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ABSTRACT

The serial analysis of gene expression (SAGE)
method is used to study global gene expression in
cells or tissues in various experimental conditions.
However, its reproducibility has not yet been definit-
ively assessed. In this study, we have evaluated the
reproducibility of the SAGE method and identified the
factors that affect it. The determination coefficient
(R2) for the reproducibility of SAGE is 0.96. However,
there are some factors that can affect the reproducib-
ility of SAGE, such as the replication of concatemers
and ditags, the number of sequenced tags and double
PCR amplification of ditags. Thus, corrections for
these factors must be made to ensure the reproducib-
ility and accuracy of SAGE results. A bioinformatic
analysis of SAGE data is also presented in order to
eliminate these artifacts. Finally, the current study
shows that increasing the number of sequenced
tags improves the power of the method to detect
transcripts and their regulation by experimental
conditions.

INTRODUCTION

The recent developments in functional genomics allow the
simultaneous analysis of all genes expressed in particular
cell types or tissues of an organism. The aim of these analyses
is to identify which genes are implicated in tissue or cell
functions, and to understand the mechanisms by which vari-
ations in gene expression occur. Characterization of the

differences in gene expression variations associated with dis-
eases can also lead to the development of new therapies. Dif-
ferent methods are used to analyze global gene expression,
such as differential display (DD) (1), cDNA microarrays (2)
and serial analysis of gene expression (SAGE) (3). The SAGE
method is based on two principles. First, a short nucleotide
sequence, named tag, which is specifically localized at the
last anchoring enzyme, such as NlaIII, restriction site con-
tains enough information to identify specifically a transcript.
Second, the concatemerization of tags allow to analyze
20–60 tags per sequencing reaction. Compared to DD and
microarrays, SAGE has several advantages. The SAGE
method gives the possibility of finding new transcripts since
all cDNAs can be sequenced. Moreover, the evaluation of gene
expression by SAGE is quantitative since the number of times
a tag is sequenced in a library is representative of frequency, in
the mRNA population.

SAGE libraries of several tissues are now available, such
as pancreas (3), skeletal muscle (4), uterus (5), brain (6),
kidney (7), oocyte (8), heart (9) and adipose tissues (10).
The comparison of the genes expressed in these tissues
during basal and experimental conditions reveals regulatory
mechanisms and candidate genes for various diseases.
Several studies have compared the results of the SAGE
method with northern blot (11,12), real-time PCR (13), west-
ern blot (14) and proteomics (15). Although the validity of
the SAGE method has been reported by several studies
(3,4,11–14), the current report investigates, for the first
time, the reproducibility of the SAGE method using more
than 50 000 tags. Moreover, the factors affecting this repro-
ducibility are studied and a new method designed to control
for artifacts is reported.
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MATERIALS AND METHODS

Sample preparation

Different experimental protocols and SAGE libraries were
used in this study. C57BL6 mice (Charles River Canada
Inc) were provided ad libidum access to Lab Rodent Diet
No.5002 and water. In the first study, 14 male mice had a
gonadectomy (GDX). One week later, 5a-dihydrotestosterone
(DHT) (0.1 mg/mouse) was injected 1 h before sacrifice. The
skin was sampled and stored at �80�C until analysis. For the
second study, 24 male mice had an adrenalectomy (ADX)
and were injected with cortisol (0.1 mg/mouse) 24 h before
sacrifice. The gastrocnemius muscle was stored at �80�C until
analysis. For the third study, 10 mice embryo had a sham
surgery to the trachea 3 h before the sampling of lung. For
another study, 58 female mice divided in two groups had
GDX surgery and injection of vehicule 24 h before sacrifice.
The uterus was sampled and stored at �80�C until analysis.
Finally, 28 male mice had a GDX and were injected with
vehicle or DHT, 24 or 6 h before death, respectively. The
prostate was stored until analysis. The tissue samples of
each group were pooled to eliminate inter-individual vari-
ations and to extract enough mRNA for the analysis.

