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As populations boom and bust, the accumulation of genetic
diversity is modulated, encoding histories of living populations
in present-day variation. Many methods exist to decode these
histories, and all must make strong model assumptions. It is typ-
ical to assume that mutations accumulate uniformly across the
genome at a constant rate that does not vary between closely
related populations. However, recent work shows that muta-
tional processes in human and great ape populations vary across
genomic regions and evolve over time. This perturbs the muta-
tion spectrum (relative mutation rates in different local nucleotide
contexts). Here, we develop theoretical tools in the frame-
work of Kingman’s coalescent to accommodate mutation spec-
trum dynamics. We present mutation spectrum history inference
(mushi), a method to perform nonparametric inference of demo-
graphic and mutation spectrum histories from allele frequency
data. We use mushi to reconstruct trajectories of effective pop-
ulation size and mutation spectrum divergence between human
populations, identify mutation signatures and their dynamics
in different human populations, and calibrate the timing of a
previously reported mutational pulse in the ancestors of Euro-
peans. We show that mutation spectrum histories can be placed
in a well-studied theoretical setting and rigorously inferred
from genomic variation data, like other features of evolutionary
history.

coalescent theory | inverse problems | mutation spectrum |
demographic inference | sample frequency spectrum

Over the past decade, population geneticists have devel-
oped many sophisticated methods for inferring population

demography and have consistently found that simple isolated
populations of constant size are far from the norm (reviewed
in refs. 1–3). Population expansions and founder events, as well
as migration between species and geographic regions, have been
inferred from virtually all high-resolution genetic datasets. We
now recognize that inferring these nonequilibrium demographies
is often essential for understanding the histories of adaptation
and global migration. Population genetics has uncovered many
features of human history that were once virtually unknowable
by other means, revealing a complex series of migrations, pop-
ulation replacements, and admixture networks among human
groups and extinct hominoids.

Although demographic inference methods can model complex
population histories, the germline mutation process that creates
variation has long received a comparatively simple treatment.
A single parameter, µ, is used to represent the mutation rate
per generation at all loci, in all individuals, and at all times. In
humans, µ is estimated from parent–child trio sequencing stud-
ies, and modest variation in µ can have major effects on the
interpretation of inferred parameters, such as times of admix-
ture and population divergence. In other organisms, for which
trio sequence data are usually unavailable, µ is estimated from
sequence divergence between species with a fossil-calibrated
divergence time, and these estimates come with still higher
uncertainty.

A growing body of evidence indicates that simple, constant
mutation rate models may not adequately describe how vari-
ation accumulates on either inter- or intraspecific timescales
(4–7). Germline mutation rates appear to have evolved during
the speciation of great apes and the divergence of modern human
populations (reviewed in ref. 8). Much of this evolution might
be caused by nearly neutral drift (9), but a contributing fac-
tor could be selection on traits, like life history and chromatin
structure, that indirectly affect mutation accumulation. Because
mutation is intimately tied to the basic housekeeping process of
cell division, gamete production, and embryonic development,
the accumulation of mutations is likely to be complexly coupled
to other biological processes (10–12).

It is difficult to disentangle past changes in mutation rate from
past changes in effective population size, which modulate lev-
els of polymorphism even when the mutation rate stays constant.
However, evolution of the mutation process can be indirectly
detected by measuring its effects on the mutation spectrum:
the relative mutation rates among different local nucleotide
contexts. Hwang and Green (13) modeled the triplet context
dependence of the substitution process in a mammalian phy-
logeny, finding varying contributions from replication errors,
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cytosine deamination, and biased gene conversion and showing
that the relative rates of these processes varied between different
mammalian lineages. Many cancers also exhibit somatic hyper-
mutability of certain triplet motifs due to different DNA damage
agents and failure points in the DNA repair process (14, 15).
Harris (6) and Harris and Pritchard (7) examined the variation
of triplet spectra between closely related populations, counting
single-nucleotide variants in each triplet mutation type as a proxy
for mutational input. They found that human triplet spectra dis-
tinctly cluster by continental ancestry group and that historical
pulses in mutation activity influence the distribution of allele fre-
quencies in certain mutation types. The divergence of mutation
spectra among human continental groups has been replicated
in independently generated datasets (7, 16), and similar pat-
terns have been observed in other species, including great apes
(17), mice (18), and yeast (19). Some of the mutation spectrum
divergence between mice and yeast lineages has been mapped to
mutator alleles (19, 20).

Emerging from the literature is a picture of a mutation process
evolving within and between populations, anchored to genomic
features and accented by spectra of local nucleotide context. If
probabilistic models of population genetic processes are to keep
pace with these empirical findings, mutation deserves a richer
treatment in state-of-the-art inference tools. In this paper, we
build on classical theoretical tools to introduce fast nonpara-
metric inference of population-level mutation spectrum history
(MuSH)—the relative mutation rate in different local nucleotide
contexts across time—alongside inference of demographic his-
tory. Whereas previous work has uncovered mutation spectrum
evolution using summary statistics of standing variation, we shift
perspective to focus on inference of the MuSH, which we model
on the same footing as demography.

Demographic inference requires us to invert the map that
takes population history to the patterns of genetic diversity
observable today. This task is often simplified by first compress-
ing these genetic diversity data into a summary statistic such as
the sample frequency spectrum (SFS), the distribution of derived
allele frequencies among sampled haplotypes. The SFS is a well-
studied population genetic summary statistic that is sensitive to
demographic history. Inverting the map from demographic his-
tory to SFS is a notoriously ill-posed problem, in that many dif-
ferent population histories can have identical expected SFS (21–
25). One way to deal with the ill posedness of demographic infer-
ence is to specify a parametric model of population size change,
usually piecewise linear or piecewise exponential. An alterna-
tive, which generalizes to other inverse problems, is to allow a
more general space of solutions but to regularize by penaliz-
ing histories that contain biologically unrealistic features (e.g.,
high-frequency population size oscillations). Both approaches
shrink the set of feasible solutions to the inverse problem so
that it becomes well posed and can be thought of as leveraging
prior knowledge. In particular, regularization constrains the pop-
ulation size from changing on arbitrarily small timescales since
significant population size change usually takes at least a few
generations.

In this paper, we extend a coalescent framework for demo-
graphic inference to accommodate inference of the MuSH from
an SFS that is resolved into different local k -mer nucleotide con-
texts. This is a richer summary statistic that we call the k -SFS
where, for example, k =3 means triplet context. We show using
coalescent theory that the k -SFS is related to the MuSH by a
linear transformation while depending nonlinearly on the demo-
graphic history. We infer both demographic history and MuSH
by optimizing a cost that balances a data-fitting term using the
forward map from coalescent theory, along with regularization
terms that favor solutions with low complexity. Our open-source
software mushi (mutation spectrum history inference) is avail-
able in ref. 26 as a Python package with extensive documentation.

Using default settings and modest hardware, mushi takes only
a few seconds to infer histories from population-scale sample
frequency data.

The recovered MuSH is a rich object that illuminates dimen-
sions of population history and addresses biological questions
about the evolution of the mutation process. After validat-
ing with data simulated under known histories, we use mushi
to independently infer histories for each of the 26 popula-
tions (from 5 superpopulations defined by continental ancestry)
from the 1000 Genomes Project (1KG) Consortium (27) using
recent high-coverage sequencing data (28). We demonstrate that
mushi is a powerful tool for demographic inference that has
several advantages over existing demographic inference meth-
ods and then go on to describe the illuminated features of
human MuSH.

We recover demographic features that are robust to regular-
ization parameter choices, including the out-of-Africa event and
the more recent bottleneck in the ancestors of modern Finns,
and we find that effective population sizes converge ancestrally
within each superpopulation, despite being inferred indepen-
dently. Decomposing human MuSH into mutation signatures
varying through time in each population, we see global diver-
gence in the mutation process that impacts many mutation
types and reflects population and superpopulation relatedness.
Finally, we revisit the timing of a previously reported ancient
pulse of elevated TCC → TTC mutation rate, active primar-
ily in the ancestors of Europeans and absent in East Asians
(6, 7, 29, 30). We find that the extent of the pulse into the
ancient past is sensitive to the choice of demographic history
model but that all demographic models that fit the k -SFS yield
a pulse timing that is significantly older than previously thought,
seemingly arising near the divergence time of East Asians and
Europeans.

