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Lung cancer has the highest tumor incidence in China. Lung squamous cell carcinoma
(LUSC) is the most common type, accounting for 40–51% of primary lung cancers. LUSC
is slow in growth and late in metastasis. Immune-related genes (IRGs) and immune
infiltrating cells play a vital role in the clinical outcomes of LUSC. It is important to
systematically study its immune gene map to help the prognosis of cancer patients. In
this study, we combined the prognostic landscape and expression status of IRGs
downloaded from the TCGA and InnatedDB databases and systematically analyzed
the prognostic information of LUSC patients to obtain IRGs. After systematically
exploring the survival analysis, prognosis-related genes were found, and the PPI
network revealed that a total of 11 genes were hub genes. A two-gene prognosis risk
model was established bymultivariate Cox analysis. Two IRGs were closely correlated with
the prognosis of LUSC. Based on these two genes, a new independent prognostic risk
model was established, and this model was further verified in the GEO database.
Moreover, the risk score of the model was correlated with sex, survival status, and
lymphatic metastasis in LUSC patients, and the predictive risk of the prognostic risk model
was significantly positively correlated with five kinds of immune cells (CD4 T cells, CD8
T cells, neutrophils, macrophages, and dendritic cells). This study comprehensively
analyzed immunogenomics and presented immune-related prognostic biomarkers
for LUSC.
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INTRODUCTION

Lung cancer is one of the most commonmalignancies worldwide and is caused by malignant cancers
(Sung et al., 2021). Lung cancer can be divided into two typical subtypes, small cell lung cancer
(SCLC) and non-small-cell lung cancer (NSCLC), and NSCLC, which accounts for approximately
83% of lung cancer patients, is further categorized into lung squamous cell carcinoma (LUSC) and
lung adenocarcinoma (LUAD) according to histological classification and pathogenesis (van
Meerbeeck et al., 2011). Moreover, LUSC accounts for approximately 30% of NSCLC cases and
has an unsatisfactory prognosis due to the lack of effective targeted treatment. NSCLC patients are in

Edited by:
Yuchen Liu,

Shenzhen University, China

Reviewed by:
Lihua Mo,

University of Macau, China
Zhijie Xiao,

The University of Hong Kong, Hong
Kong SAR, China

*Correspondence:
Xiaofeng Li

13530597138@163.com
Guihong Chen

guihongchen1972@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular Diagnostics and
Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 01 February 2022
Accepted: 24 February 2022

Published: 08 April 2022

Citation:
Zhang X, Xiao J, Fu X, Qin G, Yu M,

Chen G and Li X (2022) Construction of
a Two-Gene Immunogenomic-Related

Prognostic Signature in Lung
Squamous Cell Carcinoma.

Front. Mol. Biosci. 9:867494.
doi: 10.3389/fmolb.2022.867494

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8674941

ORIGINAL RESEARCH
published: 08 April 2022

doi: 10.3389/fmolb.2022.867494

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.867494&domain=pdf&date_stamp=2022-04-08
https://www.frontiersin.org/articles/10.3389/fmolb.2022.867494/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.867494/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.867494/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.867494/full
http://creativecommons.org/licenses/by/4.0/
mailto:13530597138@163.com
mailto:guihongchen1972@163.com
https://doi.org/10.3389/fmolb.2022.867494
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.867494


the advanced stage once diagnosed, and their 5-year survival rate
is remarkably lower than that of early-stage patients (Tarver 2012;
Fujimoto and Wistuba 2014; Wang BY. et al., 2020).

