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As a new brain-inspired computational model of artificial neural networks, spiking neural networks transmit and process
information via precisely timed spike trains. Constructing efficient learning methods is a significant research field in spiking
neural networks. In this paper, we present a supervised learning algorithm for multilayer feedforward spiking neural networks; all
neurons can fire multiple spikes in all layers. %e feedforward network consists of spiking neurons governed by biologically
plausible long-term memory spike response model, in which the effect of earlier spikes on the refractoriness is not neglected to
incorporate adaptation effects.%e gradient descent method is employed to derive synaptic weight updating rule for learning spike
trains. %e proposed algorithm is tested and verified on spatiotemporal pattern learning problems, including a set of spike train
learning tasks and nonlinear pattern classification problems on four UCI datasets. Simulation results indicate that the proposed
algorithm can improve learning accuracy in comparison with other supervised learning algorithms.

1. Introduction

Research in neuroscience has shown that the precise timing
of spikes (temporal encoding) is used to represent, transmit,
and process information in the biological nervous system.
%e temporal encoding strategy can integrate many aspects
of neural information, such as time, space, frequency, phase,
etc. [1, 2]. %e spiking neuron model is the basic compu-
tational units of spiking neural networks (SNNs), where
precisely timed spikes are used to transmit the neural in-
formation [3, 4]. SNNs provide much greater computing
capacity than the traditional artificial neural networks
(ANNs) that employ the spike firing rate to encode neural
information (rate encoding) [5]. SNN is a novel brain-in-
spired computational model and can efficiently deal with the
spatiotemporal spike pattern learning problems [6, 7].

SNN computing and learning model plays an important
role for brain-inspired artificial intelligence. In recent years,
many supervised learning algorithms have been presented
for different SNN architecture using various mechanisms
[8]. Supervised learning of SNNs has been set up to find a
suitable set of parameters (e.g., synaptic weight and synaptic

delay) so that the network output spike trains that are highly
similar to the given desired ones. In fact, neural information
of SNNs is expressed in the form of discrete spike trains, and
the neuronal internal state variables and network error
function no longer meet the continuous differentiability.%e
traditional learning algorithm of ANNs, such as the error
backpropagation algorithm [9], cannot be directly adopted
for SNNs. %erefore, the formulation of efficient supervised
learning algorithms for SNNs is difficult and remains an
important problem in the research area.

According to the error backpropagation idea of tradi-
tional ANNs, researchers have proposed many gradient
descent learning algorithms for multilayer feedforward
SNNs. %ese algorithms use the gradient calculation and
error backpropagation mechanism to design the synaptic
weight updating rule to minimize the network error. In
contrast to the neuron models expressed in the form of
differential equations, the spike response model (SRM) is
represented by the analytical expression with the kernel
functions [10]. For this reason, SRM is usually adopted to
construct SNNs and deduce the gradient descent learning
rules. Bohte et al. [11] firstly reported a backpropagation
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supervised learning method, named SpikeProp.%rough the
learning of synaptic weights of SNNs, it shows that Spike-
Prop algorithm has the ability to solve nonlinear pattern
classification problems, such as XOR problem. %e Spike-
Prop algorithm has been improved and extended from
different aspects [12, 13]. However, the SpikeProp algorithm
and its simple extensions use single spike to encode infor-
mation; that is, all neurons can only fire one spike in the
process of network simulation. %is limitation makes Spi-
keProp algorithm unable to solve complex problems ef-
fectively. More importantly, Xu et al. [14] proposed multi-
SpikeProp algorithm; the gradient descent learning rules of
synaptic weights in output and hidden layers are deduced by
using chain rules. %e algorithm has no restriction on the
spike emissions of neurons in the network. However, the
short-term memory SRM (abbreviated as SRM0) is used in
the above algorithms, the membrane potential of SRM0
model depends only on the contribution of the most recent
spike to refractoriness.

%e leaky integrate-and-fire model is regarded as one of
the most famous spiking neuron computational models. %e
SRM neuron model can be seen as a generalization form of
the leaky integrate-and-fire model. It not only considers the
spike trains transmitted by the presynaptic neurons, but also
sums up all the spikes fired by itself. %erefore, the cu-
mulative SRM model depends on all firing times of the
neuron that contribute to refractoriness; it has a long-term
memory feature [15]. %e advantage of long-term memory
SRM is that it can express the bursting and adaptation
characteristics [16]. Booij and tat Nguyen [17] proposed a
supervised learning algorithm for multilayer feedforward
SNNs with long-term memory SRM. However, in this al-
gorithm, neurons in the output layer are still limited to learn
single spike. Spike trains encode significant neural infor-
mation in the brain and the information cannot be simply
represented by single spike. In order to simulate the activity
of brain, it is necessary to study spike train supervised
learning algorithm for multilayer feedforward SNNs. %e
design of spike train learning algorithm is more difficult than
that of the single-spike learning for SNNs, but it has more
powerful learning capability for solving the complex
problems.%erefore, in this paper, combining with the long-
term memory characteristic of SRM, we extend the algo-
rithm proposed by Booij and tat Nguyen [17] and propose a
supervised learning algorithm based on the error back-
propagation of multiple spikes, which can achieve spike train
learning for multilayer feedforward SNNs.

%e rest of this paper is organized as follows. Section 2
introduces the related works including the different su-
pervised learning algorithms for SNNs. Section 3 introduces
the long-term memory SRM and the structure of feedfor-
ward SNNs used in this paper. Section 4 deduces the su-
pervised learning rules based on gradient descent, and the
computational complexity of the proposed algorithm is also
analyzed. Section 5 demonstrates the performance of
feedforward SNNs trained with the proposed learning al-
gorithm through a series of spike train learning tasks and
nonlinear pattern classification problems. Section 6 con-
cludes this paper.

