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Abstract

Here, we describe a bicistronic reporter system for the analysis of promoter activity in a variety of Gram-negative bacteria at
both the population and single-cell levels. This synthetic genetic tool utilizes an artificial operon comprising the gfp and lacZ
genes that are assembled in a suicide vector, which is integrated at specific sites within the chromosome of the target
bacterium, thereby creating a monocopy reporter system. This tool was instrumental for the complete in vivo
characterization of two promoters, Pb and Pc, that drive the expression of the benzoate and catechol degradation pathways,
respectively, of the soil bacterium Pseudomonas putida KT2440. The parameterization of these promoters in a population
(using b-galactosidase assays) and in single cells (using flow cytometry) was necessary to examine the basic numerical
features of these systems, such as the basal and maximal levels and the induction kinetics in response to an inducer
(benzoate). Remarkably, GFP afforded a view of the process at a much higher resolution compared with standard lacZ tests;
changes in fluorescence faithfully reflected variations in the transcriptional regimes of individual bacteria. The broad host
range of the vector/reporter platform is an asset for the characterization of promoters in different bacteria, thereby
expanding the diversity of genomic chasses amenable to Synthetic Biology methods.
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Introduction

The process of gene regulation in a living organism is vitally

important for its adaptation to changing conditions in the

environment. In fact, the analysis of the complete genomes

currently available reveals that a large amount of the genome

encodes sequences related to gene regulation and transcription

[1,2,3,4,5]. In the case of prokaryotes, the comparison between

organisms with different lifestyles shows that the generalists (such

as free living environmental bacteria) usually have a higher

proportion of their genome content dedicated to gene regulation

than the specialists (e.g., endosymbionts, [6]). Moreover, the

coordination of gene expression involves several steps that are

controlled by transcriptional factors (TFs, [7,8,9]). In the last few

years, there has been tremendous progress in the study of

regulatory networks, and evidence has shown that, among other

things, gene expression is also largely susceptible to stochastic

variations from cell to cell [10,11,12], primarily because there are

typically few units of the reactant molecules (TF, promoters, etc.)

found in the cell cytoplasm [12,13,14]. The biochemical processes

underlying gene regulation are driven by the collision of the

reactants; therefore, the low amount of the reactants makes the

system prone to a higher level of noise in the final output. In

addition, reactions endowed with low kinetic constants contribute

to the increased noise of the cell [11].

While living organisms can indeed use noise to control crucial

differentiation programs, such as competence in Bacillus subtilis

[15,16], it is usually deleterious for the proper functioning of

intracellular circuits. In fact, the improper function of some

synthetic circuits in bacteria is a consequence of high levels of noise

during the different processes of gene regulation [17,18,19,20]. For

the integration of stochasticity in decision-making switches, the

resulting network architectures are usually associated with the

generation of multi-stability, where it is possible for the cell to

obtain multiple stable states [16,21,22]. In a multi-stable system,

the presence of noise is crucial as small fluctuations during gene

regulation determine the fate of the network and thus its final

steady state [16,21,23].

An analysis of the stochastic process in cellular systems is

fundamental not only for the understanding of the underlying

process in a given regulatory network, but also for the proper

characterization of molecular components that regulate synthetic

circuits [24,25,26]. Thus, single-cell methodologies based on

fluorescent proteins, such as GFP, are crucial for the analysis of

noise. While classical approaches based on the enzymatic

quantification of a reporter gene (e.g., lacZ) only provide

information concerning the gene expression process within a

population, fluorescent reporter assays offer high resolution

information at the single cell level [11]. Ideally, a single reporter

system should be instrumental to examine both of these aspects,

but indicator products (e.g., fluorescent proteins) that are best

suited for use in single cells perform poorly in cultures because of

quenching and other optical interferences. Similarly, the best

population-level reporters (e.g., lacZ and luxAB) give diffuse signals

that prevent the examination of particular bacteria. One possible

solution is the combination of two reporter products in a single
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transcriptional unit [27,28] or hybrid functional polypeptide [29].

Unfortunately, these constructs are only amenable for model

bacteria, such as E. coli, and the toolbox for less standardized

microorganisms, such as environmental Gram-negative bacteria, is

much more scarce [30,31]. For instance, the soil bacterium

Pseudomonas putida KT2440 is endowed with the remarkable

capability to degrade aromatic compounds [31,32]. As this

organism is naturally adapted to deal with toxic pollutants, it is

a more versatile bacterium for in situ applications, such as

biosensing xenobiotics [33,34] and the mineralization of chemical

contaminants. Yet, the number of tools available for studying gene

expression in this bacterium –as well as in other Gram-negative

microorganisms, is scarce as compared to E. coli.