Currently, many treatment modalities, such as surgical
resection, radiotherapy, chemotherapy, targeted therapy, and
immunotherapy, have been applied to treat lung cancer
(Lemjabbar-Alaoui et al., 2015). Surgical resection depends on
the advanced stage of cancer. For early-stage NSCLC patients,
surgical resection is often the first choice, while for advanced-
stage patients whose tumors cannot be removed by surgery, a
targeted and more effective therapy depending on molecular
tumor characteristics or immunotherapy combined with
chemotherapy is more useful (Zarogoulidis et al., 2013). Lung
cancer is characterized as a highly complex and heterogeneous
disease and several causes are related to lung cancer mortality,
such as environmental factors and tobacco smoking habits, which
are twomajor factors in lung cancer (Malhotra et al., 2016; Lipfert
and Wyzga 2019). Currently, an increasing number of studies
have indicated that some molecular characteristics and signaling
pathway targets also contribute to lung cancer development.
Abnormal genetic alterations, such as epidermal growth factor
receptor (EGFR) (Castellanos et al., 2016; Rodriguezcanales et al.,
2016; Liu et al., 2017) and epidermal growth factor receptor 2
(HER2) (Pillai et al., 2014; Catherine et al., 2017), are frequently
described to participate in the development of lung cancer.

Thus, to provide a better prognosis suggestion and prediction
for patients receiving more precise treatment for LUSC, a
predictive prognosis model based on prognostic gene
biomarkers is urgently needed. Several clinical information
and gene expression datasets can be found in public databases,
such as Gene Expression Omnibus (GEO) and The Cancer
Genome Atlas (TCGA), providing possibilities for bioinformatics

analysis in the identification of novel promising biomarkers for
cancer treatment. For example, Gao et al. (2020) identified a five-
gene-based risk model signature (CCNA2, AURKA, AURKB, and
FEN1) to predict the prognosis status of LUSC patients. In addition,
the prognostic value of potential immune-related genes (IRGs) was
explored to utilize personalized immune signals for optimal
prognostic evaluations in nonsquamous NSCLC patients.
Although it was reported recently that an 11-gene-related
prognostic model, including CXCL5, MMP12, PLAU, ELN, JUN,
RNASE7, JAG1, SPP1, AGTR2, FGFR4, and TNFRSF18, performed
well in the prognostic forecast in LUSC (Zhang, et al., 2020a), the
model was still too complex and inconvenient for clinical diagnosis
and practical application. Thus, a simpler and more feasible
prognostic risk model that can reveal the prognostic significance
and clinical correlation of IRGs in LUSCneeds to be further explored.

Accordingly, in this paper, we focused on the prognostic
analysis of LUSC patients. We systematically analyzed the
clinical information and survival status of LUSC patients
downloaded from the TCGA, InnatedDB, and GEO databases
to establish a two-gene prognosis risk model for LUSC patients,
which also has an excellent ability to predict immune cell
infiltration. Our research aimed to provide the potential to
provide better treatment advice for LUSC patients.

MATERIALS AND METHODS

Data Collection
The gene expression dataset and corresponding clinical
information for LUSC containing 489 LUSC tissues and 49

TABLE 1 | Clinical characteristics of TCGA sample.

Parameter Subtype Patients

Age <70 269
≥70 215
Unknown 5

Gender Women 127
Men 362

M stage M0 402
M1 7
MX 76
Unknown 4

Cancer status Tumor free 249
With tumor 152
Unknown 88

T stage T1 49
T1a 24
T1b 38
T2 168
T2a 86
T2b 32
T3 69
T4 23

N stage N0 313
N1 126
N2 40
N3 5
NX 5

FIGURE 1 | Workflow of the bioinformatics analysis.
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FIGURE 2 | Differentially expressed genes and functional enrichment analysis of differentially expressed IRGs. (A) Volcano plot and heatmap demonstrating
differentially expressed genes between lung squamous cell carcinoma (LUSC) and nontumor tissues. Green and red dots represent differentially expressed genes, and
gray dots represent genes that were not differentially expressed. (B) Venn diagram shows the common differentially expressed genes and immune-related genes. (C)
Significantly enriched KEGG pathways and enriched GO terms based on biological processes. GO = gene ontology, IRGs = immune-related genes, KEGG = Kyoto
Encyclopedia of Genes and Genomes.
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normal tissues were downloaded from the TCGA database
(https://tcga-data.nci.nih.gov/tcga/) (Table 1) (Tomczak et al.,
2015). The dataset (accession number: GSE74777) with gene

expression information and survival information data,
containing a total of 109 tumor samples, was downloaded
from the Gene Expression Omnibus (GEO) (https://www.ncbi.