2. Related Works

Supervised learning of ANNs is that neurons produce de-
sired output for the given labelled data. In addition, re-
searchers have considered the deep structure of the network
[18, 19] and the multidirectional long short-term memory
model [20]; the supervised learning is deeply investigated
and applied to the engineering problems. In fact, experi-
mental studies have shown that supervised learning exists in
biological nervous systems, especially sensorimotor net-
works and sensory systems [21], but there is no clear con-
clusion on how biological neurons realize this process. Based
on temporal encoding of SNNs, the learning methods have
been introduced in recent years [22, 23]. According to the
different ideas of supervised learning for multilayer feed-
forward SNNs, we divide the supervised learning algorithms
into three categories.

2.1. Supervised Learning Algorithms Based on Gradient De-
scent Rule. Gradient descent method plays a prominent part
in training networks with spiking neurons. %e basic idea of
gradient descent algorithms is to use the gradient value of
the error between the desired and actual output spike trains
as the reference for synaptic weight adjustment and ulti-
mately reduce the network error. Although the gradient
descent learning algorithms can be applied to multilayer
feedforward SNN structure through error backpropagation
mechanism, the state variables of neuron model must have
analytical expressions, such as the leaky integrate-and-fire
and SRM neuron models.

%e SpikeProp [11] and its extended algorithms
[14, 17, 24, 25] are typical gradient descent algorithms. In
addition, Mostafa [26] derived a gradient descent training
method of SNNs for processing spike patterns with realistic
temporal dynamics. For the feedforward SNNwith temporal
coding scheme, the network input-output relation is
piecewise linear after the variable transformation; the tra-
ditional ANN gradient descent technique is transferred to
the SNN. By using the surrogate gradient approach, Zenke
and Ganguli [27] proposed SuperSpike learning algorithm.
A three-factor learning rule based on nonlinear voltage is
capable of training multilayer feedforward networks with
deterministic integrate-and-fire neurons, which can perform
nonlinear computation on spatiotemporal spike patterns.

2.2. Supervised Learning Algorithms Based on Synaptic
Plasticity Mechanism. Spike trains can not only cause
continuous changes of synapses, but also meet the mecha-
nism of spike timing-dependent plasticity (STDP) [28]. In a
time window, when postsynaptic neuronal spike fires after
presynaptic neuronal spike, it always causes long-term
potentiation. On the contrary, it always causes long-term
depression. STDP provides an experimental basis for the
information strategy of spike-time coding and emphasizes
the importance of asymmetry of spike-time correlations.
Based on STDP mechanism, researchers have given a variety
of supervised learning algorithms for SNNs.%e basic idea of
synaptic plasticity algorithms is to use the time correlation of
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presynaptic and postsynaptic spike trains for synaptic weight
adjustment, which is a kind of supervised learning with
biological interpretability.

Wade et al. [29] combined the Bienen-
stock–Cooper–Munro and STDPmechanisms and proposed
a synaptic weight association training (SWAT) algorithm for
multilayer feedforward SNNs. %e stability of synaptic
weight distribution is caused by modulated STDP plasticity
window after a period of training. Ponulak and Kasiński [30]
interpreted Widrow–Hoff rule as the combination of STDP
and anti-STDP and proposed a remote supervised method
(ReSuMe) algorithm that can learn spike train patterns for
single layer SNNs. Using backpropagation of the spike train
error, Sporea and Grüning [31] proposed the multi-ReSuMe
algorithm to multilayer feedforward SNNs. Using the syn-
aptic plasticity algorithms to train SNNs, the adjustment of
synaptic weight only depends on the input and output spike
trains and STDP mechanism, which is independent of
neuronmodel and synaptic type.%erefore, these algorithms
can be applied to various neuron models.

2.3. Supervised Learning Algorithms Based on Spike Train
Convolution. Because the spike train is a discrete event set
composed of the spikes of neurons, in order to facilitate
analysis and calculation, a specific kernel function is se-
lected, and the spike train is uniquely transformed into a
continuous function by convolution method [32]. %rough
the convolution calculation of spike train based on kernel
function, the spike train can be interpreted as specific
neurophysiological signals, such as postsynaptic potential of
neurons or density function of spike emissions [33].
%erefore, using the convolution representation of spike
trains to construct the supervised learning algorithms will
become an important direction for multilayer feedforward
SNNs.

Carnell and Richardson [34] introduced a simple su-
pervised learning algorithm of SNNs. According to the linear
weighted representation of spike trains, the projection
formula defined by Gram–Schmidt process is used to cal-
culate the changes of synaptic weights. However, the algo-
rithm has no error backpropagation mechanism and is only
suitable for single-layer SNNs. Other spike train convolution
algorithms for spiking neurons include spike pattern asso-
ciation neuron (SPAN) [35], precise-spike-driven (PSD)
[36], and spike train kernel learning rule (STKLR) [37, 38].
Researchers have extended the SPAN and PSD learning
algorithms for multilayer SNNs [39, 40]. Using the inner
product representation of spike trains, the error function of
spike trains and the relationship between input and output
spike trains can be defined. Lin et al. [41] presented a new
supervised learning algorithm for multilayer feedforward
SNNs; its learning rules of synaptic weights in output and
hidden layers are expressed as the spike train inner products,
named multi-STIP.

Table 1 lists several typical supervised learning algo-
rithms of multilayer feedforward SNNs. We compare these
algorithms from the following three aspects: (1) the learning
rules used for weight adjustment; (2) processing capability of

information encoding, including spike train and single
spike; and (3) applicability of spiking neuron models. %e
gradient descent algorithms are restricted to the spiking
neuron models with analytical expressions, such as the SRM.
However, some supervised learning algorithms are inde-
pendent of the spiking neuron model used.