In this paper, a dual promoter probe system based on the

expression of GFP and lacZ, the two most widely used reporters in

bacteria [35], is used for the examination of environmental Gram-

negative bacteria. The system is designed to allow the insertion of

an artificial operon (GFP-lacZ) into a specific position in the

bacterial chromosome, creating a stable monocopy reporter

system. The resulting strains can be then assayed for both GFP

and lacZ expression, allowing the characterization of the target

promoters in monocopy gene dose and stoichiometry. This system

has been instrumental for studying the regulation of the benzoate

and catechol degradation pathways in P. putida, which show

monostable behavior during the entire catabolic process. We

anticipate that the applications of this system will be expanded

from the fundamental research of regulatory networks to more

applied endeavors in Synthetic Biology.

Results and Discussion

Construction of a Dual GFP-lacZ Reporter System
Initially, we created a bicistronic system for promoter probing

based on the expression of GFP and lacZ genes using as a reference

a system for the single copy integration of a lacZ reporter that was

previously described by Kessler and co-workers [36]. Briefly, a

stable version of GFP [37] and a modified version of the lacZ gene,

which had a premature amber stop codon TAG at the 3’ region,

was inserted into the suicide vector pRV1 harboring a promoter-

less synthetic operon (Fig. 1A; [36]). A streptomycin/spectinomy-

cin (Sm/Sp) resistance marker, which was located in a divergent

orientation, also contained a premature stop codon (Fig. 1A; [36]).

The presence of the amber codons made the two resulting proteins

non-functional unless the host strain harbored a supF tRNA. In

addition, because of the narrow host range of pBR322 ori, the

pRV1 vector is unable to replicate in organisms unrelated to E. coli

[36]. Moreover, the RP4 oriT transfer origin allowed for plasmid

mobilization through conjugation to target bacterium, such as P.

putida. The target promoter is cloned into the pRV1 vector using

EcoRI and BamHI restriction enzyme sites located upstream of the

GFP gene (Fig. 1A). To integrate the GFP-lacZ reporter cassette,

the target strain should contain a homologous fragment in the

chromosome to mediate double homologous recombination (see

below, [36]). The mini-Tn10-based transposon pLOF-hom.fg. was

used to modify the transferred strain. In this transposon, a

homologous fragment containing the lacZ gene, which lacked the

ATG start codon, and a Sm/Sp marker disrupted by a kanamycin

(Km) gene were placed in the transposable element (Fig. 1B). As

explained in the next section, recombination between the versions

of the Sm marker and the lacZ gene allowed the integration of the

reporter system through the reconstitution of fully functional genes

in the chromosome.

Generation of a Non-fluorescent P. Putida Strain
The soil bacterium P. putida produces a fluorescent siderophore

pyoverdine for the capitation of iron ions from the environment

[38,39]. To assay for GFP expression in P. putida, we generated a

bacterial strain that was unable to produce pyoverdine, as this

siderophore may mask the fluorescence from GFP. The steps for

mutagenization of P. putida are summarized in Figure 2. First, a

random mutant library was created using a mini-Tn5-based vector

containing a removable Km marker (Fig. 2, step I). The

pyoverdine production was assayed in minimal media plates

under ultraviolet (UV) light, and the two colonies that were unable

to fluoresce were selected and named P. putida UV1 and UV2

(Fig. 2, step II). Subsequently, the Km resistance markers of the

two strains were removed by expressing the resolvase coding gene

parA, generating strains P. putida MEG1 and MEG2 (derived from

P. putida UV1 and UV2, respectively). As shown in Figure 2, upon

removal of the Km marker, the strains did not recover the

fluorescent phenotype (step III). Once we generated bacterial

strains suitable to analyze GFP, we introduced the homologous

fragment into the chromosome of P. putida by targeting P. putida

MEG1 with the pLOF-hom.fg. transposon as indicated in the

Materials and Methods section. The resulting strain, harboring the

homologous fragment stably integrated in the chromosome, was

named P. putida MEG3 and used in further analyses.

Assembly of Monocopy Promoter Fusions to the GFP-
lacZ System

As previously discussed, P. putida is endowed with the

remarkable capability to degrade a number of aromatic com-

pounds [32]. In this organism, benzoate is degraded through the

b-ketoadipate pathway, which is highly distributed among the

Pseudomonas genera and related organisms [40]. In this pathway,

benzoate is oxidized to catechol, which is then subjected to an

intradiol cleavage to generate cis,cis-muconate (cis,cis-muc, Fig. 3).