With mushi, we can quickly reconstruct demographic history
and MuSH without strong model specification requirements.
This adds an approach to the toolbox for researchers inter-
ested only in demographic inference. For researchers studying
the mutation spectrum, demographic history is necessary for time
calibration of events in mutation history, so we expect that jointly
modeling demography and MuSH will be important for studying
mutational spectrum evolution in population genetics.

Model Summary
Augmenting the SFS with Nucleotide Context Information. The SFS
is a summary statistic of population variation that counts vari-
ants partitioned by the number of sampled individuals who carry
the derived allele. Since rare variants tend to be younger than
common variants, this summary preserves considerable infor-
mation about the distribution of allele age, which can reflect
temporal variation in either the mutation rate or the inten-
sity of genetic drift. To disentangle these two causal factors,
we leverage the fact that genetic drift affects all mutations uni-
formly, whereas mutation rate changes may depend on genomic
sequence context.

By default, we classify mutation types by their derived allele
and ancestral k -mer nucleotide context, with k odd and the vari-
ant centered. There are K =2× 3× 4k−1 mutation types after
collapsing by strand symmetry (e.g., considering C > T muta-
tions and their complementary G>A mutations to be identical).
When k =3, there are K =96 triplet mutation types, of which
TCC → TTC is one. For a sample of n genomes, the stan-
dard SFS is an (n − 1)-dimensional vector of the number of
variants present in exactly i genomes, with i ranging from 1 to
n − 1. The k -SFS is an (n − 1)×K -dimensional matrix, where
the (i , j )th entry is the number of variants of mutation-type j
that are present in exactly i individuals.

Our goal is to sequentially infer demographic history and then
MuSH by inferring histories that optimize a composite likelihood
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of an observed k -SFS data matrix X. This requires computing
Ξ≡E[X], the expected k -SFS as a function of effective pop-
ulation size and context-dependent mutation rate over time.
Our main theoretical result, Theorem in Materials and Methods,
shows that Ξ is a linear functional of the K -element MuSH µ(t)
given the haploid effective population size history η(t) [where
η(t)= 2N (t) for diploid populations]: Ξ=L(η)µᵀ. The linear
operator L(η) transforms the unknown MuSH into a matrix of
observed allele frequencies across mutation types.

Regularization to Select Parsimonious Population Histories. Demo-
graphic inference—the recovery of population size history η(t)
from SFS summary data—is complicated by the fact that differ-
ent population size histories can have identical expected SFSs.
This nonidentifiability problem has been extensively explored
in the literature (21–25). Although many different population
size histories can optimally fit an SFS, it has been proven that
uniquely good (identifiable) fits are available when excluding
biologically unrealistic histories that contain rapid oscillations.
Here, we introduce a mathematical framework that expresses
histories nonparametrically (approximating infinite-dimensional
functions), but it prefers sparse solutions that consist of simple
pieces and disfavors histories that fit the k -SFS equally well with
more erratic features.

Inference of the MuSH introduces a second identifiability
problem of a different nature. The effective population size η(t)
and the mutation rate µ(t) are mutually nonidentifiable for all t ,
meaning that the expected SFS ξ is invariant under a modifica-
tion of η(t) as long as a compensatory modification is made in
µ(t). The nonidentifiability of η and µ can be understood intu-
itively by considering two histories that can be tuned to have the
same expected SFS: one where the mutation rate increases over
an interval of time in the past while the effective population size
stays constant and the other with a constant mutation rate where
population size increases, dilating coalescence times on the same
branches affected in the first scenario.

While the total mutation rate is confounded with demography,
the composition of the mutation spectrum—the relative muta-
tion rate of each mutation type—reveals itself in the k -SFS. This
can also be understood intuitively; an excess of variants of a given
frequency in only a single mutation type (one column of the
k -SFS) cannot be explained by an historical population boom
because all mutation types are associated with the same demo-
graphic history. In this case, we would infer a period of increased
relative mutation rate for this mutation type. We cannot discern
changes in total mutation rate, so mushi assumes a constant total
rate µ0, and time variation in the rate of drift is modeled only
in η(t). We handle this constraint using a transformation tech-
nique from the field of compositional data analysis (Materials and
Methods).

Even with this compositional constraint on the total mutation
rate, many different population histories may be equally consis-
tent with an empirical k -SFS. As mentioned before, we overcome
this with regularization methods to select simple demographies
and MuSHs. We penalize the model for three different types of
irregularity. One penalty is motivated by the demographic infer-
ence literature; histories that feature rapid oscillations over time
are disallowed in favor of similarly likely histories that change
less rapidly and less often and are composed of a few simple
(low-order polynomial) trends. The second penalty favors mod-
els in which the MuSH µ(t) is composed of a few mutation
signatures that vary in their intensity over time for each mutation
type and represent a sparse vocabulary of mutagenic processes.
The third regularization penalty is a classical ridge (or Tikhonov)
penalty, which speeds up convergence of the optimization with-
out significantly affecting the solution. Detailed formulation of
our optimization problems and regularization strategies are in
Materials and Methods.

The strength of all three regularizations can be tuned by
changing the values of user-specified hyperparameters. Stronger
regularization yields simpler histories, but eventually, this will
result in a poor fit to k -SFS data. Users should tune the regular-
ization parameters to select histories that are simple while still
fitting well, perhaps considering prior knowledge about the nat-
ural history of their study population. This process is designed to
be flexible and more straightforward than specifying an explicit
parametric model.

Quantifying Goodness of Fit to the Data. The probability distribu-
tion of an empirical SFS given an expected SFS is often specified
using a Poisson random field (PRF) approximation (31), which
stipulates that, neglecting linkage, the observed number of sites
with derived allele count i is Poisson distributed around the
expected number of sites of this frequency. This PRF approx-
imation is easily generalizable to k -SFS data. Recall that X is
the observed k -SFS matrix, so the SFS is x≡X1 (row sums over
mutation types). In Materials and Methods, we show that the
generalized PRF factorizes as P(X | η,µ)=P(x | η) P(X | x, η,µ),
with the first factor given by a Poisson distribution and the sec-
ond by a multinomial distribution. We also show that the SFS x is
a sufficient statistic for the demographic history η with respect to
the k -SFS X. This means that estimation of η can be done by fit-
ting the total SFS, which maximizes the first factor as a likelihood
for η. Then, the MuSH can be estimated by fitting the k -SFS,
maximizing the second factor as a likelihood for µ, conditioned
on the η estimate.

Results
Reconstructing Simulated Histories. We investigated mushi’s abil-
ity to recover histories in simulations where known histories are
used to generate k -SFS data. Instead of simulating under the
mushi forward model itself, we used msprime (32) to simulate
a tree sequence describing the genealogy for 200 haplotypes of
human chromosome 1 across all loci. This is a more difficult test,
as it introduces linkage disequilibrium that violates our model
assumptions.

We used the human chromosome 1 model implemented in the
stdpopsim package (33), which includes a realistic recombination
map (34). We used a difficult demography consisting of a series
of exponential crashes and expansions, variously referred to as
the “sawtooth,” “oscillating,” or “zigzag” history. This patho-
logical history has been widely used to evaluate demographic
inference methods (29, 35–37) and is available in the stdpopsim
package as the Zigzag 1S14 model. Our simulated tree sequence
contained about 250,000 marginal trees.

We defined a MuSH with 96 mutation types, 2 of which are
dynamic: 1 undergoing a pulse and 1 undergoing a monotonic
increase. Since estimates of mutation spectra in real data are
often confounded by misidentification of some ancestral alle-
les as derived, we modeled an ancestral misidentification rate of
0.01, with the two dynamic mutation types as misidentification
partners. The total mutation rate varies slightly over time due
to these two components—introducing another model misspec-
ification since inference assumes a constant total mutation rate.
We placed mutations on the simulated tree sequence according
to the historical relative rate function for each mutation type and
computed the k -SFS.