FIGURE 3 |Overall survival-related genes and enrichment analysis. (A)Overall survival curve of ANGPTL3, IL1RL2, FGA, and CSF2. (B)GO enrichment analysis of
46 overall survival-associated genes.
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FIGURE 4 | Identification of hub immune-associated genes. (A) Protein-protein interaction network of hub IRGs. (B) Kyoto Encyclopedia of Genes and GO
Biological Process analysis of hub IRGs.
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nlm.nih.gov/geo/), which was used as a verification set. A total of
1,697 genes from the InnateDB database (https://www.innatedb.
ca) (Bhattacharya et al., 2014) and 1811 genes from the Immport
database (https://www.immport.org) were identified as IRGs. The
research procedure is shown in Figure 1.

Analysis of IRGs in LUSC
To obtain the differentially expressed genes (DEGs), 489 LUSC
tissues and 49 normal tissues shared by the TCGA database were
analyzed by the R software limma package, taking a log2 | fold
change|>1 and a false discovery rate (FDR) < 0.01 as screening
criteria. The similarity genes in DEGs and 3,187 IRGs searched
from the InnateDB and Immport databases were further
compared to obtain a series of IRGs in LUSC.

Survival Analysis
Multivariate survival analysis in 489 patients with LUSC was
performed to investigate the relationship between IRGs and
prognosis using the R software survival package. Then, the

FIGURE 5 | Expression profiles and mutation landscape of hub immune-related genes. (A,B) Forest plot of the mean difference showing gene differences between
LUSC and nontumor samples (left panel). Forest plot of hazard ratios showing the prognostic values of genes (right panel). (C) The diagram reflects themutation type and
frequency of risk genes.

FIGURE 6 | Transcription factor-mediated regulatory network.
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prognostic risk model of LUSC was built on the basis of the
multivariate coefficiency multiplied by expression data. The
Kaplan-Meier method and long-rank test, taking the long-rank
test and p value < 0.05 as statistically significant, were used to
determine the relationship between overall survival (OS) and
survival-related prognostic genes. The property of prognostic
factors was computed by the survival ROC by computing the
area under the curve (AUC) (Heagerty et al., 2000). Moreover, to
investigate the degree of precision of the prognostic risk model in
predicting the survival status of LUSC patients, calibration curves
and ROC curves were carried out.

Functional and Pathway Enrichment
Analysis
To further verify whether the IRGs participated in functional
regulation and pathways, GO and KEGG enrichment analyses
were performed using the R programming language. First, up-
and downregulated genes were both analyzed, and a p value <
0.05 was considered the threshold value. Furthermore, a series
of gene functional enrichment analyses, including GO and
KEGG analyses, were conducted to identify the major
biological attributes. Finally, the GO-plot package was used
to generate a bar chart of GO and a circle diagram of KEGG.

FIGURE 7 |Construction of the prognostic model. (A)Receiver operating characteristic (ROC) curve showing the prognostic value of the risk signature. (B) Patients
in the high-risk group demonstrate shorter overall survival. (C) Survival conditions of LUSC patients.
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Transcription Factor-mRNA Interaction
Analysis
The regulatory relationship between transcription factors and
mRNAs was downloaded from the TRRUST v2 database (www.
grnpedia.org/trrust) (Mei et al., 2017). Those transcription factors
that interacted with hub genes were selected to construct the
interaction network to establish a correlation between IRGs and
TFs, which was further exhibited by Cytoscape.

Recognization of Hub Genes and
Verification of Their Molecular
Characteristics
The IRGs were analyzed with the STRING database (https://
string-db.org/) to establish a protein–protein network and further
reorganized by Cytoscape software. Related hub genes were found
according to the node degree in the network, and the mutation
information of those hub genes was obtained based on the
Cbioportal website (http:/www.cbioportal.org/) (Cerami et al.,
2012; Gao et al., 2013).