Subsequently, cis,cis-muconate is degraded to form b-ketoadipate,

which is further degraded to tricarboxylic acid cycle (TCA)

intermediates. The first steps of benzoate metabolization are

performed for the enzymes encoded in the ben operon [40]. This

operon is expressed from the Pb promoter, which is activated by

the AraC-type regulator BenR bound to benzoate (Fig. 3; [41]).

The metabolization of cis,cis-muconate depends upon the action of

the cat genes. These genes are activated by the LysR-type regulator

CatR, a TF that responds to the presence of cis,cis-muconate

[42,43]. Finally, the final steps of metabolization are performed by

the pca genes, which are controlled by the b-ketoadipate-induced

IclR-type regulator PcaR [40,44].

To validate the performance of the bicistronic reporter system

described here, we analyzed the dynamic properties for the initial

steps that control the expression of the b-ketoadipate pathway in P.

putida. First, the promoter regions of the ben and cat operons were

cloned into the pRV1 reporter vector. The resulting constructs

where introduced into P. putida MEG3 by tri-parental mating as

previously described (Fig. 4; [45]). After plasmid transference to P.

putida, the cells were selected in minimal media using Sm/Sp as the

resistance marker. Following two homologous recombination

events, a fully functional Sm/Sp marker and lacZ gene were

generated in the chromosome of the recipient bacterium, and the

Km resistance phenotype of the strain was lost (Fig. 4). The

resulting strains containing the correct insertion of the Pb- and Pc-

based systems were named P. putida MEG3-Pb and MEG-Pc,

respectively, and used in further assays.

GFP-lacZ Reporter System
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Population and Single-cell Analysis of Promoter Activity
in P. Putida

After constructing P. putida reporter strains containing mono-

copy bicistronic cassettes, we investigated the expression profiles of

Pb and Pc in response to benzoate. As shown in Figure 5, P. putida

MEG3-Pb and MEG-Pc simultaneously expressed GFP and LacZ

proteins in the presence of benzoate on the agar plates. To

quantify the promoter activity in response to benzoate present in

the liquid media, an overnight culture of cells was diluted in

minimal media containing succinate as the sole carbon source and

incubated for a few hours. At the mid-exponential phase, 1 mM

benzoate was added to the growth media, and the cells where

incubated for an additional 4 hours. Subsequently, samples were

taken and analyzed using flow cytometry to quantify GFP

expression, and a b-galactosidase assay was used to quantify the

expression of lacZ. As shown in Figure 6A, Pb and Pc showed a

higher level of induction in response to benzoate as assayed using

GFP. In general, Pb presented a higher basal level and a lower

maximal activity compared with Pc (Fig. 6A). Interestingly, the

analysis of the promoter activities using the b-galactosidase assay

showed the same overall results, indicating that the synthetic

construction worked faithfully as a bicistronic unit (Fig. 6B). The

primary difference between the two reporters was observed in the

fold-change detected in the activity of the two promoters

depending on the reporter examined. In the case of GFP, a 22-

fold induction of Pb was observed, whereas Pc presented a fold

change of 100. However, when lacZ was used as the reporter, we

observed a fold induction of 10 and 67 for Pb and Pc, respectively.

These results indicated that, under the conditions specified, GFP

provides a higher resolution of the changes in transcription rates in

response to the inducer. This circumstance seems to improve the

signal-to-noise ratio and thus provides a systematically higher

induction as compared with that of lacZ in the same cells, where

both reporters are expressed simultaneously.

We next analyzed the behavior of the two promoters in a single

cell using GFP. The promoter activities were monitored along the

induction curve using flow cytometry as described in the Materials

and Methods section. As shown in Figure 6C, at the population

level, the Pc promoter showed a more noticeable induction curve

than Pb, as the former started at a lower basal value and reached a

higher maximal activity. When we analyzed the distribution of

fluorescence from cell to cell within the population, we found that

both promoters presented similar dynamic behaviors for GFP

expression. Only single populations were observed at each time

point, and a continuous transition in the fluorescence levels was

observed (Fig. 6D-E). These results suggested that a mono-stable

regulatory device controls the b-ketoadipate pathway for benzoate

metabolism in P. putida which prevents the appearance of inactive

subpopulations during biodegradation.