SAGE and data analysis

Total RNA was isolated by Trizol (Invitrogen, Burlington,
ONT) and polyadenylated RNA was extracted. The
SAGE method was performed as previously described (4).
The mRNA was annealed with biotin-50T18-30 primer and con-
verted to cDNA using cDNA synthesis kit (Invitrogen,
Burlington, Canada). The resulting cDNA library was digested
with NlaIII (anchoring enzyme). The 30 restriction fragments
were isolated with streptavidin-coated magnetic beads (Dynal,
Oslo, Norway) and split into two populations. Each population
was ligated to one of the two annealed linker pairs and
extensively washed to remove unligated linkers. Tags of
eleven nucleotides were released from the last 30 NlaIII restric-
tion site (CATG) of each transcript by digestion with BsmFI
(tagging enzyme). The two tags populations were blunted and
ligated using the blunting kit from Takara Co. (Otsu, Japan).
Ditags were amplified by PCR with an initial denaturation step
of 1 min at 95�C followed by 24 cycles of 20 s at 94�C, 20 s
at 60�C and 2 s at 72�C using 27 bp primers (4). The PCR
products were digested with NlaIII and the band containing
the ditags was isolated and extracted from the acrylamide gel.
To produce concatemers, the purified ditags were self-ligated.
The concatemers with length between 500 and 1800 bp were
isolated by agarose gel and extracted with Gene-Clean Spin
(BIO 101, Vista, USA). The resulting DNA fragments were
ligated into SphI site of pUC19 and cloned into E.coli. White
colonies were screened by PCR to select long inserts for auto-
mated sequencing. Finally, bioinformatics programs were
used to process the data and compare the levels of gene expres-
sion between different samples.

SADE modification

The SADE method was developed by Virlon et al. (7). This
method is a modification of the SAGE method, and is
used when the mRNA content is too low. A second PCR

amplification of 12 cycles was performed on the ditags purified
from acrylamide gel after the first PCR amplification.

Microarray and data analysis

The samples were processed following the labeling pro-
tocol from Affymetrix (http://www.affymetrix.com/support/
technical/technotes/smallv2_technote.pdf ). Total RNA was
converted to cDNA by incubation with 400 U SuperScript
II reverse transcriptase (Invitrogen), by using a T7-oligo-
d(T)24 as a primer, 1· first-strand buffer and 1 mM dNTPs
at 42�C for 1 h. Second-strand synthesis was performed using
40 U DNA polymerase I, 10 U E.coli DNA ligase, 2 U RNAse
H (Invitrogen, Burlington, ON), 1· reaction buffer and
0.2 mM dNTPs at 16�C for 2 h. The addition of 10 U of
T4 polynucleotide kinase (Invitrogen) stops the reaction,
and cDNAs were incubated for 10 min at 16�C. cDNAs
were isolated by phenol–chloroform extraction. Then,
cDNAs were transcribed in vitro by using the T7 BioArray
High Yield RNA Transcript Labeling Kit (Enzo Diagnostics,
Farmingdale, NY) to produce biotinylated cRNA. The mixture
(20 ml final volume) was incubated at 37�C for 5 h, with gentle
mixing every 30 min. Labelled cRNAs were purified by using
an RNeasy Mini Kit (Qiagen, Valencia, CA). Purified cRNA
was fragmented to 30–200mer cRNA using a fragmentation
buffer, for 20 min at 94�C. The quality of cRNA amplification
and cRNA fragmentation was monitored by micro-capillary
electrophoresis (Bioanalizer 2100, Agilent Technologies,
Mississauga, ON). The cRNA probes were hybridized to an
MG-U74Av2 Genechip (Affymetrix, Santa Clara, CA). Fif-
teen micrograms of fragmented cRNA was incubated with
1· manufacturer-recommended hybridization buffer and
1· eukaryotic hybridization control for 16 h at 45�C with
constant rotation (60 r.p.m.). Microarrays were processed
by using the Affymetrix GeneChip Fluidic Station 400 (pro-
tocol EukGE-WS2Av4). Staining was made with streptavidin-
conjugated phycoerythrin (SAPE) followed by amplification
with a biotinylated anti-streptavidin antibody and by a second
round of SAPE. Genechips were scanned using a GeneChip
Scanner 3000 with autoloader (Affymetrix). The signal intens-
ities for the b-actin and GAPDH genes were used as internal
quality controls. The ratio of fluorescence intensities for the
50 end and the 30 end of these housekeeping genes was
<2. Scanned images were analyzed with Microarray Suite
5.0 software (Affymetrix).

