Fig. 1A; Table 2). We venture that these hotspots

on the P3 protein are important in host range determination

among 6 phages.

Structural Speculations
We used the structural modeling software I-TASSER [21,22] to

predict the structure of the P3 protein from its amino acid

sequence. The resulting structure showed homology to bacterial

alcohol dehydrogenase quinoproteins [55–57]. Interestingly, in the

best-fit model, our putative mutation hotspots were located close

together on one face of the ,60 Å diameter P3 protein (Fig. 1B).

Residues 8 and 130 were located at the surface 18 Å from each

other, and residue 554 was located subsurface about 15 Å from

residue 8 and 23 Å from residue 130. Other less frequently

observed mutations also occur near this region (Fig. 1B). We

propose that this region of the P3 protein is a host-binding domain

and directly interacts with host receptors. This supposition is

supported by the fact that the host binding domain is diametrically

opposite the hydrophobic anchoring domain (residues 271–291)

predicted by DAS (Fig. 1B). The most parsimonious explanation is

that this domain serves to anchor the P3 to the integral membrane

protein P6 [27], which leaves the putative host binding domain

exposed to the environment.

Mutations allowing infection of ERA may not significantly alter

the tertiary structure of the P3 protein. I-TASSER structural

modeling did not show any major structural rearrangements in

predicted structures for mutant strains. Rather mutations may

alter the host-binding domain’s electrical charge from negative to

positive or neutral (Fig. 1C). This difference in electrical charge

may allow mutant 6 to bind the ERA host receptor. The

presumptive ERA receptor is its pilus, but this has not been

definitively determined. If the ERA receptor were indeed the pilus,

it would be interesting to know if its electrical properties are

appreciably different from those of the pilus of PP. Moreover, it is

plausible that neutral or positive electric charges and smaller mass

amino acids confer more flexibility to the binding region, allowing

a greater variety of structures to be bound [58]. It would be

interesting to determine if host range expanding mutations more

frequently result in the substitution of small for large amino acids

or alter the charge of the binding site.

Fitness on Native and Novel Hosts
Fitness on native and novel hosts was assessed using standard

flask productivity assays. Phage 6 HRMs showed a broad range

of fitness values on ERA, some of which were significantly different

from the others (Fig. 2A). Mutant fitnesses on the native host, PP,

were much greater than those on ERA (Fig. 2B). Since 6 is

presumably well adapted to native but not novel hosts, these results

meet our expectations. Supporting these results, we found that the

coefficient of variation (CV) of mutant fitnesses on PP was much

lower than CV of mutant fitnesses on ERA. These results conform

to theoretical expectations that there should be less variation in

fitness values close to a fitness peak on an adaptive landscape [59].

Directional selection should erode the variation in fitness as a

population increases in fitness in a particular environment. Thus, a

virus that is adapted to a particular host should have lower

variation in fitness on that host as opposed to a host to which it is

not well adapted.

We found that, in concert with previous studies [11,15],

mutations expanding the 6 host range usually reduced fitness

on the original host, PP. On average, HRM fitness on PP was

reduced about 2.5% compared to the wildtype. Negative genetic

associations between host types is an example of antagonistic

pleiotropy [60,61]. The adage that ‘‘a jack of all trades is a master

of none’’ is well supported, at least among 6 host infections.

However, the ultimate cause of host specialism or generalism

remains opaque. Intuitively one would imagine that a broader host

range would produce greater returns than a narrow one as long as

the reduction in productivity on a single host was offset by an

increase in overall productivity [62]. With regard to the present

system, it seems unlikely that the relatively minor cost in fitness on

the original host imposed by host range expansion should
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outweigh the benefits of an expanded host range. Moreover, we

isolated one mutant (S28) whose fitness on the canonical host

actually increased following the acquisition of a mutation

permitting infection of ERA. Why then are broad host range

phages relatively rare? The rarity of generalism may be a result of

the interaction of widespread habitat patchiness, reduced dispersal

and the ubiquity of local adaptation [63]. If these general trends

hold, competition within a patch should favor the evolution of

specialism. This hypothesis should be amenable to testing via

experimental evolution studies.

As a rule, we might expect that novel hosts will present a greater

challenge to virus reproduction than native hosts, a conclusion that

is supported by many examples in the literature [64–66]. Novel

hosts may represent ecological sinks, defined as habitats where the

basic reproductive rate is ,1. Our fitness results support this

conjecture, and suggest that 6 probably experiences a broader

range of sink conditions on ERA than it does on PP.

Consequently, 6 population extinction is more likely in a habitat

populated by ERA than one populated by PP [17]. Given the

many HRM genotypes over a broad range of fitness values, 6

should be a valuable system to test hypotheses regarding virus

emergence [28].

Attachment to Native and Novel Hosts
With the exception of the three non-P3 mutants, the mutant

strains are most likely isogenic outside the host attachment protein

region. The differences in fitness are expected to result mainly

from differences in binding efficiency to the host receptor. Our

results indicate that different suites of mutations had highly

divergent attachment rates and fitnesses on the novel host (Fig. 2

and 3). Nonetheless, a regression of phage fitness on ERA against

attachment rate to ERA revealed a significant positive correlation.

Ferris et al. reported a similar result for 6 infecting P. glycinea
[11]. These results make intuitive sense as mutants that are better

able to bind to the host are expected to reproduce at a higher rate.

Moreover, attachment to ERA was significantly lower than to PP,

which is also reflected in the large differences in fitness.

Implications for Disease Emergence
This study and other recent studies of 6 host range expansion

suggest several generalizations. First, phylogeny may only allow

relatively coarse-grained predictions of virus host range. Phage

6’s ability to mutate to infect close relatives was frequently worse

than its ability to infect distant relatives. Second, nonsynonymous

substitutions allowing host range expansion may occur at hotspots

in the host attachment protein. This prediction makes intuitive

sense as host attachment relies on binding affinity between host

and virus proteins. In addition, many host range-expanding

mutations may not result in large structural rearrangements in host

attachment proteins. Rather, amino acid substitutions may result

in more subtle changes in protein surface charges, allowing

binding to different host proteins. Furthermore, the number of

nonsynonymous substitutions allowing host range expansion is

probably relatively small considering the number of possible

substitutions. Nonetheless, the relatively high virus mutation rate

allows viruses to rapidly acquire host range expanding mutations

despite their relative rarity. Finally, initial fitness on a novel host is

usually much less than that on the original host, and antagonistic

pleiotropy among host range mutations is common. This

generalization conforms to our expectations since evolutionary

tradeoffs in different habitats are anticipated to be ubiquitous.
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