Fig. 1 depicts inference results for this simulation. We find that
mushi accurately recovers the difficult sawtooth demography for
most of its history but oversmooths beyond the third population
bottleneck because little information about this time survives in
the SFS. The MuSH is accurately reconstructed as well, with both
the pulse and ramp signatures recovered. The timing of the fea-
tures in the MuSH also appears accurate, despite demographic
misspecification that has the potential to distort the diffusion
timescale. In SI Appendix, Figs. S1 and S2, we explore various

DeWitt et al.
Nonparametric coalescent inference of mutation spectrum history and demography

PNAS | 3 of 12
https://doi.org/10.1073/pnas.2013798118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013798118/-/DCSupplemental
https://doi.org/10.1073/pnas.2013798118


Fig. 1. Simulation study of mushi performance. The sawtooth demography (Upper Right) and a MuSH with 96 mutation types (Lower Right; with two
nonconstant components shown) were used to simulate 3-SFS data for n = 200 sampled haplotypes. The MuSH has a total mutation rate of about µ0 =

95.8, generating about 9.5 million segregating variants. Upper Left shows the SFS, and Lower Left shows the two variable components of the k-SFS as a
composition among mutation types at each allele frequency. Time was discretized with a logarithmic grid of 100 points. Inference was performed using a
mixture of order 0 and order 1 trends for demography, and order 0 trends for MuSH (Materials and Methods and SI Appendix, Figs. S1 and S2).

hyperparameter choices and how they impact inferences of the
demographic history and of the different trends in the two vari-
able mutation types. We find that demographic model selection
does not significantly impact inference of MuSH, and that dif-
ferent MuSH penalty hyperparameters recover the two distinct
components of the MuSH with varying fidelity. The folded SFS
can also be used for demographic inference in mushi, and in SI
Appendix, Fig. S3, we show that inference results are similar.

One noteworthy feature of our fit to the sawtooth demography
is the tendency of mushi to smooth older demographic oscilla-
tions without smoothing younger oscillations as aggressively. In
contrast to methods such as the pairwise sequential Markov coa-
lescent (PSMC) (38) that tend to infer runaway population sizes
in the ancient past, mushi’s history flattens in the limit of the
ancient past. The same constraint underlies both PSMC’s ancient
oscillations and mushi’s ancient flattening; genomic data sam-
pled from modern individuals cannot contain information about
history older than the time to most recent common ancestor of
the sample since mutations that occurred before then will be
fixed, rather than segregating, in the sample. For example, we
expect that population bottlenecks erase information about his-
tory since they accelerate the fixation of variant sites that predate
the bottleneck. While this information loss intuition holds for
very general coalescent processes (39), the linearity in Theorem
enables us to make these statements precise for mutation rate
history via spectral analysis of the operatorL(η). This is explored
in detail for the case of a simple bottleneck demography in SI
Appendix, section F and Fig. S9.

Reconstructing the Histories of Human Populations. We next
inferred the histories of human populations from large publicly

available resequencing data. We computed a k -SFS for each
of the 26 human populations from five continental ancestries
sequenced in the 1KG (27) using an unphased variant call set
(mapped to human genome assembly GRCh38 [hg38]) from the
recent high-coverage (30×) resequencing data of 1KG samples
from the New York Genome Center (28). Our bioinformatic
pipeline for computing the k -SFS for each 1KG population is
detailed in Materials and Methods. Briefly, we augment autoso-
mal biallelic single-nucleotide polymorphisms by adding triplet
mutation-type (k =3) annotations, masking for strict callabil-
ity and ancestral triplet identifiability. Across 1KG popula-
tions, the resulting number of segregating variants ranged from
∼7.5 million (population Finland [FIN]) to ∼15 million (pop-
ulation Luhya in Webuye, Kenya). We also computed the
genomic target sizes for each ancestral triplet, resulting in a total
ascertained genome size of ∼2.0 Gb.

We use a de novo mutation rate estimate of µ0 =1.25× 10−8

per site per generation (40), which corresponds to ∼24.9 muta-
tions per ∼2.0 Gb masked haploid genome per generation. For
time calibration, we assume a generation time of 29 y (41). To
discretize the time axis for our numerical implementation, we use
a logarithmically spaced grid of 200 points, with the most recent
at 1 generation ago and the oldest at 200,000 generations (5.8
My) ago.
Human demographic history. We used mushi to infer demo-
graphic history η(t) independently for each 1KG population.
Fig. 2 shows results grouped by superpopulation: African,
Amerindian, East Asian, European, and South Asian. Broadly,
we recover many previously known features of human demo-
graphic history that are highly robust to regularization param-
eters: a ∼100-kya (thousand years ago) out-of-Africa bottleneck
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Fig. 2. Effective population size histories estimated from high-coverage 1KG data. (A–E) Estimated demographic history η(t) for all populations grouped
by continental ancestry. Inference was performed using a mixture of order 0 and order 3 trends (Materials and Methods and SI Appendix, Fig. S6). African
populations: African Caribbeans in Barbados (ACB); Americans of African ancestry from the southwestern United States (ASW); Esan in Nigeria (ESN);
Gambian in western divisions in the Gambia (GWD); Luhya in Webuye, Kenya (LWK); Mende in Sierra Leone (MSL); and Yoruba in Ibadan, Nigeria (YRI).
Amerindian populations: Colombians from Medellin (CLM); Mexican ancestry from Los Angeles (MXL); Peruvians from Lima (PEL); and Puerto Rican (PUR).
East Asian populations: Chinese Dai in Xishuangbanna (CDX); Han Chinese from Beijing (CHB); Han Chinese from Shanghai (CHS); Japanese from Tokyo (JPT);
and Kinh in Ho Chi Minh City (KHV). European populations: Utah residents with Northern and Western European ancestry (CEU); Finnish in FIN; British in
England and Scotland (GBR); Iberian population in Spain (IBS); and Toscani in Italia (TSI). South Asian populations: Bengali from Bangladesh (BEB); Gujarati
Indian from Houston (GIH); Indian Telugu from the United Kingdom (ITU); Punjabi from Lahore (PJL); and Sri Lankan Tamil from the United Kingdom (STU).
(F) The same η(t) estimates on common axes to allow comparison of superpopulations. (G) SFS data (open circles) for all populations grouped by continental
ancestry, as well as fits based on the expected SFS from the estimated demographic history (points connected by lines).

in non-Africans, a second contraction ∼10 kya due to a founder
event in FIN, and recent expansion of all populations. Histories
ancestrally converge within each superpopulation. SI Appendix,
Fig. S4, Upper shows similar histories inferred using the
folded SFS.
Human MuSH. An estimated demographic history induces a
mapping of allele frequency onto a distribution of allele ages.
With these distributions encoded in our model, we next used
mushi to infer time-calibrated MuSHs for each population.
First, to highlight the time calibration capabilities of mushi,
we focus on the specific triplet mutation-type TCC → TTC,
which was previously reported to have undergone an ancient
pulse of activity in the ancestors of Europeans and is absent in
East Asians (6, 7, 29, 30). To produce sharp estimates of the
timing of this TCC pulse, we used regularization that prefers
histories with a minimum number of change points (Materi-
als and Methods). Fig. 3A shows our fit to this component of
the k -SFS for each European population, and Fig. 3B shows
the corresponding estimated component of the MuSH. With
the consistent joint estimation performed by mushi, we find
that the TCC pulse is much older than previously reported,
beginning ∼80 kya.

It is also possible to run mushi without estimating a new
demographic history from the input data but instead, assum-
ing a prespecified demography. When we use the Tennessen
et al. (42) history, which was assumed by Harris and Pritchard
(7) in their estimate of the timing of the TCC pulse, we
recover a pulse that reaches a maximum around ∼20 to 30 kya,
similar to that initial estimate (SI Appendix, Fig. S5, Upper).
However, this demography fits the SFS poorly, indicating that

demographic misspecification may be distorting mushi’s time
calibration. Indeed, a global-scale shift in the SFS arises from
inconsistency in the phylogenetically calibrated mutation rate
used by Tennessen et al. (42) (2.36× 10−8) and the more recent
de novo rate used in mushi (1.25× 10−8). This inconsistency
also distorted the estimate reported by Harris and Pritchard (7)
since their Monte Carlo procedure used the more recent de
novo mutation rate. To resolve this, we next rescaled the Ten-
nessen demography to the de novo mutation rate [as done by
Amorim et al. (43)] and inferred the TCC pulse with mushi
again. This resulted in a better fit to the SFS and a clear
shift to an older TCC pulse (SI Appendix, Fig. S5, dotted lines
in Upper), consistent with the pulse inferred using the mushi
demographies.