RESULTS

Reproducibility

In order to investigate the reproducibility of SAGE, two lib-
raries were generated in parallel from the same pool of total
RNA. The libraries contained 51 223 and 46 992 tags repres-
enting 23 113 and 21 427 transcript species, respectively.
Figure 1a shows the linear correlation (R2 = 0.91) between
the gene expression level estimated in the two libraries. Using
the comparative count display (CCD) test (16), no statistical
difference was detected in the expression level of transcripts
between these two libraries. The number of sequenced tags
was increased in each library to determine the effect on the
reproducibility of SAGE results. The libraries contained
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154 222 and 139 408 tags, which represented 42 559 and
41 653 transcript species, respectively. Figure 1b shows the
correlation between both libraries. The determination coeffi-
cient (R2) for this comparison is 0.96.

Bioinformatic analysis

A new program package was developed to analyze SAGE
results. This package, named SAGEparser, is a complete sys-
tem to treat and analyze SAGE data (Figure 2). SAGEparser
has been developed to eliminate the artifacts and to treat
adequately the replicated ditags. The package contains three
programs: xmatchdt, SAGEparser and SAGEcomp. They are
publicly available on the web http://obesitygene.pbrc.edu/
~eesnyder/sageparser.htm. This package is written in Perl
using a minimum of external libraries and is portable to a
variety of computer platforms. A SUN server was used for
these analyses. Xmatchdt eliminates the replicated concate-
mers. Indeed, the probability that an identical series of tags
occur in different concatemers is negligible. Replicate con-
catemers can occur when the clones are growing in SOC
medium before plating on the LB-agar plates. Each concate-
mer sequence is blasted with all concatemer sequences and the
similar sequences are clustered. The concatemer with the lar-
gest number of ditags is selected for each cluster, and the other
replicated concatemers are eliminated. Table 1A shows the
number of replicated concatemers. In the library containing
143 848 sequenced tags, 513 (11.13%) concatemers were
replicated and eliminated by post-processing using the SAGE-
parser package.

The tagging enzyme BsmFI cuts usually 14 bp from its
recognition site included in the linker. Since the last nucleotide
of the BsmFI recognition site is also the first nucleotide of the

NlaIII cutting site, a tag of 15 bp (CATG + 11 bp) is produced.
For example, in a library of 143 848 sequenced tags, the use of
a 14 bp tag identifies 73 474 tag species and 3252 (4.4%)
multiple matched, whereas 15 bp tag reduces the latter to
2001 (2.5%) and increases the total number of transcript spe-
cies to 81 501. Thus, using a 15 bp tag instead of a 14 bp tag
decreases the number of multiple matches and increases the
number of tags which uniquely identify a transcript. SAGE-
parser detects the presence of any vector sequence in the
concatemer sequences and does not consider them further.
SAGEparser also eliminates ditags of improper length,
which is greater than or less than 22 bp in this study. Moreover,
the SAGEparser program can be set for any ditag length.

Another important feature is the elimination of excess
ditags. Since in a large library of several thousands of tags
highly expressed, similar ditags can be expected to occur
several times by simple ligation of the same two tag species.
SAGEparser calculates the expected similar ditag count based
on the frequency of their non-replicated component (mono)
tags. Ditags in excess of this number are assumed to be due
to preferential PCR amplification and are rejected. Table 1B
shows the number of ditags eliminated. For a sample with
143 848 valid sequenced tags, from a total of 82 711 ditags,
9555 (11.55%) ditags have occurred more than once. On the
other hand, only 4706 (5.69%) ditags in excess should be
rejected as analyzed by SAGEparser.