Establishment and Verification of the
Prognostic Risk Model
A multivariate Cox proportional hazards regression analysis was
performed using the candidate prognostic genes to build a risk
prognostic risk model. Furthermore, the median value of 107
cancer samples from the accession set GSE74777 in the GEO
database, which was utilized as the training dataset, was
calculated separately to evaluate the prediction accuracy of the
prognostic risk model. p < 0.05 was considered significant.

The Relationship Between the Prognostic
Predictive Model and Other Clinical
Characteristics
The infiltration status of six kinds of immune-related cells from
cancer tissues was calculated on the TIMER website (https://
cistrome.shinyaoos.io/timer/). T tests and Kruskal–Wallis tests
were performed to identify the relationship between the
prognostic predictive model and other infiltration clinical
factors separately. p < 0.05 indicates statistical significance.

RESULTS

Identification of Differentially Expressed
Immune-Related Genes
The number of IRGs was found to be 3,187 by taking the union of
genes downloaded from the InnateDB and Immport datasets,
which were 1,697 and 1811, respectively.

There were 1,697 IRGs downloaded from the InnateDB database
(https://www.innatedb.ca/) and 1811 IRGs downloaded from the
Immport database (https://www.immport.org). We combined the
two results and found a total of 3,187 IRGs. A total of 6,152 DEGs
were screened after screening the gene expression data of 489 LUSC

tissues and 49 normal tissues by taking log2 | fold change|>1 and
false discovery rate (FDR) < 0.01. When comparing the gene
expression levels in the normal tissues, 4,102 genes were
upregulated, and 2050 genes were downregulated (Figure 2A).

Combining 6,152 differentially expressed genes with 3,187
IRGs, the 384 genes in the intersection were considered LUSC
IRGs (Figure 2B). Functional and pathway enrichment analysis
of the 384 IRGs revealed their role in a biological network related
to innate immune regulation and humoral immune reaction
regulation (Figure 2C).

Identification of Prognosis-Related Genes
To select genes related to the prognosis of LUSC, 384 IRGs were
divided into high-expression and low-expression groups
according to the median expression level (Supplementary
Table S1). After performing a survival analysis, 46 survival-
related prognostic genes were found (Supplementary Table
S2). Some of the gene survival curves are shown in Figure 3A.
Furthermore, functional and pathway enrichment analyses were
carried out and revealed that these genes were involved in cell
factor regulation and cell maturation regulation (Figure 3B).

Construction of the PPI Network and
Identification of Hub IRGs
We placed forty-six prognostic IRGs into the STRING database to
investigate their value in the protein–protein interaction network,
and we reconstructed them with Cytoscape software. The PPI
network showed that it contained 32° and 53 sides. A total of 11
hub IRGs were identified by calculating the degree of every
prognostic IRG and taking degree>3 (Figure 4A). Functional and
pathway enrichment analyses were performed and indicated that the
hub IRGs were involved in cell factor-receptor interactions and the
tumor necrosis signaling pathway (Figure 4B).

The expression signature of hub IRGs and the HR forest graph
showed that most of those hub IRGs were upregulated and were
risk factors (Figures 5A,B). Furthermore, we obtained their
genetic mutation information from the Cbioportal website to
explore their biological molecular characteristics. We found that
amplification and mRNA upregulation were the two most
common mutation types (Figure 5C).

Transcription Factor Regulatory Network
We screened human TF-mRNA regulation from the TRRUST v2
database and showed that many transcription factors interacted
with hub IRGs, including MYB, SP1, and SP3 (Figure 6).