Conclusion
Here, we describe the implementation and validation of a dual

bicistronic reporter system based on the GFP and lacZ genes. This

novel tool permits the characterization of the regulatory networks

in many environmental bacteria for which only few genetic tools

are available. By integrating the system in monocopy in the

chromosome of the target bacterium, we avoided the deleterious

effects associated with the stochastic variation of copy number

observed in plasmid-based systems [17,18,19]. In fact, the noise

generated in plasmid-based systems might interfere with the

accurate analysis of the target network [46]. While the Tn7

transposon-based system also provide an alternative to the

insertion of synthetic constructs in single copy, this method only

utilizes native sites existing in the bacterium [47]. However, the

novel system introduced here exploits different genomic locations,

as the integration site can be randomly generated using a mini-

Tn10 delivery transposon [48]. In addition, the combinatory use

of this system with existing Tn7-based tools would permit the

construction of stable strains with isogenic modifications, as

different inserts would be placed at specified positions. We used

this system to investigate the expression of the pathway for

benzoate metabolism in the soil bacterium P. putida. Usually, the

genetic characterization of the regulatory networks in this and

other atypical organisms is performed in the model organism E.

coli [49,50], but this approach might miss important host-specific

features. For example, using the new tool in the native host, we

were able to monitor cat pathway expression in response to

benzoate. Under the experimental conditions used in this study,

benzoate was converted to cis,cis-muconate to trigger Pc activity

(Fig. 3). Moreover, the novel system presented here can be easily

applied to other organisms and would provide valuable informa-

Figure 1. Bicistronic reporter system based on GFP and lacZ. A The reporter vector pRV1 containing truncated versions of the lacZ gene and
Sm/Sp resistance marker could only be maintained in E. coli strains with supF tRNA. GFP is located upstream of the lacZ gene and is preceded by the
EcoRI/BamHI cloning site for the target promoters. The oriT sequence allows the mobilization of pRV1 to new hosts by conjugation. B The mini-Tn10-
based vector pLOF-hom.fg. was used for target strain modification. This vector contains the homologous fragment, which was introduced into the
strains of interest to create single copy insertions in the chromosome.
doi:10.1371/journal.pone.0034675.g001
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tion on the dynamics of regulatory networks and the implemen-

tation of new circuits in bacteria.

Materials and Methods

Bacterial Strains
E. coli CC118 [45] or its variant CC118supF [36] were used as

the hosts for the plasmid constructs. E. coli HB101 (pRK600) was

used as a helper strain for tri-parental mating as previously

described [45]. The induction experiments were performed in M9

minimal medium [51] with 2 mM MgSO4 and 25 mM of

succinate as the sole carbon source. This minimal medium was

additionally supplemented with Sm (50 mg ml–1) and Km (50 mg

ml–1) to ensure plasmid retention. The benzoate was purchased

from Sigma-Aldrich.

Plasmid Construction
For cloning purposes, DNA fragments were amplified using the

polymerase chain reaction (PCR) containing 50–100 ng of the

template, 50 pmol of each primer and 2.5 U of Pfu DNA

polymerase (Stratagene) in a 100 ml reaction volume. The

mixtures were subjected to 30 cycles of 1 min at 95uC, 1 min at

55uC and 2 min at 72uC. The primers used were purchased from

Sigma. The plasmid DNA purification, restriction enzyme

digestion and general cloning procedures were conducted using

standard protocols [51]. For the analysis of the stochastic effects of

the TOL promoters under inducing conditions, we developed a

system for the insertion of transcriptional GFP fusions in the

chromosome of P. putida. This system is a modified version of a

lacZ-based system described by Klesser et al., which comprises a

Figure 2. Isolation of a non-fluorescent P. putida strain. (i) P. putida KT2442, a rifampicin resistance variant of P. putida KT2440, was
mutagenized with mini-Tn5 transposon pUT-ResKm. (ii) Single colonies were selected in minimal media and screened for the lack of fluorescence.
Two colonies were selected and named P. putida UV1 and UV2. (iii) The Km resistance marker was removed from the strains by expressing ParA
resolvase, which recognizes the two res sites flanking the Km marker. After marker elimination, the strains retained the non-fluorescence phenotype.
(iv) The homologous fragment placed in the mini-Tn10 transposon was mobilized to the marker-less P. putida MEG1 strain (a deviant of P. putida
UV1), generating the P. putida MEG3 strain. This strain was used as a host for the bicistronic reporter system with the target promoters.
doi:10.1371/journal.pone.0034675.g002