SAGEcomp is used to find which transcripts are differen-
tially expressed by a ratio 2 or greater between different sam-
ples according to the statistical CCD test (16). To associate the
tags with the transcripts, each tag (CATG + 11 bp) is compared
with UniGene and GenBank databases. The tag sequence
has to be located at the last NlaIII site of a given transcript.
The matching procedure is very restrictive to avoid the

(a) (b)

Figure 1. Comparison of individual tag abundance estimated from two SAGE libraries of about 50 000 (a) or 150 000 (b) tags, each independently generated
from the same pool of total RNA.
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sequencing errors in expressed sequence tags (ESTs). The
match of a tag with only one EST is not considered. Indeed,
the possibility of matches with EST containing sequencing
errors drops dramatically when at least two ESTs are identified
in a UniGene cluster for a given tag sequence. Moreover, a
minimum of one EST with a known polyA tail has to be in the
UniGene cluster to identify the last NlaIII site on the corres-
ponding mRNA.

Double PCR amplification

The last studied factor influencing the reproducibility is the use
of the Virlon et al. (7) modification to the SAGE method with

Figure 2. Overview of the SAGEparser software package.

Table 1. Replicated cloned concatemers and ditags

Number of valid sequenced tags 143 848
A Total number of cloned

concatemers
4608

Number of cloned concatemers
eliminated as replica

513 (11.13%)

Number of unique
concatemers

4095 (88.87%)

B Total number of ditags 82 711
Number of excess ditags

rejected
4706 (5.69%)

All ditags rejected 9555 (11.55%)
Difference 49.25%
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small amounts of tissue, known as SADE. The main modi-
fication of this method is a second PCR amplification to
increase the quantity of ditags. To determine if reproducibility
is affected by double PCR amplification, ditags were divided
in two aliquots and a second round of PCR was performed only
on one of them. The libraries contained 22 513 and 26 910 tags
that represented 12 806 and 14 247 transcripts species, res-
pectively. Figure 3 shows the low correlation between both
methods (R2 = 0.36). A significant difference ( p < 0.05) in
the level of gene expression estimated by these two methods
was observed for 53 transcripts. Moreover, oligonucleotides
microarray results were compared with those from SAGE,
with and without a second PCR amplification. Figure 4a
shows that the correlation with results by microarray is
0.71 by SAGE, but only 0.22 for SADE (Figure 4b).

Power of the SAGE method

Figure 5a shows the influence of the number of sequenced tags
on the power to detect transcript species. The number of high
abundance tags (more than 0.1% and more than 0.01%) does
not change when the number of sequenced tags is increased.
However, the majority of transcript species are detected only
once when the number of sequenced tags is low, whereas the
percentage of tags detected more than once increased when
the number of sequenced tags is increased. Figure 5b shows
the type of transcript species detected with increasing number
of sequenced tags. Increasing the number of sequenced tags
increases the total number of transcripts assessed, as well as
the number and proportion of those which are less character-
ized. Most of the highly expressed transcripts are well char-
acterized and sequenced early in the SAGE library.

In order to evaluate the influence of the number of
sequenced tags on the statistical power to detect differentially
expressed transcripts, two libraries were made from mouse

prostate. The first group was GDX and the other was GDX
injected with DHT. As seen in Table 2, the increase in the
number of sequenced tags allows the observation of more
regulated transcripts.