Construction of a Prognostic Risk Based on
Hub IRGs
A multivariate Cox analysis was performed to explore the
associations between the hub IRGs and the predicative
signature, and two key genes (FGA and CSF2) were finally used
as independent prognostic factors in establishing the prognostic
risk model of LUSC patients. The prognostic risk model of LUSC
based on two independent genes was as follows: Risk Score =
EXPFGA*0.1340112 + EXPCSF2*0.2431801.
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The AUC value of the prognostic risk model was 0.61 when
predicting LUSC patient samples at 1 year, indicating that the
expression of FGA and CSF2 could predict the prognosis status of
LUSC patients (Figure 7A). We calculated the prognostic risk
value of individual patients and classified them into high-risk and
low-risk groups on the basis of their expected risk value in the
prognostic risk model, which showed that there was a remarkable
difference between the two groups (Figures 7B,C).

Verification of the Prognostic Risk Model
To further validate the predicative ability of the prognostic risk
model of LUSC, the GSE74777 dataset, including 107 cancer
samples from the GEO database, was collected. The AUC (OS)
and AUC (PFS) values of each sample were calculated, and the
predicative values of the prognostic risk model at 1 year were 0.52
and 0.65, respectively (Figures 8A, C). In addition, we calculated
the risk value of every patient and categorized them into high-risk
and low-risk groups based on their risk value in the prognostic
risk model, which showed that it was significant in both groups
(Figures 8B,D) (p < 0.05).

Clinical Utility of the Prognostic Signature
We applied T test and Kruskal–Wallis analyses to evaluate the
relationship between the prognostic risk model of LUSC and
clinical characteristics (age, sex, clinical stage, and metastasis).
The statistical tests showed that the patients with LUSC, age,
distant metastasis stage T, andM had no significant correlation
with the prognostic prediction, while the recurrence risk in
different T stages had a relationship with extent (p = 0.059/
p = 0.055) (Figures 9A–E). However, the prognostic risk was
significantly associated with lymph node metastasis N
(Figure 9F) (p < 0.05).

Immunocyte Infiltration in the LUSC
Microenvironment
We calculated the infiltration signature of six kinds of immune-
related cells on the Timer website and evaluated the correlation
between the predictive risk of the prognostic risk model of LUSC
and the infiltration of those cells. The predictive risk of the
prognostic risk model was significantly positively correlated

FIGURE 8 | The prognostic value of the prognostic index. The ROC curve verifies the accuracy of the combinedmodel in predicting the 1-year survival rates (A) and
progression-free survival (C) of LUSC patients. Patients in the high-risk group suffered shorter survival rates (B) and progression-free survival (D).
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with five kinds of immune cells except for B cells (Figure 10C)
(CD4 T cells (Figure 10A), CD8 T cells (Figure 10B), neutrophils
(Figure 10D), macrophages (Figure 10E), and dendritic cells
(Figure 10F). Interestingly, the infiltration status increased when
the predictive risk of the prognostic risk model was high.

DISCUSSION

Lung cancer is heterogeneous and has no effective treatment
options when it progresses to the late stage (Leitao et al., 2018).
The genomic mutation patterns in LUSC are complex (de Sousa

FIGURE 9 | The relationships between the immune-based prognostic index and clinical features. (A) Prognostic index and age; (B) prognostic index and sex; (C)
prognostic index and distant metastasis; (D) prognostic index and cancer status; (E) prognostic index and T stage; (F) prognostic index and node metastasis.
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and Carvalho 2018). Mutations in ALK and EGFR have caused
huge changes in the treatment of patients with lung
adenocarcinoma (Lynch et al., 2004; Paez et al., 2004; Soda
et al., 2007). However, ALK fusions or EGFR mutations do
not exist in LUSC (Rekhtman et al., 2012). Thus, a novel
LUSC biomarker with high specificity and high sensitivity
needs to be identified for clinical diagnosis and prognosis.
Recently, the importance of IRGs in many cancer
immunotherapies has been accepted and is on the rise
(Campbell et al., 2016; Faruki et al., 2017). However, an
overall genome-wide analysis of LUSC is still needed to
explore the clinical significance and even the molecular
mechanism. In this study, we showed the effects of IRGs on
LUSC clinical significance and explained the molecular
features. These IRGs are potentially valuable for clinical
characteristics.