We estimated another set of TCC pulses in Europeans con-
ditioned on demographic histories that were inferred using the
method Relate (29), which used the phase three 1KG data to
infer demographic histories for each population by first prun-
ing the population genealogy from an inferred whole-genome
genealogy of all 1KG samples and then, independently inferring
a coalescence rate history for each extracted genealogy. Condi-
tioning on the Relate demographies yields younger estimates of
the TCC pulse timing, similar to the estimate under the inconsis-
tent Tennessen model (SI Appendix, Fig. S5, Lower). The Relate
demographic histories for each 1KG population are shown in SI
Appendix, Fig. S4, Lower, with SFS fits.

SI Appendix, Fig. S6 shows that our inference of the TCC
pulse is highly robust to demographic model selection among
demographic histories that fit the SFS. SI Appendix, Fig. S7
shows that TCC pulse timing is robust to regularization strength.
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A B

Fig. 3. Timing of the TCC → TTC pulse in Europeans. (A) The relative composition of TCC → TTC variants (centered log ratio transform) (Materials and
Methods) in each frequency class for each European population (open circles) shows an excess at intermediate frequencies. The expected values fit using the
inferred MuSH are shown as points connected by lines. (B) The inferred TCC→ TTC mutation rate histories (in units of mutations per ascertained genome per
generation); MuSH inference was performed using a mixture of order 0 and order 3 trends (Materials and Methods and SI Appendix, Figs. S6–S8) for both
demography and MuSH. CEU, Utah residents with Northern and Western European ancestry; GBR, British in England and Scotland; IBS, Iberian population
in Spain; TSI, Toscani in Italia.

SI Appendix, Fig. S8 indicates the stability of our history esti-
mates under bootstrap resampling of the variant data (but we
caution this does not provide confidence bounds on histories
since our penalized likelihood approach is strongly biased toward
simple solutions).

After our focused study of the TCC pulse, we aimed to
more broadly characterize how human MuSH decomposes into
mutational signatures varying through time in each population.
This is inspired by the use of nonnegative matrix factoriza-
tion to infer mutational signatures associated with mutagenic
processes in cancer genomes, which represent a set of tumor
mutational spectra as mixtures of a small set of mutational sig-
natures, although our problem is more complex due to the time
dimension. To capture this additional dimension, we designed a
mutational signature extraction method that factorizes a three-
dimensional (3D) tensor of MuSHs for all populations, rather
than a two-dimensional (2D) matrix of mutation spectra from
static samples.

We first ran mushi on all 1KG populations using stronger
order 3 (cubic) trend penalties that favor smoother variation
over time compared with the discontinuous jumps of order 0
penalties that were needed to fit the TCC pulse (Materials and
Methods). This resulted in an estimated MuSH for each popula-
tion of the 26 populations in the 1KG data. We then normalized
each MuSH by the genomic target size for each triplet mutation
type, so that mutation rate is rendered sitewise, and stacked the
populationwise MuSHs to form an order 3 tensor. This tensor
is a 3D numerical array with dimensions (no. of populations) ×
(no. of time points) × (no. of mutation types) = 26 × 200 × 96.
When we slice the array along the time axis, we obtain a series
of matrices whose rows are the inferred mutation spectra of each
1KG population at a past time t . The numerical value of an entry
in the tensor indicates the mutation rate (in units of mutations
per site per generation) in a given population at a given time and
for a given mutation type.

We used nonnegative canonical polyadic tensor factorization
(NNCP) (reviewed in ref. 44) to extract factors in the popula-
tion, time, and mutation-type domains. Since NNCP generalizes
nonnegative matrix factorization to tensors of arbitrary order,
this is analogous to extracting mutation signatures that form a
sparse vocabulary for explaining the mutation spectrum varia-
tion between tumor mutational profiles but adds the dimension
of time variation. The addition of the time dimension means that

each mutational signature is associated with a dosage that can
jointly increase or decrease over the histories of all populations.

Briefly, we hypothesize that the MuSH tensor can be approx-
imated by a sum of a few rank 1 tensors, implying that most
evolving mutational processes are shared across multiple pop-
ulations, possibly with different relative intensities over time. A
tensor of rank 5, which describes a set of five mutation signatures,
accurately represents the 1KG MuSH tensor (Fig. 4 A, Inset).
The NNCP decomposition results in 26× 5, 200× 5, and 96× 5
factor matrices for population, time, and mutation type, respec-
tively. Fig. 4 C and D projects population and mutation-type
factors from five dimensions to two principal components for
visualization. The population factors clearly cluster by superpop-
ulation. The mutation-type factors show a number of mutation
types with distinct outlier behavior, including TCC → TTC, as
expected.

We next recast the MuSH for each population in terms of the
five mutation signatures that comprise the tensor factors, cap-
turing covariation among the set of 96 triplet mutation types
with the smaller set of signatures. This allows us to character-
ize and biologically interpret the time dynamics of each mutation
signature in each population. Fig. 4A shows the five mutation sig-
natures as loadings in each triplet mutation type. Fig. 4B shows
how each of these five signatures varies through time in each
1KG population (computed by projecting 96-dimensional spec-
tra to the five mutational signatures in each population at each
time). Signature 4 fits the profile of the TCC pulse that affects
Europeans, South Asians, and European-admixed Amerindi-
ans, containing the previously reported minor component ACC
→ ATC. It does not, however, contain the minor component
CCC → CTC, which was previously inferred from the low-
coverage 1KG data to be one of the mutation types associated
with the TCC pulse. Signatures 1 and 3 are dominated by C→ T
mutations at CpG sites, the signature of error-prone repair of
deaminated methylcytosines. These signatures are consistently
enriched in rare (young) variants across populations. Some of
this frequency bias is likely caused by purifying selection against
mutations that disrupt the gene-regulatory function of methy-
lated CpG sites. Another contributing factor is likely biased
gene conversion, which disfavors the increase in frequency of
C/G → A/T mutations (also called strong to weak mutations).
Signature 2 is enriched for common (old) variants and has high
loadings of A→ G, which is consistent with the action of biased
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Fig. 4. Decomposing MuSHs for 1KG populations into mutation signatures varying through time and between populations. (A) Triplet mutation signatures,
shown as loading into triplet mutation types for each signature (rows). Inset shows tensor reconstruction error over a range of ranks for NNCP decomposition,
indicating rank 5 as a good approximation. (B) Historical dynamics of each mutation signature’s intensity in each 1KG population (panels correspond to rows
in A). SI Appendix, Fig. S10 shows the same intensity histories separately for each superpopulation. (C) Five-dimensional population factors projected to
the first two principal components (PCs). (D) Five-dimensional mutation signature factors projected to the first two PCs. (E) UMAP embedding of mutation
signature histories, initialized using the first two PCs of the time domain factors and then performed with default parameters.

gene conversion to select for the retention of weak to strong
mutations.

Although the time profiles of these five signatures appear
to be modulated by biased gene conversion, they also vary
between populations at recent times and cannot be explained by
a selective force acting uniformly on all non–GC-conservative
mutations. We note that we do not see evidence of the pro-
file of a signature reported to be enriched specifically in the
Japanese population (7). This signature was thought to stem
from a subtle cell line artifact affecting the Japanese HapMap
Consortium samples (45) and apparently is not a prominent fea-
ture of the new high-coverage 1KG data, whose genotypes were
called without imputation. Signature 5, which is dominated by C
→ T transitions, is notably depleted in East Asians.

Finally, we used uniform manifold approximation and pro-
jection (UMAP) (46) to compute a 2D embedding of mutation
signature histories (after initially decomposing the MuSHs into

five mutation signatures as described) of each 1KG population
at each time point. Fig. 4E shows this embedding with the time
coordinate added as a third dimension. Despite performing inde-
pendent inferences for each population’s MuSH, we see tree
structure that reflects population and superpopulation ancestry
and convergence toward an ancestral MuSH in the distant past.

Discussion
It is becoming clear that mutation spectrum variation is a
common feature of genetically diverse populations. Initial
reports on the existence of such variation were mostly qual-
itative in nature, focused on enumerating which populations
exhibit robust variation and putting bounds on the possible
contributions of bioinformatic error. Here, we have intro-
duced a quantitative framework for inferring how this vari-
ation arose over time, utilizing variation of all ages from
unphased whole-genome data to resolve a time-varying portrait
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of germline mutagenesis. Our method mushi can decompose
context-augmented SFSs into time-varying mutational signa-
tures, regardless of whether those signatures are sparse and
obvious like the European TCC pulse or represent more sub-
tle concerted perturbations of mutation rates in many sequence
contexts. Previous estimates of the timescale of mutation spec-
trum change were restricted to pulse-like signatures that are
more obvious but less ubiquitous than diffuse signatures appear
to be (7, 29).