3. Neuron Model and Network Architecture

3.1. Long-Term Memory Spike Response Model. In the gra-
dient descent learning algorithms for SNNs, the computa-
tion of partial derivatives is required, so the internal state of
spiking neurons needs to be analyzed. SRM is widely used in
the simulation of SNNs, especially in supervised learning
because its internal state can be expressed analytically. In this
paper, we consider the long-term memory SRM [10]. As-
suming that the postsynaptic neuron o has NI input pre-
synaptic neurons, there are Ni spikes transmitted by the ith
presynaptic neuron, and t

f
i is the firing time of the fth spike

(f ∈ [1, Fi]). %emembrane potential uo can be described as
follows:

uo(t) � 

NI

i�1


Fi

f�1
woiε t − t

f
i  + 

Fo

r�1
ρ t − t

r
o( , (1)

where woi is the weight from the ith presynaptic neuron to
the oth postsynaptic neuron, tr

o is the rth spike fired by the
neuron o, and Fo is total number of spikes before the current
time t.

%e spike response function ε shows the influence of the
presynaptic spike on the membrane potential of the post-
synaptic neuron o and can be expressed as
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f
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(2)

After a neuron fired a spike, the membrane potential
decreases rapidly to the resting potential. It is hard to fire a
second spike within the refractory period. %e refractoriness
function ρ describes the effect of the current postsynaptic
spike:

ρ t − t
r
o(  �

− θ exp −
t − t
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o

τR

 , t − t
r
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0, t − t
r
o ≤ 0,
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(3)

where τ and τR are the time constants and θ is the threshold
of membrane potential.

For a cumulative SRM neuron, when it fires multiple
spikes during the given time interval, the effects of refrac-
toriness can add up, which is a significant feature of long-
term memory SRM. In formula (1), the combined effect of
several previous spikes (Fo> 1) can produce spike frequency
adaptation and intrinsic bursting [15, 16]. %erefore, long-
termmemory SRM neuron is more complex and biologically
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plausible than the SRM0 neuron model, in which refrac-
toriness is modelled by only the most recent spike.

3.2. Multilayer Feedforward SNN Architecture. Multilayer
feedforward SNN is a widely used topology architecture,
where each neuron is only connected to the neurons in the
previous layer. Spike trains are transmitted from the pre-
vious layer to the next layer through synapse connections.
%e input data of the specific problem are encoded into spike
trains as the input information in a feedforward SNN. %e
neuronal activities of hidden layer neurons are triggered by
the input spike trains. %ere may be one or more hidden
layers in the feedforward SNN. %e output layer represents
the output of the network. In this paper, we consider a fully
connected three-layer feedforward SNN, where any two
neurons in adjacent layers are connected through a modi-
fiable synaptic weight, as shown in Figure 1.

4. Supervised Learning Rules Based on
Gradient Descent

4.1. Spike Train Error Function. In this paper, we use the
spike times directly to construct the error function for SNNs.
For the output neuron o, the actual output spike train is
denoted as sa

o � t1o, t2o, . . . , t
Fo
o , the desired output spike

train is denoted as sd
o � t

1
o,t

2
o, . . . ,t

Fd

o , and Fo and Fd are
numbers of spikes in sa

o and sd
o , respectively. %e network

error function can be defined as

E �
1
2



NO

o�1


F

f�1
t
f
o − t

f

o 
2
, (4)

where NO is the neuron number of output layer and F �

max Fo, Fd  is the maximum of Fo and Fd.
%e spike number of spike train sa

o in different learning
epochs may be different from the spike number in its desired
spike train sd

o . %at is to say, Fo and Fd are not necessarily
equal. We solve this problem according to the following
strategies: (1) If Fo � Fd, that is, F� Fo � Fd, there is a one-to-
one correspondence between ta

o and t
d

o in formula (4). (2) If
Fo< Fd, that is F� Fd, the last spike t

Fo
o in sa

o is used to
compute the error E with spikes t

Fo

o , . . . ,t
Fd

o in sd
o that cannot

be matched. (3) If Fo> Fd, that is, F� Fo, the last spike t
Fd

o in
sd

o is used to compute the error Ewith spikes t
Fd
o , . . . , t

Fo
o in sa

o

that cannot be matched.

4.2. Synaptic Weight Learning Rules. %is form of error
function is helpful to deduce the synaptic weight updating
rules by gradient descent method. %e network error
function is used to perform gradient calculation on the
synaptic weights. According to the delta updating rule, the
change of synaptic weight ∆w between the presynaptic and
postsynaptic neurons is expressed as

Δw � − η∇E �
zE

zw
, (5)

where η is the learning rate. For the multilayer feedforward
SNNs, the corresponding synaptic weight updating rules are
different with the synapses in different layers.

(1) For the synaptic weight woh between the output
neuron o and the hidden neuron h, using the chain
rule, the gradient ∇Eoh can be calculated as follows:

∇Eoh �
zE

zwoh

� 

F
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zt
f
o

zt
f
o

zwoh
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According to the error function defined in formula
(4), the partial derivative term zE/zta

o in formula (6)
is determined by

zE
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Table 1: Comparison of several typical supervised learning algorithms for multilayer feedforward SNNs.