GFP-lacZ Reporter System
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suicide vector pBK16 (Fig. 1A) and a homology fragment placed in

a mini-Tn10 transposon (Fig. 1B, [36]). To generate a variant of

pBK16 having a fluorescent reporter, the gfp tir gene from the

pGREENtir [37] plasmid was PCR amplified using the primers

5GFP (5’-GAA TTC ATC GGA TCC TGA TTA ACT TTA

TAA GGA GG-3’) and 3GFP (5’-ATA GAT CTT TAT TAT

TTG TAT AGT TCA TCC ATG CC-3’). The resulting PCR

fragment was digested with the restriction enzymes EcoRI and

BglII and cloned into a pBK16 vector that was previously digested

with EcoRI and BamHI. The resulting vector pRV1 performed as a

bicistronic gfp/lacZ reporter system (Fig. 1A). The promoters of the

ben (Pb) and cat (Pc) pathways where PCR amplified using the

primer pairs PBf (5’-TGG ATG AAT TCG ACA GTA CCC

TCC-3’)/PBr (5’-GCG CGG ATC CGG CCA GGG TCT CCC

TTG-3’) and PCf (5’-GAG AGA ATT CAG GCC CAG TTC

CAG CTC G-3’)/PCr (5’-GCG CGG ATC CTG TTG CCA

GGT CCC GTC AG-3’), respectively, and cloned as EcoRI/

BamHI fragments into pre-digested pRV1 vectors. The resulting

reporter vectors were introduced into P. putida MEG3 as described

below.

Construction of the Non-fluorescent P. Putida Strains
To perform experiments using GFP in P. putida, we generated

variants of this organism that were unable to auto-fluorescence.

Briefly, overnight cultures of P. putida KT2442 were mutagenized

with the pUT-ResKm transposon (a modified version of pUT-Km

[52] with res sites flanking the Km marker) by tri-parental mating

[45]. The P. putida transposition library was plated on M9 agar

plates supplemented with 0.2% citrate and Km. After overnight

incubation, the colonies were screened under ultraviolet (UV) light

at 254 nm for the identification of strains with no auto-

fluorescence (Fig. 2). Two strains that did not fluoresce under

UV light were selected and named P. putida UV1 and UV2.

Subsequently, the plasmid pJMSB8 [53] was transferred to P.

putida UV1 and P. putida UV2 by tri-parental mating. This plasmid

expressed the gene for the ParA enzyme, which catalyzes the

recombination between adjacent Res sequences [53]. The pUT-

ResKm transposon used to create strains UV1 and UV2 contained

a Km gene flanked by two res sequences, thus the expression of

ParA in this system expression eliminated the expression of the

resistance marker. Upon insertion of the ParA coding plasmid,

single colonies of strains UV1 and UV2 were analyzed for the loss

of resistance to Km. Two strains demonstrating successful

antibiotic removal were confirmed and named P. putida MEG1

and MEG2 (derived from UV1 and UV2, respectively) and used

for further analysis (Fig. 2).

Construction of the P. Putida MEG3 Reporter Strains
For the analysis of the TOL promoter activities at the single cell

level, we used a modified version of the pBK16 homologous

recombination system (see above, [36]). To generate a P. putida

variant that was able to accommodate the GFP reporter system in

the chromosome, we first mutagenized P. putida MEG1 using the

pLOF-hom.fg. mini-Tn10 transposon [36]. This transposon

contains a lacZ gene lacking the ATG start codon cloned in the

opposite direction of an Sm/Sp resistance marker truncated by the

insertion of a Km gene (Fig. 1B). The resultant transposon library

was plated on M9 minimal media supplemented with 0.2% citrate

and Km. A single colony that was able to grow in Km and

confirmed as the resultant of two transposition events was named

MEG3 and used in further experiments. For the generation of P.

putida strains containing transcriptional fusions to GFP in the

chromosome, pRV1-variants with different promoters were

transferred to P. putida MEG3 (Fig. 4). After tri-parental mating,

the strains were plated on M9 minimal media supplemented with

0.2% citrate and Sm to select for homologous recombination

events between the Sm/Sp gene from the pRV1 vector and the

homologous fragments placed in the chromosome of MEG3 strain

(Fig. 4). As a control, a P. putida strain lacking the homology

fragment was used as the recipient for conjugation. No Sm-

resistant colonies were observed, ruling out the possibility for

plasmid integration on alternative sites. Finally, single colonies

were assessed for the second recombination event (i.e., between the

two variants of the lacZ gene) by analyzing their sensitivity to Km.