Not all of the temporal structure unveiled by mushi can be
interpreted as time variation in the germline mutational pro-
cesses. Some time variation in signature dosage is consistent with
biased gene conversion, and signatures may also be affected by
cell line artifacts (45). The strengths of mushi are to automate
the visualization of deviations from mutation spectrum uni-
formity and localize them to particular populations, frequency
ranges, and time periods. It is possible that profiles of germline
signatures we report here will need to be revised as higher-
quality human datasets are published and inference methods are
refined.

Although mushi’s most notable feature is the ability to infer
mutation spectrum variation over time, it includes a demo-
graphic inference subroutine with some advantages over existing
methods. We infer population size changes nonparametrically
from SFS data with state-of-the-art regularization methods that
yield population size histories with some more desirable prop-
erties than other methods. The method fastNeutrino (47) uses
a piecewise exponential parameterization to infer demographic
histories and locuswise mutation rate from SFS data, and it
does not use regularization. The method SMC++ (36) uses
smoothing spline regularization for demographic inference in a
model that combines the efficiency of SFS models with a coa-
lescent hidden Markov model. The method CubSFS (48) uses
cubic smoothing spline regularization to infer demographic his-
tory from the SFS. The sparse trend filtering used in mushi has
been shown to have superior local adaptivity properties over the
related spline methods (49).

The use of sample allele frequencies rather than phased whole
genomes should make mushi broadly useful to researchers work-
ing on nonmodel organisms, which are still beyond the scope
of many state-of-the-art methods that require long sequence
scaffolds and phased data. The software is also very fast,
returning results in seconds to minutes on a modest com-
puter, and is designed for researchers familiar with scripting
in Python.

The mushi model calibrates the times at which mutational sig-
natures wax and wane using a demographic model inferred from
the same input allele frequency data from which the signatures
themselves are extracted. We estimated a surprisingly old start
time to the TCC pulse, around 80 kya, which is older than any
estimates of European/East Asian divergence times and is robust
to demographic models that maintain good fit to the SFS. How-
ever, mushi can also calibrate its timescale using a user-specified
demographic history, which reveals that the timing of transient
events like the TCC pulse in Europe are sensitive to underly-
ing assumptions about effective population size that fit the SFS
poorly. When we input the demographic history used in the ini-
tial report of the TCC pulse (7), we similarly find that the TCC
pulse began 20 to 30 kya, comfortably later than Europeans’
divergence from East Asians, who were not affected by the TCC
pulse. However, it became apparent that the initially reported
timing of the TCC pulse was distorted by a scaling issue between
recent human de novo mutation rate and the older phylogeneti-
cally calibrated mutation rate used for inferring the demographic
history that was used (42). Rescaling this demography to the de
novo rate resulted in a strikingly older TCC pulse, matching the
estimate that was obtained using the self-consistent demographic
inference from mushi.

We also inferred TCC pulse timing using demographic his-
tories that were inferred with the Relate method from whole-
genome genealogies (29) instead of allele frequency data and
found a younger TCC pulse, matching the initially reported
timing that was obtained with inconsistent demographic history
scaling. These demographic histories also yield poor fits to the
1KG SFS data, with more deviation at lower frequencies. How-
ever, we note that inferred demographic histories are notoriously
poor at predicting the distributions of genomic summary statis-
tics other than the ones that were used to fit the models (50),
and of course, mushi would be unable to recapitulate haplotype
structure, for example. We cannot rule out the possibility that
another MuSH with a similar SFS, different haplotype structure,
and more recent TCC pulse might fit the data better than the
MuSH we infer.

If the older TCC pulse timing is correct, complex patterns of
ancient gene flow are likely essential for reconciling it with other
knowledge about human population history. Ancient DNA evi-
dence suggests that the divergence of East and West Eurasians
occurred gradually over a period that began more than 40,000
y ago (51), possibly beginning with the divergence of a basal
Eurasian population before the interbreeding of other Eurasians
with Neanderthals around 50,000 y ago (52). Speidel et al. (30)
recently discovered that the proportion of TCC → TTC muta-
tions is highly correlated across populations with the proportion
of ancestry from Neolithic Anatolia, a finding that underscores
the need for future work modeling mutation spectrum evolution
jointly with more complex demographic history involving sub-
structure and migration between populations. It also points to
the tantalizing possibility that the distribution of mutational sig-
natures could provide extra information about hard to resolve
substructure and gene flow between populations that lived in the
distant past.

Although powerful new methods for inferring ancestral
recombination graphs (ARGs) ultimately have the potential to
estimate more accurate histories than can be accomplished by fit-
ting compressed SFS data, these methods are still in a relatively
early stage of development. In the method Relate (29), muta-
tion rate history is approximately inferred from an ARG using
independent marginal estimates for each epoch in a piecewise-
constant history. This avoids joint inference over all epochs—
which can also be formulated as a linear inverse problem—by
ignoring mutation rate variation within branches.

Until further developments make it possible to infer histo-
ries that fit both haplotype structure and site frequency spectra,
our results underscore the importance of using more compressed
summary statistics to validate inference results. The differences
between our SFS-inferred histories and Relate-inferred histories
imply that none of these histories yet capture the joint distri-
bution of allele age and allele frequency, which could affect
claims about the timing of gene flow and selection in addi-
tion to the claims about the timing of the TCC pulse that we
focus on in this paper. Until demographic inference methods are
able to infer histories compatible with all features of modern
datasets, it will be important for researchers to infer histories
from different data summaries, including classical compressed
statistics like the SFS, in order to understand the sensitivity
of various biological and historical claims to methodological
eccentricities.

Materials and Methods
The Expected SFS Is a Linear Transform of the Mutation Intensity History. We
work in the setting of Kingman’s coalescent (53–56), with all of the usual
niceties: neutrality, infinite sites, linkage equilibrium, and panmixia (57, 58).
In SI Appendix, section A, we retrace the derivation by Griffiths and Tavaré
(59) of the frequency distribution of a derived allele conditioned on the
demographic history while generalizing to a time inhomogeneous mutation
process. We make use of the results of Polanski and coworkers (60, 61) to
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facilitate computation. We use the time discretization of Rosen et al. (25)
and adopt their notation. Detailed proofs can be found in SI Appendix.

With n denoting the number of sampled haplotypes, denote the
expected SFS column vector ξ= [ξ1 . . . ξn−1]ᵀ, where ξi is the expected
number of variants segregating in i out of n haplotypes. Let η(t) denote
the haploid effective population size history, with time measured retrospec-
tively from the present in Wright–Fisher generations. Note that η(t) = 2N(t)
for diploid populations. Let µ(t) denote the mutation intensity history, in
units of mutations per ascertained genome per generation, understood
to apply uniformly across individuals in the population at any given time.
Under these model assumptions, we obtain the following theorem.
Theorem. Fix the number of sampled haplotypes n. Then, for all bounded
functions η :R≥0→R>0 and µ :R≥0→R≥0, the expected SFS is ξ=L(η)µ,
where L(η) is a finite-rank bounded linear operator parameterized by η
that maps mutation intensity histories µ to (n− 1) -dimensional SFS vectors
ξ. Viewed as a nonlinear operator on η, L(η) is also bounded. In particular,
L(η)µ≡ C d(η,µ), where C is an (n− 1)× (n− 1) constant matrix with ele-
ments that can be computed recursively, and d(η,µ) is an (n− 1) vector with
elements

dj(η,µ)≡
∫ ∞

0
exp

[
−
( j

2

)∫ t

0

dt′

η(t′)

]
µ(t)dt, for j = 1, . . . , n− 1, [1]

which is linear in µ and nonlinear in η.
Theorem is proved in SI Appendix, section A. Recursions for computing C

can be procedurally generated as described in SI Appendix, section B.
In order to partition the expected SFS ξ by k-mer mutation type, we pro-

mote the (n− 1)-element expected SFS vector ξ to the (n− 1)×K expected
k-SFS matrix Ξ. Similarly, the mutation intensity history function µ(t) is pro-
moted to the K-element MuSH µ(t), a column vector with each element
giving the mutation intensity history function for one mutation type. Then,
Theorem generalizes to

Ξ=L(η)µᵀ
. [2]

As in Theorem, the time coordinate is integrated over by the action of the
operator L.