DISCUSSION

The current study has investigated the reproducibility of the
SAGE method and means to control for potential artifacts.
Two libraries were made in parallel, from the same pool of
total RNA. The comparison of the level of expression estim-
ated by these two libraries has given a determination coeffi-
cient (R2) of 0.91. The current results show clearly that the
SAGE method is reproducible. Yamamoto et al. (17) have
assessed the reproducibility of SAGE with the use of two
aliquots from a single library of 80 000 tags. The authors
concluded that SAGE results are reproducible, but they are
affected by the number of sequenced tags. However, they did
not use any statistical analysis and did not take into account the
first steps in the construction of the libraries which could be a
potential source of variation. The present study shows that the
first steps in the production of a SAGE library are also repro-
ducible. Trendelenburg et al. (18) have compared two libraries
constructed from a single sample. They have also concluded
that the SAGE method is reproducible. However, only 15 000
tags have been sequenced from each library in that study,
whereas 50 000 tags are commonly analyzed in SAGE studies.

Furthermore, the number of sequenced tags affects the
reproducibility of the SAGE method. The current study
shows that the reproducibility also increases with the number
of sequenced tags. The determination coefficient goes from
0.91 to 0.96 when the number of sequenced tags increases
from 50 000 to 150 000. This study is the first to sequence
such a high number of tags from the same pool of RNA.

The computer program used to analyze SAGE data has a
direct influence on the results. SAGEparser has been
developed to improve the processing of SAGE data and con-
trol for the artifacts. Two important operations are necessary.
The first one is to eliminate replicated concatemers, since the
probability that a group of ditags is found in the same order in
several concatemers is negligible. Several replicated concate-
mers have been observed. In addition, replicated concatemers
have to be eliminated first in order to estimate the number of
replicated ditags produced by the PCR amplification. Second,
the analysis of SAGEparser is important to preserve a just
proportion of the similar ditags. The necessity to eliminate
the replicated ditags has already been discussed in the original
SAGE study by Velculescu et al. (3). Since, they sequenced
only 1000 SAGE tags, these authors suggested that the prob-
ability of any the two tags being coupled together to form the
same ditags more than once is small, even for abundant tran-
scripts, and that repeated ditags potentially produced by biased
PCR could be excluded from analysis without substantially
altering the final results. However, most of the other SAGE
studies usually sequence around 50 000 tags. The SAGEparser
program does not eliminate all replicated ditags since two tags
of high expression level are expected to produce the same
ditag many times. For example, for two tags having a
frequency of 2% each, the probability of occurrence of
these two tags to form a unique ditag is 0.02 * 0.02 = 0.0004

0.36

Figure 3. Reproducibility of the SAGE method with one or two PCR
amplifications.
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equivalent to 1/2500. Thus, in a library of 25 000 ditags, the
ditag should be observed 10 times. SAGEparser is designed to
eliminate only the replicated ditags which are in excess based
on this model. The mono-tag frequencies are calculated by
considering only one count for each ditag species. Then, the
program calculates the frequency of each ditag with mono-tags
frequencies, and compares the calculated and observed
frequencies. When the observed frequency of the ditags is
lower than the calculated frequency, all similar ditags are
conserved. Otherwise, the ditags in excess are eliminated.

With this analysis, the right number of replicated ditags is
eliminated and results are more representative of the reality.
Generally, SAGE studies use tags of 14 bp length. However,
the present results show the advantage of using a tag of 15 bp.
The percentage of multiple matches is lower with a tag of
15 bp. For example, the 15th basepair allows to specifically
match rat myosin heavy chain I, IIa or IIx whereas 14 bp
cannot distinguish these isoforms.

A last factor identified to affect the reproducibility of SAGE
is the use of pre-large scale PCR described by Virlon et al. (7).