Authors/Algorithm Learning rule Information encoding Spiking neuron model
Bohte et al./SpikeProp [11] Gradient descent rule Single spike %e simplified SRM0
Xu et al./multi-SpikeProp [14] Gradient descent rule Spike train %e simplified SRM0
Booij and tat Nguyen/extended SpikeProp [17] Gradient descent rule Single spike Long-term memory SRM
Zenke and Ganguli/SuperSpike [27] Gradient descent rule Spike train Leaky integrate-and-fire model
Wade et al./SWAT [29] STDP rule Linear encoded spike train Leaky integrate-and-fire model
Sporea and Grüning/multi-ReSuMe [31] STDP rule Spike train Various spiking neuron models
Zhang et al./multi-SPAN [39] Spike train convolution Spike train Various spiking neuron models
Lin et al./multi-STIP [41] Spike train inner products Spike train Various spiking neuron models

hidden layer

output layerinput layer

Figure 1: Architecture of a multilayer feedforward SNN.
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Using the chain rule again, the partial derivative term
zt

f
o /zwoh in formula (6) is calculated as follows:
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According to the long-term memory SRM expressed
in formula (1), we can obtain the partial derivative
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o as follows:
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where NH is the neuron number of hidden layer, tg

h is
the gth spike fired by the hidden neuron h, and tr

o

represents the recent spike in the spike train sa
o that is

before t
f
o . Using formulas (9) and (10), the partial

derivative term zt
f
o /zuo(t
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o ) in formula (8) can be

calculated as follows:
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According to the long-term memory SRM with
cumulative refractoriness, the partial derivative term
zuo(t

f
o )/zwoh in formula (8) can be calculated as

follows:
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%e recent output spike tr
o before t

f
o in the refrac-

toriness function is directly related to the membrane
potential of the neuron, so it depends on the synaptic
weight woh. %e partial derivative term
zρ(t

f
o − tr

o)/zwoh in formula (12) is calculated as
follows:
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%e partial derivative term ztr
o/zwoh can be calcu-

lated recursively using the following equations [14]:
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%e first and second partial derivative terms on the
right-hand side of formula (16) have been calculated
by formulas (11) and (12), respectively.
By substituting formulas (11) and (12) into formula
(8), the partial derivative term zt

f
o /zwoh is calculated

as follows:
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%us, we can obtain the error gradient with respect to
synaptic weight:
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According to the above derivation process, the
learning rule of synaptic weights between the output
and hidden layers can be obtained using formulas (5)
and (18). %e partial derivative term ztr

o/zwoh in
formula (18) can be calculated recursively using
formulas (14)–(16).

(2) For the synapse between the hidden neuron h and
the input neuron i, using the chain rule, the gradient
∇Ehi with respect to synaptic weight whi is expressed
as
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Using the error function and chain rule, the partial
derivative term zE/zt
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h can be calculated as follows:
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%e first and second partial derivative terms on the
right-hand side of formula (20) have been calculated
by formulas (7) and (11), respectively. According to
the long-term memory SRM, the partial derivative
term zuo(t
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h can be calculated as follows:
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%epartial derivative term zρ(ta
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h in formula
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%e output spike tr
o is dependent on the previous

output spikes because of the existence of the
cumulative refractoriness function. Using the
recursive equations, the partial derivative term
ztr

o/zt
g

h in formula (23) can be calculated as
follows:

zt
r
o

zt
g

h

�
zt

r
o

zuo t
r
o( 

zuo t
r
o( 

zt
g

h

+
zuo t

r
o( 

zt
r− 1
o

zt
r− 1
o

zt
g

h

 , (24)

zt
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o
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g

h

�
zt

r− 1
o

zuo t
r− 1
o 

zuo t
r− 1
o 

zt
g

h

+
zuo t

r− 1
o 

zt
r− 2
o

zt
r− 2
o

zt
g

h

⎡⎣ ⎤⎦,

⋮

(25)

zt
1
o

zt
g

h

�
zt

1
o

zuo t
1
o 

zuo t
1
o 

zt
g

h

. (26)

%e first and second partial derivative terms on the
right-hand side of formula (26) have been calculated
by formulas (11) and (21), respectively.
%e partial derivative term zt

g

h/zwhi in formula (19)
can be expressed using the chain rule:

zt
g

h

zwhi

�
zt

g

h

zuh t
g

h 

zuh t
g

h 

zwhi

. (27)

Similar to formula (9), the partial derivative term
zt

g

h/zuh(t
g

h) can be calculated as follows:
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h
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h
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, (28)

where NI is the number of input neurons, tk
i is the

kth spike fired by the neuron i, and tr
h represents the

recent spike in the spike train sh that is before t
g

h . %e
partial derivative term zuh(t

g

h)/zwhi in formula (27)
can be calculated as follows:

zuh t
g

h 

zwhi

� 

Fi
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k
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1
τR
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h
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h
<tg

h

ρ t
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r
h 
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r
h
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.

(29)

%e partial derivative term ztr
h/zwhi can be also

calculated as formulas (14)–(16). By substituting
formulas (28) and (29) into formula (27), we can
obtain

zt
g

h

zwhi

�
− 

Fi

k�1 ε t
g

h − t
k
i  − 1/τR( tr

h
∈sh,tr

h
<tg

h
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h  zt

r
h/zwhi( 
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k
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k
i   − (1/τ)  − 1/τR( tr

h
∈sh,tr

h
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h
ρ t

g

h − t
r
h 

. (30)

According to the above derivation process, the gradient
∇Ehi can be obtained by substituting formulas (23) and (30)
into formula (19). %e update values of synaptic weights
between the hidden and input layers can be calculated by
formula (5) and the gradient ∇Ehi. %e partial derivative
term ztr

o/zt
g

h in formula (23) can be calculated recursively
using formulas (24)–(26). %e partial derivative term
ztr

h/zwhi in formula (30) can be calculated by the similar
recursive formulas (14)–(16).