Empirical SFS data contain a characteristic “smile” at high frequencies. As
detailed in SI Appendix, section G, we account for this by modeling ances-
tral state misidentification rates for each mutation type and inferring them
jointly with the history functions η(t) and µ(t).

We use the notation X to denote a sampled k-SFS matrix [i.e., the
(n− 1)×K matrix containing the sample counts for each mutation type].
By construction, Ξ≡E[X].

Compositional Modeling Leads to Identifiable MuSHs. As mentioned in the
summary methods, the effective population size η(t) and the mutation
intensity µ(t) are nonidentifiable for all t, meaning that the expected SFS ξ is
invariant under a modification of η as long as a compensatory modification
is made in µ. We now demonstrate this formally by introducing a change of
variables that measures time in expected number of coalescent events since
the present (i.e., the diffusion timescale) (21, 25). Let Rη(t)≡

∫ t
0

dt′
η(t′ ) , and

substitute τ ≡ Rη(t) in Eq. 1 to give

dj(η,µ) =

∫ ∞
0

exp
[
−
( j

2

)
τ

]
η̃(τ )µ̃(τ )dτ , [3]

where η̃(τ )≡ η(R−1(τ )) and µ̃(τ )≡µ(R−1(τ )). In this timescale, we see that
η and µ appear as a product on the right of Eq. 3. This means we cannot
jointly infer η and µ since only their product influences the data. This non-
identifiability is similarly manifest by a change of variables to measure time
in the expected number of mutations.

Because we cannot discern changes in total mutation rate, we assume
a constant total rate µ0, so that time variation in the rate of drift is mod-
eled only in η(t). A MuSH with K mutation types can then be written as
µ(t) =µ0ν(t), where ν(t)∈SK for all t, and SK ≡{x∈RK

>0 :
∑K

j=1 xj = 1}
denotes the standard simplex. We call the relative MuSH ν(t) a composition
and employ techniques from compositional data analysis (62–64).

To avoid difficulties arising from optimizing directly over the simplex,
we represent compositions using Aitchison geometry. Briefly, analogs of
vector–vector addition, scalar–vector multiplication, and an inner prod-
uct are defined for compositions, and the simplex is closed under these
operations. It is then possible to construct an orthonormal basis in the
simplex ψ1, . . . ,ψK−1 using the Gram–Schmidt orthogonalization. We first
introduce the centered log ratio transform of some x∈SK , defined as

clr(x)≡
[

log
x1

x̄
, . . . , log

xK

x̄

]T
, [4]

where x̄ denotes the geometric mean. The inverse transform clr−1 is the
softmax function.

The isometric log ratio transform and its inverse allow us to transform
back and forth between the simplex and a Euclidean space in which we will
cast our optimization problem. The transform ilr :SK→RK−1 and its inverse
are defined as

ilr(x)≡Ψ
ᵀclr(x), x∈SK [5]

ilr−1(y)≡ clr−1(Ψy), y∈RK−1, [6]

where Ψ≡
[
ψ1 . . . ψK−1

]
is the K× (K− 1) matrix of basis vectors. To build

intuition about this transformation, which is an isometric isomorphism, we
highlight the following behaviors. First, the center of the simplex maps
to the origin in the Euclidean space. Second, approaching a corner of the
simplex (where a component of the composition vanishes) corresponds to
diverging to infinity in the Euclidean space. Finally, a ball in the Euclidean
space maps to a convex region in the simplex that is more distorted the
farther the ball is from the origin.

We use the convention that the clr and ilr act rowwise on matrices. Finally,
we introduce the ilr-transformed MuSH z(t)≡ ilr(µ(t)) and write Eq. 2 as

Ξ=µ0L(η) ilr−1(z)ᵀ. [7]

Again, the time coordinate is integrated over by the action of the linear
operator. Although the forward model is nonlinear in z(t), it is convex given
the convexity of the softmax function that appears in ilr−1(·).

Formulating and Solving the Inverse Problem for Population History Given
Genomic Variation Data. The inverse problem Eq. 8 is ill posed, meaning that
many very different and erratic histories can be equally consistent with the
data (65). We deal with this problem using regularization, seeking solutions
that are constrained in their complexity without sacrificing data fit. We use
optimization algorithms to find regularized demographies and MuSHs.
Time discretization. For numerical implementation, we need finite-
dimensional representations of η(t) and z(t). We use piecewise constant
functions of time on m segments [t0, t1), [t1, t2), . . . , [tm−1, tm) where the
grid 0 = t0 < t1 < . . .< tm−1 < tm =∞ is common to η(t) and z(t). We take
the boundaries of the segments as fixed parameters and in practice, use a
logarithmically spaced dense grid of hundreds of segments to approximate
infinite-dimensional histories. Let the m-vector y = [y1, . . . , ym]ᵀ denote the
population size η(t) during each segment, and define the m× (K− 1) matrix
Z as the constant ilr-transformed MuSH z(t) during each segment. In SI
Appendix, section C, we show that Eq. 7 discretizes to the following matrix
equation:

Ξ=µ0L(y) ilr−1(Z), [8]

where the (n− 1)×m matrix L(y) is fixed given a fixed demographic history
y. The transformation ilr−1(Z) is applied to each time point (i.e., row of Z)
independently.
Regularization. We implement three different regularization criteria: spar-
sity of trends in the solutions y and Z [hypothesizing that the time variation
of η(t) and z(t) is not excessively erratic], sparsity of the singular value spec-
trum of the matrix Z (hypothesizing that the number of independently
evolving mutational signatures is much less than the number K of dis-
tinct mutation types), and improved numerical conditioning of the problem.
These goals are in some cases overlapping, but we add a regularization
term for each one. Before computing the penalties on the demography
y, we apply a log transform because variation over orders of magnitude
is expected from population crashes and exponential expansions. This also
has the benefit of enforcing nonnegative solutions. We now explain the
regularizations in detail.

Our first regularization imposes simplicity in the time domain by prefer-
ring solutions with a small number of piecewise polynomial trends. This is
achieved by penalizing the variation of log η(t) and z(t) via the `1 norm
of their time derivatives. Penalizing the (κ+ 1) th-order time derivative
encourages piecewise κth-order polynomial solutions since the `1 norm
favors sparse derivatives in time. For example, κ= 0 results in piecewise
constant solutions, κ= 1 results in piecewise linear solutions, and so on.
Penalties with different κ can be combined to obtain mixed trends (e.g.,
using κ= 0 and κ= 3 will allow solutions with both constant and cubic
pieces). In the discretized model, the (κ+ 1) th-order derivative operator
corresponds to a matrix D(κ+1) of finite differences. This leads to the penal-

ties
∥∥∥D(κ+1) log y

∥∥∥
1

and
∥∥∥D(κ+1)Z

∥∥∥
1,1

(penalizing the MuSH columnwise).

In the least-squares setting, this regularization is called trend filtering (49,
66) and is one of many generalizations of the Lasso method (67). We later
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describe how we perform optimization with trend penalties in the setting of
a more complex likelihood. Many demographic inference methods fit mod-
els composed of a small number of constant or exponential epochs that
are motivated by prior knowledge about population histories. Although our
histories are represented on a dense time grid, our regularization fuses the
history at neighboring time points to discover epochs within which behavior
is simple, while remaining flexible to capture more complicated behavior if
the data justify it.

Second, because specific mutation processes may affect multiple muta-
tion types, it is reasonable to assume that a small number of latent processes
drives the majority of the variation across mutation types. We thus hypoth-
esize that Z can be approximated by a low-rank matrix and propose two
regularizations to enforce this. Let σ be the vector of singular values of
Z− Zref, where Zref is a reference, or baseline, MuSH taken to be the
maximum likelihood estimate (MLE) constant solution by default. We use
the nuclear norm ‖Z− Zref‖∗ = ‖σ‖1 as a soft rank penalty, as it is the con-
vex envelope of the rank function (68). The soft rank penalty constrains the
number of nonzero singular values while also shrinking them toward zero.
As an alternative to the soft rank penalty, we also implement a hard rank
penalty, which directly penalizes rank(Z− Zref) = ‖σ‖0, equal to the number
of nonzero singular values. The hard rank penalty results in a singular value
thresholding step without shrinkage in the resulting algorithm, and it is not
convex. Either of these rank regularizations assures that Z is a low-rank per-
turbation of the constant solution Zref. Although the MuSH represents the
history of each of K mutation types, this attempts to explain them using a
smaller set of mutation signatures.