(a)

(b)

Figure 4. Comparison of the results obtained by microarrays and (a) the SAGE method or (b) the SADE method with two PCR amplifications.
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SADE has been suggested when the quantity of mRNA is too
small. In SADE, ditags are amplified by PCR twice rather than
only once. However, the effects of this modification on the
quantitative aspect of SAGE have not been investigated in
detail and statistically. In the current study, ditags were sep-
arated in two aliquots, only one of which was subjected to a
pre-large scale. The determination coefficient (R2) between
SAGE and SADE was only 0.36. Thus, the reproducibility
of SAGE is affected by the SADE modifications. A further
comparison with microarray studies also shows the detri-
mental effect of double amplification of ditags on the estim-
ated level of gene expression. The correlation coefficient
between microarray and the SAGE method decreased from
0.71 without pre-large scale PCR to 0.22 with the SADE
modification. Therefore, the quantitative aspect of the results
is affected by the second PCR amplification. Moreover, sev-
eral transcripts had significant differences in expression levels
estimated by the SAGE and SADE methods. Velculescu et al.
(19) have also previously suggested that PCR amplification
can affect the accuracy of SAGE to estimate the level of gene

expression. It has also been mentioned that an increase in the
number of PCR cycle can potentially distort the quantification
of gene expression level by SAGE (20).

An increase in the number of sequenced tags enhances the
reproducibility and the power of the SAGE strategy to detect
known and novel transcripts as well as their differential regu-
lation by experimental conditions. When the number of
sequenced tags is low, the majority of tags are observed
only once and correspond to known transcripts. When the
number of sequenced tags is increased, the proportion of
tags expressed more than once increases and the statistical
power to detect changes between experimental conditions is
greater. The novel transcripts are generally expressed at low
abundance level and more tags must be sequenced to detect
them. Indeed, the majority of transcripts have only a very
small number of copies per cell. For instance, it has been
estimated that about 80% of transcripts are present at less
than 5 copies per cell (21) or that 83% of transcripts have
only one copy per cell (22). To detect these very low abund-
ance transcripts, a very powerful method is necessary.

It is estimated that a cell generally contains about 300 000
mRNA molecules (23). However, the number of transcript
species has not yet been exactly quantified since the whole
transcriptome has not been fully characterized in mammalian
cells. Although the genome may contain approximately
between 27 000 and 120 000 genes (24) many genes produce
more than one transcript species due to various mechanisms
such as alternative splicing, mRNA editing, as well as multiple
promoters and polyadenylation sites. The current study shows
that the sequencing of 350 000 tags from one library gives the
possibility to detect around 90 000 transcript species. The
majority of these transcripts are expressed at low levels and

(a) (b)

Figure 5. (a) Influence of the number of sequenced tags on the detection of transcript species. (b) Type of transcript species detected according to the number
of tags sequenced.

Table 2. Power of the SAGE method to detect significant changes according to

the number of sequenced tags

Number of
sequenced tags in
the first group

Number of
sequenced tags in
the second group

Number of
transcript
species after
comparison

Number of
transcripts
differentially
expressed

30 387 47 376 29 203 22
79 884 96 075 52 936 52

130 729 144 438 73 040 83
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are novel transcripts. Some of these transcripts can be sequenc-
ing errors. However, the experimental data of Wang (25)
show that the error rate for sequenced SAGE tags is lower
than 2% per tag and that 67% of novel SAGE tags are derived
from novel transcripts. Chen et al. (26) also suggest that the
sequencing error rate is lower than 2% by tag. These authors
also observed that all of erroneous SAGE tags had only a
single-base error. However, the lower expressed tags should
be considered since a major part of the transcripts are
expressed with less than 5 copies per cell (21). Increasing
the number of sequenced tags in a SAGE study can improve
the reproducibility as well as the power to detect the less
abundant tags. However, this increase can be made only
according to the budget and the time-consuming limitation
of the SAGE method.

The current study has shown that the SAGE method has
very good reproducibility. However, several factors can affect
this reproducibility. First, a suitable way to treat the replicated
concatemers and ditags was investigated, and a new software
package was developed. Second, the influence of the number
of sequenced tags was studied. When the number of sequenced
tags is increased, the SAGE method is more powerful for the
identification of regulated genes and the reproducibility is also
improved. Finally, the current results have clearly demon-
strated that pre-large scale PCR importantly reduces the
reproducibility of the SAGE method and the ability to accur-
ately quantify gene expression levels.
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