4.3. Computational Complexity Analysis of the Algorithm.
%e computational complexity of the proposed supervised
learning algorithm depends on the SNN scale and spike
firing rate of neurons. For simplicity of analysis, we choose a
three-layer feedforward SNN.We assume that the number of
neurons in the different layers is NI, NH, and NO, respec-
tively, and the average spike number of neurons is FN in the
given simulation duration. According to the above deduced
learning rules of SNNs with long-term memory SRM, the
computing time of synaptic weight adjustment mainly de-
termined by the number of calls of the spike response
function ε and the refractoriness function ρ. Both ε (formula
(2)) and ρ (formula (3)) functions are exponential functions,
which are regarded as basic operations. %erefore, the
number of exponential function calls is used to measure time
complexity of learning algorithm. Assuming that CF rep-
resents the computation time of each basic operation, the
computational complexity of different layer learning rules is
analyzed as follows:

(1) As shown in formula (6), for the synaptic weight woh

between the output neuron o and the hidden neuron
h, its update value is accumulated by the effects of
output spikes. By way of recurrence, the partial
derivative term ztr

o/zwoh is computed using themode
in which previous values are stored. %e calculation

time cost for each spike t
f
o of the output neuron is

expressed as

NHFH t
f
o  + 2Fo t

f
o  + Fh t

f
o  CF, (31)

where FH(t
f
o ) is the average spike number of the

hidden neurons that fire spikes before t
f
o and Fo(t

f
o )

and Fh(t
f
o ) are the number of spikes fired before t

f
o

for the output neuron o and the hidden neuron h,
respectively. %e weight updating calculation of all
output spikes is accumulated; the asymptotic time
complexity is O(NHFN

2CF) for the update of syn-
aptic weight woh. %erefore, the total time com-
plexity of all synaptic weight adjustments between
the output and hidden layers is O(NON2

HFN
2CF).

(2) As shown in formula (19), for the synaptic weight whi

between the hidden neuron h and the input neuron i,
its update value is accumulated by the effects of
hidden spikes. %e partial derivative terms ztr

o/zt
g

h

and ztr
h/zwhi are also computed using the recursive

and storage mode. For each spike t
g

h of the output
neuron, the calculation time cost of the partial de-
rivative term zE/zt

g

h is expressed as



NO

o�1


F

f�1
NHFH t

f
o  + 2Fo t

f
o  + 1 CF. (32)

%e calculation time cost of the partial derivative term
zt

g

h/zwhi is expressed as

NIFI t
g

h  + 2Fh t
g

h  + Fi t
g

h  CF, (33)

where FI(t
g

h) is the average spike number of the input
neurons that fire spikes before t

g

h and Fh(t
g

h) and Fi(t
g

h) are
the number of spikes fired before t

g

h for the hidden neuron h
and the input neuron i, respectively. Accumulating the
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effects of all spikes of hidden neuron h, the asymptotic time
complexity is O(NONHFN

3CF + NIFN
2CF) for the update

of synaptic weight whi. %e number of weights between the
hidden and input layers is NHNI in the fully connected
networks, so the total asymptotic time complexity of all
synaptic weight adjustments is O(NON2

HNIFN
3

CF + NHN2
IFN

2CF).

5. Result Analysis and Discussion

5.1. Parameter Settings. In the simulation, the clock-driven
simulation strategy is employed to perform the spike train
learning, where the time step is dt� 0.1ms. %e long-term
memory SRM described in Section 3.1 is used in all ex-
periments. %e parameter values of the long-term memory
SRM are set as follows: the spike response time constant
τ � 3ms, the refractoriness time constant τR� 35ms, the
absolute refractory period tref� 1ms, and the threshold of
neuronal spike firing θ� 1.%e three-layer feedforward SNN
is fully connected; the number of neurons in the input layer,
the hidden layer, and the output layer is NI� 50, NH� 130,
and NO� 1, respectively. %e length of SNN simulation is
Γ� 100ms, the firing rate is 30Hz for the input and desired
output spike trains, and the input and desired output spike
trains are generated by Poisson’s process. %e synaptic
weight between two neurons is generated randomly in the
interval [0, 0.2]. In the learning process of SNN, the learning
rate of the proposed algorithm is set as η� 0.005. %e upper
limit of learning epoch is 300. Unless otherwise specified,
each experiment is performed 50 trials, and the training
results are averaged. %e multi-ReSuMe algorithm [31] for
multilayer feedforward SNN can achieve spike train learn-
ing. So, we compare our proposed algorithm with multi-
ReSuMe in the learning tasks of spike trains using the long-
term memory SRM. For the multi-ReSuMe algorithm, its
learning rate is 0.5. %e correlation-based metric C is often
used for evaluating the similarity of spike trains [43]; it can
also be used to evaluate the spike train learning capability of
the supervised learning algorithms.

5.2. Spike Train Learning. Firstly, the process of learning
sequences of spikes is analyzed using the proposed algo-
rithm. Figure 2 shows the spike train learning process of a
SNN with 150 hidden neurons to match the desired output
spike train. %e evolution of actual output spike train in the
training process is shown in Figure 2(a). With the change of
learning epoch, the actual spike train fired by the output
neuron gradually approaches the desired spike train.
Figure 2(b) shows the change trend of learning accuracy
during the learning process. It indicates that learning ac-
curacy C increased gradually during the learning process
and reached 1.0 after 40 learning epochs. %e changes of
synaptic weights between the output and hidden neurons are
also analyzed. Figure 2(c) shows the weight values before
training, and Figure 2(d) shows the weight values after
training. %is simulation indicates that our method can
successfully train the feedforward SNN to learn spike trains.