Finally, we include classical `2 (also called ridge or Tikhonov) penalties
on both log y and Z. A small amount of this kind of regularization speeds
up convergence without significantly influencing the solution. For the ridge
penalty on the demography y, we use a Tikhonov term ‖log y− log yref‖2

2
that shrinks toward a reference demography yref. By default, we use the
MLE constant history for yref to speed the convergence of the y prob-
lem. Similarly, the ridge penalty on the MuSH is a Tikhonov term for each
mutation type, the squared Frobenius norm ‖Z− Zref‖2

F .
Likelihood factorization: The SFS is a sufficient statistic for the demographic
history with respect to the k-SFS. The PRF approximation neglects linkage
disequilibrium to model the probability of the SFS x given the expected SFS
ξ as independent Poisson random variables for each sample frequency

P(x | ξ) =

n−1∏
i=1

P(xi | ξi) =

n−1∏
i=1

e−ξiξ
xi
i

xi!
. [9]

We model the k-SFS as generated by independent mutational targets for
each mutation type. We then show that a constant total mutation rate
allows us to factorize the joint likelihood for η and µ into a sequential
inference procedure for η then µ.
Proposition. The PRF, when generalized to the 2D grid of sample frequency
and mutation type, factorizes as P(X |Ξ) = P(x | ξ) P(X | x, Ξ̂), where P(x | ξ)
is the standard PRF Eq. 9 and P(X | x, Ξ̂) is independent multinomial for each

sample frequency i, with multinomial parameter Ξ̂i,j ≡
Ξi,j
ξi

.

Proposition is proved via a Poissonization argument in SI Appendix,
section D.

Next, we restore the η and µ dependence of ξ and Ξ (with fixed total
mutation rate µ0), so Proposition gives the factorization

P(X | η,µ) = P(x | η) P(X | x, η,µ). [10]

Lemma. If the total mutation rate is a constant µ(t) =µ0 ∈R>0, then the
SFS x is a sufficient statistic for η with respect to the k-SFS X.

Lemma is proved via a Poisson thinning argument in SI Appendix, sec-
tion E. The result is intuitively obvious because information about historical
coalescence rates recorded in the SFS does not change if we further spec-
ify how mutation counts are partitioned into different mutation types; this
only adds information about relative mutation rates for alleles with a given
age distribution. Although η appears in the second factor of Eq. 10, this only
serves to map the MuSH rendered on the natural diffusion timescale µ̃(τ )
to time measured in Wright–Fisher generations. Because this map is one to
one, there is no statistical information about η in X not already present in
x. That is, P(X | x, η,µ) = P(X | x, µ̃).

This sufficiency is important from an inference perspective because it
means we can sequentially infer demography from the SFS and then infer
the MuSH from the k-SFS with the demography fixed from the previous
step. Sufficiency implies that the negative log likelihood factors into the

sum of two losses. We thus formulate two sequential optimization prob-
lems using negative log likelihoods from the factors Eq. 10 as loss functions
for assessing data fit. Recall that y and Z are the discrete forms of η and
µ, respectively; Ξ is given by Eq. 8; and ξ is given by the row sums of
Ξ and thus, independent of Z. Neglecting constant terms, the two loss
functions are

loss1(log y) =

n−1∑
i=1

(ξi − xi log ξi) [11]

and

loss2(Z; y) =−
n−1∑
i=1

K∑
j=1

Xij log Ξij. [12]

As with regularization, we parameterize in terms of log y.
Optimization problems for mushi. We infer demography and MuSH by
minimizing cost functions that combine the loss functions above, which
measure error in fitting the data, with regularization. This may be consid-
ered a penalized likelihood method and, from a Bayesian perspective, may
be interpreted as introducing a prior distribution over histories. Inference
of log y and Z is performed sequentially. We first initialize log y = yref using
the elementary formula for the MLE constant demography S

2µ0Hn−1
where

S≡
∑n−1

i=1 xi is the number of segregating sites and Hn−1 denotes the nth
harmonic number. We then minimize

f1(log y) = loss1(log y) +ακ

∥∥∥D(κ+1) log y
∥∥∥

1

+
αridge

2
‖log y− log yref‖

2
2 [13]

over log y∈Rm to obtain the demographic history. Here, the ακ hyperpa-
rameter controls the trend penalty strength and determines the number
of κth-order polynomial pieces in the solution (a larger penalty results in
fewer pieces). The αridge hyperparameter controls the strength of shrink-
age toward yref and is intended to improve convergence without strongly
biasing the solution.

Having fixed y from the previous step, we next infer Z. We initialize Z =

Zref to the MLE constant MuSH; mutation-type j has the constant rate µ0
Sj
S ,

where Sj ≡
∑n−1

i=1 Xi,j is the number of segregating sites in mutation-type j.
Using the default soft rank penalty, we then minimize

f2(Z) = loss2(Z; y) + βκ

∥∥∥D(κ+1)Z
∥∥∥

1,1
+ βrank‖Z− Zref‖∗

+
βridge

2
‖Z− Zref‖

2
F [14]

over Z∈Rm×(K−1) to obtain the ilr-transformed MuSH. Using the hard
rank penalty instead of the default soft rank penalty, we would replace
the nuclear norm ‖ · ‖∗ with the rank function rank(·). The βκ and βridge

hyperparameters are analogous to ακ and αridge, respectively. The βrank

hyperparameter controls the rank of Z (a larger penalty results in smaller
rank). We note that the trend order κ can be different for demography
and MuSH inference, and each can use mixed trends, adding more terms if
desired.

We now briefly cover the methods used for optimization. The cost func-
tion Eq. 13 is nonconvex due to the nonlinear dependence of ξ on y, while
the cost function Eq. 14 is convex. The trend penalties on both Eqs. 13 and
14 are nonsmooth, as is the soft rank penalty on Eq. 14. If the hard rank
penalty is used instead of the soft rank penalty, Eq. 14 is also nonconvex.
Although we cannot guarantee convergence to the global minimum for the
demographic history (y) problem, we have found that proximal gradient
methods rapidly converge to good solutions that are robust to initialization.
Briefly, in proximal methods the cost is split into differentiable and nondif-
ferentiable parts, gradient descent steps are taken using the smooth part of
the cost, and then, the proximal operator (or prox) of the nondifferentiable
piece is applied. The prox projects to a nearby point, which ensures that
the nonsmooth part of the cost is small and can be computed for the trend
filtering and hard or soft rank penalties. For the y problem, we use the Nes-
terov accelerated proximal gradient method with adaptive line search (69,
70). For the MuSH (Z) problem, we use a three-operator splitting method
to deal with the two nonsmooth terms (71). We implemented a special-
ized alternating direction method of multipliers trend filtering algorithm
to compute the prox for our mixed trend penalties (72). Our optimization
algorithms are implemented very generally as a Python submodule in the
mushi package (73).
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Hyperparameter tuning. Although mushi does not require a parametric
model to be specified, it requires the user to tune a few key regularization
hyperparameters to target reasonable solutions. Rather than treat the ridge
penalties as adjustable hyperparameters, we fix them to αridge = βridge =

10−4 to improve convergence without noticeably influencing solutions. This
leaves the trend penalty ακ (or penalties for mixed trends) for demographic
inference. Inferring demography from SFS data requires strong priors on the
simplicity of solutions, so there can be no general recipe for selecting opti-
mal hyperparameters. It is generally advisable to explore a few trend orders
κ and their strengths.

Small trend penalties give erratic, unregularized solutions. Increasing ακ
limits the number of κth-order pieces in the solution and can be set to
produce solutions that are consistent with known features of population
history. Overregularization is indicated when the fit to the SFS becomes poor
and can be seen in an “elbow plot” of the loss with increasing penalization.
Mixing a zeroth-order term with higher-order models helps flatten the end
points of the time domain, which may be desired.