To construct a simple and suitable formula to predict the
clinical outcomes of LUSC patients, two IRGs (FGA and CSF2)
were selected from 11 hub IRGs to establish the risk signature
(risk score = EXPFGA*0.1340112 + EXPCSF2*0.2431801). LUSC

patients with high-risk values have a poor prognosis, and this risk
signature has the ability to distinguish high-risk LUSC patients.
Moreover, this signature may be applied as an independent
prognostic factor.

FGA encodes the subunit of the coagulation factor fibrinogen,
which is a component of the blood clot (Simpson-Haidaris and
Rybarczyk 2001; Staton et al., 2003). Mutation of FGA can result
in hereditary systemic amyloidosis (Benson, 2005). It was
reported that FGA and related fragments are involved in
tumor angiogenesis and metastasis. FGA and its catabolite can
regulate the overall antigenicity of solid tumors (Wang M. et al.,
2020). Importantly, FGA can interact with HBsAg and induce
apoptosis in HepG2 cells (Li et al., 2014). It has been reported that
FGA inhibits cell proliferation and migration and induces
apoptosis in A549 cells. Wang et al. (2020) recently found that
knockout of fibrinogen alpha increased tumor growth and
metastasis by activating the integrin-AKT signaling pathway in
lung cancer. Furthermore, the FGA isoform has been shown to
be a predictor of targeted therapy in patients with EGFR-
mutated lung adenocarcinoma (Shang et al., 2019). Colony

FIGURE 10 | Relationships between the immune-related prognostic index and immune cell infiltration. (A) CD4 T cells; (B) CD8 T cells; (C) B cells; (D) dendritic
cells; (E) macrophages; (F) neutrophils.
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stimulating factor 2 (CSF2) is a main factor that regulates the
production, differentiation, and function of granulocytes and
macrophages (Hamilton 2008; Hamilton and Achuthan 2013).
Many previous studies indicated that CSF2 produced by cancer
cells is involved in the autocrine regulation of cell growth in
human skin, prostate, bladder, melanoma, gastric colon and
non-small-cell lung cancer cells (NSCLC) (Oshika et al., 1998;
Mueller et al., 1999; Lammel et al., 2012; Yi-Ying et al., 2016). In
human glioma cells, CSF2 can promote cell growth and invasion
(Sielska et al., 2020). In addition, the expression of these IRGs
can be regulated by the transcription factors MYB, SP1, and SP3,
which are related to tumor immunity (Beug et al., 2019; Liang
et al., 2021; Yu et al., 2021). These findings imply that the
identified IRGs or TFs may be therapeutic targets or novel
biomarkers for LUSC.

Increasing evidence implies that cancer immune-infiltrating
cells are closely related to clinical outcomes (Zhang X. et al., 2020;
Liu et al., 2021). In this report, we also explored the correlation
between the risk signature and infiltrating immune cells.
Significantly, the prognostic index positively correlated with
the infiltration of CD4+ T cells, CD8+ T cells, dendritic cells,
macrophages, and neutrophils. These findings suggest that five
immune cell types may be a predictor for immune cell infiltration.
Interestingly, it has been reported that the early proliferative
CD8+ T-cell response to PD-1-targeted therapy is correlated with
a favorable prognosis in NSCLC patients. Tumor-associated
macrophages are widely present in many tumors. It can
increase tumor growth, metastasis, invasion, and drug
resistance. Tumor-associated macrophage infiltration is closely
associated with tumor cell proliferation and survival in patients
with LUSC.

Overall, our findings reported that the novel signature (risk
score = EXPFGA*0.1340112 + EXPCSF2*0.2431801) could be
applied as a prognostic method for LUSC and a potential
predictor of immune status in patients with LUSC. Further
reliable validation with large-scale sample cohorts is still
needed for this signature, which might be valuable for the
clinical diagnosis of LUSC in the future.
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