Next, the effects of network scale parameters on learning
performance are analyzed and compared with the multi-
ReSuMe algorithm. %e influence of the number of input
neurons is shown in Figures 3(a) and 3(b); the input neuron
number increases from 30 to 210 in steps of 20. Figure 3(a)
shows that the learning accuracy of two algorithms increases
gradually along with the increasing of input neurons.
However, the proposed method can achieve higher learning
accuracy than multi-ReSuMe. When the number of input
neurons is 150, the learning accuracy of our proposed al-
gorithm is C� 0.9563, which is higher than C� 0.9447 for
multi-ReSuMe. Figure 3(b) represents the learning epochs
when the training algorithm achieves the highest learning
accuracy. It shows that the learning epochs of the proposed
learning algorithm are less than those of multi-ReSuMe. For
example, the learning epochs of our proposed algorithm and
multi-ReSuMe are 194.28 and 258.74, respectively, for the
110 input neurons. Figures 3(c) and 3(d) show the learning
results when the number of hidden neurons increases from
40 to 310 in steps of 30. %e change trend of learning ac-
curacy and epochs are similar to that of the increasing of
input neurons. For example, when the number of hidden
neurons is 130, the learning accuracy of our proposed al-
gorithm is C� 0.9824 and the learning accuracy of multi-
ReSuMe is C� 0.9582. When the training algorithms achieve
the highest learning accuracy, the learning epochs of two
algorithms are 248.49 and 264.28 for the 220 hidden neu-
rons. %erefore, with the increase of SNN scale, two su-
pervised learning algorithms have stronger spike train
learning ability.

Finally, the effects of the spike train parameters on
learning performance are analyzed and compared with the
multi-ReSuMe algorithm. Figures 4(a) and 4(b) show that
the learning results with the change of spike firing rate; it
increases from 20Hz to 110Hz in steps of 10Hz. As shown
in Figure 4(a), the learning accuracy of the two algorithms
decreases gradually with the increasing of the firing rate of
spike trains. However, the proposed method can achieve
higher learning accuracy than multi-ReSuMe. For example,
when the spike train firing rate is 40Hz, the learning ac-
curacy of our method is 0.9824, and C� 0.9174 for the multi-
ReSuMe algorithm. Figure 4(b) represents the learning
epochs when the training algorithm achieves the highest
learning accuracy. It shows that the learning epochs of both
our method and multi-ReSuMe increase firstly and then
decrease with the increasing of the spike firing rate, and the
proposed learning algorithm has less learning epochs. For
example, the learning epochs of two algorithms are 182.46
and 218.49 when the firing rate spike trains is 50Hz. When
the length of spike trains increases from 50ms to 500ms in
steps of 50ms, the learning results are shown in Figures 4(c)
and 4(d). %e learning accuracy and epochs have a down-
ward trend with the increase of the spike train length. For
example, when the spike train length is 150ms, the learning
accuracy of our method and the multi-ReSuMe is C� 0.9675
and C� 0.9231, respectively. When the spike train length is
350ms, the learning epochs of the two algorithms are 180.78
and 217.74, respectively. %erefore, when the spike train is
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Figure 2: %e learning process of spike train trained with our method. (a) %e evolution of actual spike train of the output neuron in the
training process. ▽ and • represent the desired and actual output spikes during the training process, and △ represents the initial output
spikes before learning. (b) %e change trend of learning accuracy. (c) %e synaptic weight values before training. (d) %e synaptic weight
values after training.
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Figure 3: Continued.
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Figure 3: %e learning results of our method and multi-ReSuMe with the changes of network scale parameters. (a) %e learning accuracy
with different number of input neurons. (b) %e learning epochs with different numbers of input neurons. (c) %e learning accuracy with
different numbers of hidden neurons. (d) %e learning epochs with different numbers of hidden neurons.
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more complex, the optimization of synaptic weights in the
SNN is more difficult.

5.3. Nonlinear Pattern Classification. %e proposed method
is also used to solve actual nonlinear pattern classification
problems in the multilayer feedforward SNNs. We select the
4 benchmark datasets: Fisher Iris, Pima Indians Diabetes
(PIMA), Wisconsin Breast Cancer (WBC), and Liver Dis-
orders; these classification problems are from the UCI
machine learning library [44]. %e samples are divided into
training and testing sets. Table 2 shows the details of
benchmark datasets.

Each feature value of samples in the 4 datasets is nor-
malized and converted into the frequency interval of [30, 50]
Hz. Using a linear encoding method, each frequency value is
then encoded as a spike train within [0, 50] ms. For the 4
datasets, the range of the initial synaptic weights before
learning and the time constant τ of the postsynaptic po-
tential of the long-termmemory SRM are different. Also, the
label information of each sample in the 4 datasets is encoded
into desired spike trains with different frequencies using a
linear encoding scheme. Table 3 shows the parameter set-
tings for different datasets. In this experiment, each result is
averaged over 20 trials. We compare our proposed algorithm
with the multi-STIP [41] and multi-ReSuMe [31] algorithms
using the long-term memory SRM on classification per-
formance. %e learning rates of these 3 algorithms for the
nonlinear pattern classification problems are shown in
Table 4.