We take a similar approach for the MuSH inference step. The two hyper-
parameters in this case are the trend hyperparameter βκ and the rank
hyperparameter βrank. With κ= 0, pulse-like histories can be recovered,
while for higher orders (e.g., κ= 3), smoothly varying histories are recov-
ered (but do not fit pulse components as well). Again, oversmoothing is
indicated by poor fit to the k-SFS. We set βrank to select a rank (num-
ber of latent histories) between three and six. If βrank is too large, the
rank will be too small to fit all components of the k-SFS well. If it is too
small, it is more difficult to find common features in different popula-
tions. By default, we prefer the soft rank penalty for its convexity but
can choose the hard rank penalty if the former results in undesirable
shrinkage.

Software Implementation Methods
The Open-Source mushi Python Package. The mushi software is
available as a Python 3 package in ref. 26 with extensive doc-
umentation. We use the JAX package (74) for automatic dif-
ferentiation and just-in-time compilation of our optimization
methods and the ProxTV package (75) for fast computation of
the total variation prox. We modified the compositional data
analysis module in the scikit-bio package (http://scikit-bio.org)
to allow JAX compatibility. Using default parameters, inferring
the demography and MuSH for a population of hundreds of indi-

viduals takes a few seconds on a laptop with a modest hardware
configuration.

Reproducible Analysis. All of the analyses and figures for this
paper can be reproduced using Nextflow pipelines (76) and
Jupyter notebooks (https://jupyter.org) available in ref. 77. We
used msprime (32) and stdpopsim (33) for simulations, Ten-
sorLy (78) for NNCP tensor decomposition, umap-learn (46) for
UMAP embedding, and several other standard Python packages.
We used the Mathematica package fastZeil (79) to procedurally
generate recursion formulas for the combinatorial matrix C in
Theorem (SI Appendix, section B).

We generated k -SFS data for each 1KG population using
mutyper (80, 81) and BCFtools (82, 83). High-coverage 1KG
variant call data (27) were accessed from ref. 84, with sample
manifest available in ref. 85. Ancestral state estimates for hg38
were accessed from ref. 86 (see also ref. 87), and the strict calla-
bility mask was accessed from ref. 88. Relate coalescence rate
histories were accessed from ref. 89.

Data Availability. All study data are included in the article and/or SI
Appendix.
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logratio transformations for compositional data analysis. Math. Geol. 35, 279–300
(2003).

64. V. Pawlowsky-Glahn, J. J. Egozcue, R. Tolosana-Delgado, Modeling and Analysis of
Compositional Data (John Wiley & Sons, 2015).

65. C. L. Epstein, J. Schotland, The bad truth about Laplace’s transform. SIAM Rev. 50,
504–520 (2008).

66. S.-J. Kim, K. Koh, S. Boyd, D. Gorinevsky, `1 trend filtering. SIAM Rev. Soc. Ind. Appl.
Math. 51, 339–360 (2009).

67. T. Hastie, R. Tibshirani, M. Wainwright, Statistical Learning with Sparsity: The Lasso
and Generalizations (CRC Press, 2015).

68. M. Fazel, H. Hindi, S. P. Boyd, “A rank minimization heuristic with application to min-
imum order system approximation” in Proceedings of the 2001 American Control
Conference (IEEE, 2001), vol. 6, pp. 4734–4739.

69. Y. E. Nesterov, A method for solving the convex programming prob-
lem with convergence rate o(1/k2). Dokl. Akad. Nauk SSSR 269, 543–547
(1983).

70. A. Beck, M. Teboulle, A fast iterative Shrinkage-Thresholding algorithm for linear
inverse problems. SIAM J. Imag. Sci. 2, 183–202 (2009).

71. F. Pedregosa, G. Gidel, “Adaptive three operator splitting” in International
Conference on Machine Learning (PMLR, 2018), pp. 4085–4094.

72. A. Ramdas, R. J. Tibshirani, Fast and flexible ADMM algorithms for trend filtering. J.
Comput. Graph Stat. 25, 839–858 (2016).

73. W. DeWitt, K. D. Harris, A. P. Ragsdale, K. Harris, mushi.optimization. https://
harrispopgen.github.io/mushi/stubs/mushi.optimization.html. Deposited 23 March
2021.

74. J. Bradbury et al., Data from “JAX: Composable transformations of Python+NumPy
programs.” GitHub. http://github.com/google/jax. Accessed 23 March 2021.

75. A. Barbero, S. Sra, Modular proximal optimization for multidimensional total-
variation regularization. J. Mach. Learn. Res. 19, 2232–2313 (2018).

76. P. D. Tommaso et al., Nextflow enables reproducible computational workflows. Nat.
Biotechnol. 35, 316–319 (2017).

77. W. DeWitt, K. D. Harris, A. P. Ragsdale, K. Harris, mushi-pipelines. GitHub.
https://github.com/harrispopgen/mushi-pipelines. Deposited 23 March 2021.

78. J. Kossaifi, Y. Panagakis, A. Anandkumar, M. Pantic, Tensorly: Tensor learning in
python. J. Mach. Learn. Res. 20, 1–6 (2019).

79. P. Paule, M. Schorn, A mathematica version of Zeilberger’s algorithm for
proving binomial coefficient identities. J. Symbolic Comput. 20, 673–698
(1995).

80. W. S. DeWitt. Mutyper: Assigning and summarizing mutation types for analyzing
germline mutation spectra. bioRxiv [Preprint] (2020). https://doi.org/10.1101/2020.
07.01.183392 (Accessed 23 March 2021).

81. W. DeWitt, Ancestral k-mer mutation types for SNP data. https://harrispopgen.
github.io/mutyper/. Deposited 23 March 2021.

82. H. Li, A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data.
Bioinformatics 27, 2987–2993 (2011).

83. SamTools, BCFtools. http://samtools.github.io/bcftools/ Accessed 23 March 2021.
84. 1000 Genomes Project, Data from “Index of /vol1/ftp/data collections/1000G 2504

high coverage/working/20190425 NYGC GATK/.” The International Genome Sample
Resource. http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data collections/1000G 2504 high
coverage/working/20190425 NYGC GATK/ Accessed 23 March 2021.

85. 1000 Genomes Project, Data from “1000 Genomes Release: Phase 3.” The Interna-
tional Genome Sample Resource. http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/integrated call samples v3.20130502.ALL.panel. Accessed 23 March 2021.

86. Ensembl, Data from “homo sapiens ancestor GRCh38.” Ensembl. http://ftp.ensembl.
org/pub/release-100/fasta/ancestral alleles/homo sapiens ancestor GRCh38.tar.gz. Ac-
cessed 23 March 2021.

87. K. L. Howe et al., Ensembl 2021. Nucleic Acids Res. 49, D884–D891 (2021).
88. 1000 Genomes Project, Data from “StrictMask.” The International Genome Sample

Resource. http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data collections/1000 genomes
project/working/20160622 genome mask GRCh38/StrictMask/20160622.allChr.mask.
bed. Accessed 23 march 2021.

89. L. Speidei, M. Forest, S. Shi, S. R. Myers, Data from “Relate-estimated coalescence
rates, allele ages, and selection p-values for the 1000 Genomes Project.” Zenodo.
https://zenodo.org/record/3234689. Accessed 23 March 2021.

12 of 12 | PNAS
https://doi.org/10.1073/pnas.2013798118

DeWitt et al.
Nonparametric coalescent inference of mutation spectrum history and demography

https://doi.org/10.1101/2021.02.17.431573
https://doi.org/10.1101/2021.02.17.431573
https://arxiv.org/abs/1802.03426v1
https://arxiv.org/abs/1802.03426v1
https://harrispopgen.github.io/mushi/stubs/mushi.optimization.html
https://harrispopgen.github.io/mushi/stubs/mushi.optimization.html
http://github.com/google/jax
https://github.com/harrispopgen/mushi-pipelines
https://doi.org/10.1101/2020.07.01.183392
https://doi.org/10.1101/2020.07.01.183392
https://harrispopgen.github.io/mutyper/
https://harrispopgen.github.io/mutyper/
http://samtools.github.io/bcftools/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20190425_NYGC_GATK/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20190425_NYGC_GATK/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel
http://ftp.ensembl.org/pub/release-100/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
http://ftp.ensembl.org/pub/release-100/fasta/ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/working/20160622_genome_mask_GRCh38/StrictMask/20160622.allChr.mask.bed
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/working/20160622_genome_mask_GRCh38/StrictMask/20160622.allChr.mask.bed
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/working/20160622_genome_mask_GRCh38/StrictMask/20160622.allChr.mask.bed
https://zenodo.org/record/3234689
https://doi.org/10.1073/pnas.2013798118