Strains containing the correct insertion of the reporter system in

the chromosome were named P. putida MEG3-P (where P stands

for the identity of the cloned promoter) and used for the single-cell

analysis.

Figure 3. Catabolic pathway for benzoate degradation in P. putida. Benzoate activates the BenR regulator, which controls the expression of
the ben operon. The enzymes encoded by the ben operon metabolize the conversion of benzoate to cis,cis-muconate (cis,cis-muc), which is the signal
for CatR activation. CatR controls the expression of the cat operon for the metabolization of cis,cis-muconate, which is further converted to b-
ketoadipate. Finally, b-ketoadipate is converted to TCA intermediates through the action of the pca pathway (gray arrows).
doi:10.1371/journal.pone.0034675.g003

GFP-lacZ Reporter System
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Figure 4. Design of bicistronic GFP-lacZ reporter strains. (i) pRV1 containing the cloned promoters (labeled as P) was introduced into the P.
putida MEG3 strain by conjugation. Colonies were selected in minimal media using the Sm antibiotic. (ii) The homology regions of the suicide vector
pRV1 were recombined with the two segments placed in the chromosome, generating a functioning Sm/Sp resistance marker and lacZ gene. (iii)
Finally, the correct insertion of the segments generated a strain with a stable reporter system that was sensitive to the Km antibiotic.
doi:10.1371/journal.pone.0034675.g004

Figure 5. Dual reporter expression in P. putida MEG3 strains. GFP expression is shown on the left, while lacZ expression is shown on the right.
The strain with no promoter cloned (labeled as MEG3) was used as a control. The strains having Pb and Pc fused to the dual reporter system
presented GFP and LacZ signals when cultured in the presence of 1 mM benzoate.
doi:10.1371/journal.pone.0034675.g005

GFP-lacZ Reporter System
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GFP Analysis at the Single-cell Level
For the quantification of GFP expression at the single-cell level,

P. putida MEG3 strains containing different promoter fusions to

GFP were inoculated into M9 media supplemented with 25 mM

succinate. After overnight growth, the cultures were washed twice,

diluted 1:20 in fresh M9 media containing 25 mM succinate and

incubated for an additional 4 hours. After this pre-incubation, the

cultures were distributed into new flasks containing different

concentrations of benzoate and incubated with air shaking. Each

hour after induction, 500 mL samples were spun down, the cells

resuspended in 500 mL of PBS and stored on ice until analysis.

The GFP distribution in the cell population was analyzed by flow

cytometry using a GALLIOS cytometer (Perkin Elmer). For each

sample, 15,000 events were analyzed. The data processing was

performed using Cyflogic software (http://www.cyflogic.com/).

Calculations of the mean fluorescence from the different replicas

and standard deviations were calculated with the statistical

package of Microsoft Excel (2010).

b-galactosidase Assay
To perform the LacZ activity assay, single colonies of reporter

strains were grown overnight in M9 media supplemented with

25 mM succinate at 30uC. The overnight cultures were subse-

quently diluted 1:20 in fresh M9 media containing 25 mM

Figure 6. Assay of promoter activities in response to benzoate. Overnight cultures were diluted in fresh minimal media supplemented with
succinate as the sole carbon source. At the mid-exponential phase, the cells were exposed to 1 mM benzoate, and the GFP and the lacZ expression
was assayed. A The GFP expression was measured in P. putida MEG3-Pb and MEG3-Pc after 4 hours of induction using flow cytometry. B b-
galactosidase activity of P. putida MEG3-Pb and MEG3-Pc after 4 hours of induction. C Time course quantification of GFP expression in P. putida MEG3-
Pb and MEG3-Pc in response to 1 mM benzoate. The vertical bars represent the standard deviation of the experiments performed in duplicate. D The
quantification of GFP levels in the P. putida MEG3-Pb population in response to 1 mM benzoate. The distribution of cell fluorescence is shown along
the induction curve. At each time point, 15,000 events were analyzed. E The quantification of GFP levels in the P. putida MEG3-Pc population in
response to 1 mM benzoate. The experiments were performed as in D.
doi:10.1371/journal.pone.0034675.g006
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succinate and cultured for an additional 4 hours. Subsequently,

benzoate was added to the media, and the cells were incubated for

several hours. b-galactosidase activities were assayed in permea-

bilized whole cells according to Miller’s method with minor

modifications [54].
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