Figure 5 shows the classification process of the super-
vised learning algorithms of SNNs for the Iris dataset. %e
number of misclassified samples on the training set trained
with our method is shown in Figure 5(a). We note that the
misclassified number of Versicolor samples decreases rap-
idly, and the misclassified samples of Setosa and Virginica do

not change too much during the training process. When the
learning epoch exceeds 20, the misclassification of the three
kinds of samples will be gradually stable. Figure 5(b) shows
the evolution of the classification accuracy of our method,
multi-STIP, and multi-ReSuMe on the training set. It shows
that our method is more stable and can achieve higher
classification accuracy than the other two supervised
learning algorithms on the training set. On average, using
our method to train SNNs, Setosa samples are classified
correctly; 0.4 Versicolor samples and 1.4 Virginica samples
are misclassified. Finally, the classification accuracy of our
method, multi-STIP, and multi-ReSuMe is 97.6%, 96.1%,
and 87.4%, respectively.

Figure 6 shows the classification results of an experiment
for the PIMA dataset. As shown in Figure 6(a), the number
of misclassified samples are obtained by training a SNN with
our method. From Figure 6(a), it can be seen that the
misclassified number of normal samples increases firstly and
then decreases gradually, and the misclassified samples of
sick decrease rapidly and then increase gradually during the
training process. However, the overall number of mis-
classified samples is decreased. Figure 6(b) shows the clas-
sification accuracy of three supervised learning algorithms
on the training set. It shows that our method can achieve
higher classification accuracy than multi-STIP and multi-
ReSuMe.%e average results are obtained over 20 trials using
our method; the number of misclassified samples of normal
and sick is 67.2 and 49.9, respectively. %e mean classifi-
cation accuracy of our method, multi-STIP, and multi-
ReSuMe on the training set is 69.5%, 67.7%, and 66.7%,
respectively.

Figure 7 shows the classification process of our method,
multi-STIP, and multi-ReSuMe for the WBC dataset. %e
number of misclassified samples trained with our method is
shown in Figure 7(a). It indicates that the misclassified
number of benign samples increases gradually, and the
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Figure 4: %e learning results of our method and multi-ReSuMe with the changes of spike train parameters. (a) %e learning accuracy with
different firing rates of spike trains. (b)%e learning epochs with different firing rates of spike trains. (c)%e learning accuracy with different
lengths of spike trains. (d) %e learning epochs with different lengths of spike trains.
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misclassified number of malignant samples decreases rapidly
during the training process. %e overall number of mis-
classified samples is decreased gradually. Eventually, on
average, 3.3 samples of benign tumor and 12.8 samples of
malignant tumor are misclassified. %e classification accu-
racy of three learning algorithms on the training set is shown
in Figure 8(b). %e classification accuracy of multi-STIP is
the highest, our method is second, and multi-ReSuMe is the

lowest. %rough the average of 20 experiments, the classi-
fication accuracy of three methods on the training set is
95.3%, 96.1%, and 93.7%, respectively.

Figure 8 shows the classification process of an experi-
ment using our method, multi-STIP, and multi-ReSuMe for
the Liver dataset. As shown in Figure 8(a), the misclassified
number of sick samples increases gradually, and the mis-
classified number of normal samples decreases during the

Table 2: Description of datasets used for validation.

Dataset Feature Class Number of samples in the training set Number of samples in the testing set
Iris 4 3 75 75
PIMA 8 2 384 384
WBC 9 2 342 341
Liver 6 2 170 175

Table 3: Parameter settings for different datasets.

Dataset Range of synaptic weights Time constant τ (ms) Firing rate of desired spike trains for
different classes (Hz) Upper limit of learning epochs

Iris [0, 0.6] 7 30, 35, 40 150
PIMA [0, 0.3] 9 30, 38 100
WBC [0, 1.0] 9 32, 38 100
Liver [0, 1.2] 3 30, 34 50

Table 4: Learning rates of our method, multi-STIP, and multi-ReSuMe for different datasets.

Dataset Our method Multi-STIP Multi-ReSuMe
Iris 0.005 0.001 0.001
PIMA 0.001 0.0001 0.0001
WBC 0.0001 0.005 0.005
Liver 0.0001 0.0005 0.0005

0

1

2

3

4

5

6

7

nu
m

be
r o

f m
isc

la
ss

ifi
ed

 sa
m

pl
es

0 100 15050
learning epoch

Setosa
Versicolor
Virginica

(a)

50 100 1500
learning epoch

70

80

90

100

cl
as

sif
ic

at
io

n 
ac

cu
ra

cy
 (%

) 

Our Method
Multi-STIP
Multi-ReSuMe

(b)

Figure 5: Classification process of our method, multi-STIP, and multi-ReSuMe for the Iris dataset. (a) %e number of misclassified samples
trained with our method. (b) %e evolution of the classification accuracy of three algorithms on the training set.
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training process using our method. %e misclassified
number tends to stable after 30 learning epochs. Figure 8(b)
shows the evolution of classification accuracy of three su-
pervised learning algorithms on the training set. It indicates
that our method can achieve the highest classification ac-
curacy. Eventually, on average, 32.4 samples of normal and
21.7 samples of sick are misclassified, and the classification
accuracy of three methods on the training set is 68.1%,
62.4%, and 61.7%, respectively.

In order to verify the pattern classification ability of the
proposed algorithm, the classification accuracy is compared

against several other supervised learning algorithms using
multilayer feedforward SNNs. Table 5 shows the comparison
results of classification accuracy of different methods for the
datasets of Iris, PIMA,WBC, and Liver.%e gradient descent
algorithm SpikeProp [11] with single spike is chosen; syn-
aptic plasticity algorithms SWAT [29] and multi-ReSuMe
[31] and spike train convolution algorithm multi-STIP [41]
are also chosen for comparison. %e classification accuracy
of SpikeProp and SWATon the Iris andWBC datasets refers
to the results described in [29], while the classification ac-
curacy of SpikeProp and SWAT on the PIMA and Liver
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Figure 6: Classification process of our method, multi-STIP, and multi-ReSuMe for the PIMA dataset. (a) %e number of misclassified
samples trained with our method. (b) %e evolution of the classification accuracy of three algorithms on the training set.
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Figure 7: Classification process of our method, multi-STIP, and multi-ReSuMe for the WBC dataset. (a) %e number of misclassified
samples trained with our method. (b) %e evolution of the classification accuracy of three algorithms on the training set.
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datasets refers to the results described in [45]. %e classi-
fication accuracy of multi-ReSuMe, multi-STIP, and our
method for the datasets of Iris, PIMA, WBC, and Liver is
obtained by multilayer feedforward SNNs with long-term
memory SRM.

As shown in Table 5, for the Iris dataset, the classifi-
cation accuracy of our method is the highest; the training
and testing classification accuracy is 97.6% and 97.2%,
respectively. For the PIMA dataset, the classification ac-
curacy of our method on the training and testing sets is
69.5% and 71.8%; it is higher than multi-STIP and multi-
ReSuMe, but lower than SpikeProp and SWAT. For the
WBC dataset, the classification accuracy of the proposed

algorithm is 95.3% on the training set and 94.9% on the
testing set, our method can achieve higher classification
accuracy than the multi-ReSuMe algorithm. For the Liver
dataset, the classification accuracy of the proposed algo-
rithm is higher than that of multi-ReSuMe and multi-STIP
on the training set and higher than that of SWAT, multi-
ReSuMe, and multi-STIP on the testing set. %e classifi-
cation accuracy of our method is 68.1% and 64.7% on the
training and testing sets, respectively. In general, our
proposed algorithm adopts the simpler SNN structure and
spike train encoding method; it can solve the nonlinear
pattern classification problems well and achieve rather
good results for different datasets.
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Figure 8: Classification process of our method, multi-STIP, and multi-ReSuMe for the Liver dataset. (a) %e number of misclassified
samples trained with our method. (b) %e evolution of the classification accuracy of three algorithms on the training set.

Table 5: Comparison of classification accuracy of different methods for the 4 datasets.

Dataset Algorithm SNN architecture Training accuracy Testing accuracy

Iris

SpikeProp [29] 50–10–3 97.4%± 0.1 96.1%± 0.1
SWAT [29] 16–208–3 95.5%± 0.6 95.3%± 3.6

Multi-ReSuMe 4–80–1 87.4%± 0.1 86.3%± 0.8
Multi-STIP 4–80–1 96.1%± 1.1 94.2%± 2.0
Our method 4–80–1 97.6%± 2.0 97.2%± 2.0

PIMA

SpikeProp [45] 49–20–2 78.6%± 2.5 76.2%± 1.8
SWAT [45] 48–624–2 77.0%± 2.1 72.1%± 1.8

Multi-ReSuMe 8–100–1 66.7%± 1.0 66.4%± 0.9
Multi-STIP 8–100–1 67.7%± 2.0 69.5%± 1.0
Our method 8–100–1 69.5%± 2.4 71.8%± 1.4

WBC

SpikeProp [29] 64–15–2 97.6%± 0.2 97.0%± 0.6
SWAT [29] 9–117–2 96.2%± 0.4 96.7%± 2.3

Multi-ReSuMe 9–50–1 93.7%± 1.0 94.4%± 1.4
Multi-STIP 9–50–1 96.1%± 0.4 96.7%± 0.7
Our method 9–50–1 95.3%± 0.6 94.9%± 1.1

Liver

SpikeProp [45] 37–15–2 71.5%± 5.2 65.1%± 4.7
SWAT [45] 36–468–2 74.8%± 2.1 60.9%± 3.2

Multi-ReSuMe 6–50–1 61.8%± 1.0 61.5%± 1.4
Multi-STIP 6–50–1 62.4%± 2.0 60.8%± 2.0
Our method 6–50–1 68.1%± 4.1 64.7%± 2.7
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6. Conclusions

Gradient descent rule is a conventional mathematical basis
for designing learning algorithms of neural networks. %e
SNNs represent information by discrete spike times, which
results in the related variables of neurons to the error
function that is not continuously differentiable. So, the
traditional error backpropagation method is not suitable for
training SNNs. %is paper presents a supervised learning
algorithm based on gradient descent rule for multilayer
feedforward SNNs, which can realize spike train learning.
%e feedforward network consists of spiking neurons gov-
erned by biologically plausible long-term memory SRM, in
which the effect of earlier spikes on the refractoriness is not
neglected to express the bursting and adaptation charac-
teristics. Using the recursive equations, the gradient descent
rules of different layers are derived to update synaptic
weights. %e extended SpikeProp algorithm with the long-
term memory SRM can learn spike train in the input and
hidden layers, but still limits the output neuron to fire single
spike [17]. However, the advantage of the proposed algo-
rithm can learn spike trains in all layers.

%e proposed algorithm is performed on some spike
train learning tasks with various parameters. %e results
indicate that our method can obtain higher learning accu-
racy and less learning epochs in comparison with the multi-
ReSuMe algorithm. Some important parameters of network
simulation are analyzed; it is shown that the proposed al-
gorithm is robust for a large parameter space. In addition,
the proposed algorithm is used to solve the nonlinear pattern
classification problems on UCI benchmark datasets of Iris,
PIMA, WBC, and Liver. Experimental results show that our
method can well solve the nonlinear pattern classification
problems and achieve high classification accuracy for dif-
ferent datasets in comparison to other algorithms for
multilayer feedforward SNNs. %e proposed learning al-
gorithm runs in an offline manner. It needs to study the
online gradient descent learning algorithms for multilayer
feedforward SNNs and use them to solve real-time pattern
recognition problems in an online manner.
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