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Abstract

Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a

previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus

anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result,

cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study,

we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of

Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading

step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the

plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- con-

tribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery pro-

cess. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and

Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion

of recycling endosomes with the plasma membrane, and appears to be the primary effector

of EF toxicity in this process. Similarly, experiments conducted in mammalian systems

reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo.

The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components,

also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of

cargo proteins at sites of cell-cell contact. These studies have potentially significant practical

implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell

culture and in vivo, opening new potential therapeutic avenues for treating symptoms

caused by cAMP-inducing toxins or related barrier-disrupting pathologies.

Author summary

Recent anthrax outbreaks in Zambia and northern Russia and biodefense preparedness

highlight the need for new therapies to counteract fatal late-stage pathologies in patients
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infected with Bacillus anthracis. Indeed, two toxins secreted by this pathogen—edema

toxin (ET) and lethal toxin (LT)—can cause death in face of effective antibiotic treatment.

ET, a potent adenylate cyclase, severely impacts host cells and tissues through an overpro-

duction of the ubiquitous second messenger cAMP. Previously, we identified Rab11 as

a key host factor inhibited by ET. Blockade of Rab11-dependent endocytic recycling

resulted in the disruption of intercellular junctions, likely contributing to life threatening

vascular effusion observed in anthrax patients. Here we present a multi-system analysis of

the mechanism by which EF inhibits Rab11 and exocyst-dependent trafficking. Epistasis

experiments in Drosophila reveal that over-activation of the cAMP effectors PKA and

Epac/Rap1 interferes with Rab11-mediated trafficking at two distinct steps. We further

describe conserved roles of Epac and the small GTPase Arf6 in ET-mediated disruption of

vesicular trafficking and show how chemical inhibition of either pathway greatly alleviates

ET-induced edema. Thus, our study defines Epac and Arf6 as promising drug targets for

the treatment of infectious diseases and other pathologies involving cAMP overload or

related barrier disruption.

Introduction

Bacterial pathogens enhance infectivity by secreting toxins that deregulate immune signaling

pathways or disrupt host cellular barriers. One class of toxins produced by diverse bacterial

species dramatically increases intracellular concentrations of cAMP. This striking evolutionary

convergence suggests that over-production of this second messenger represents a successful

strategy to promote growth and dissemination of infectious agents and associated disease

symptoms [1]. These toxins include adenylate cyclases (AC), such as edema factor (EF) from

Bacillus anthracis (B. a.), CyaA from Bordetella pertussis, and ExoY from Pseudomonas aerugi-
nosa. Other toxins modify host proteins to induce cAMP production by endogenous cellular

machineries. For example, cholera toxin (Ctx) from Vibrio cholerae, and the related heat-labile

toxin from enterotoxigenic Escherichia coli, both ADP-ribosylate the α subunit of trimeric G

proteins to stimulate cAMP synthesis by host AC, while pertussis toxin (Ptx) from Bordetella
pertussis ADP-ribosylates and inactivates Gi subunits that normally inhibit endogenous ACs

(reviewed in [2]).

B.a., the etiological agent of anthrax, produces two A-subunit toxins, edema factor (EF) and

lethal factor (LF), which are secreted together with a shared B-subunit, protective antigen

(PA), and then assemble to form edema toxin (ET) and lethal toxin (LT), respectively [3,4]. ET

and LT can enter a wide array of mammalian cells expressing either of two related surface

receptors, CMG2 or TEM8, where upon the toxins are internalized, leading to the release of

the enzymatic A-subunits into the cytoplasm [5]. LF is a zinc metalloprotease that cleaves and

inactivates mitogen-activated protein kinase kinases (MAPKKs or MEKs) to block MAPK sig-

naling pathways [6] and, in some hosts, also cleaves NLRP1 to activate the inflammasome [7].

EF is a calmodulin-dependent AC, estimated to be more than a hundred times more potent

than its mammalian counterparts in raising intracellular cAMP concentrations [8]. During the

early stages of anthrax infection, LT and ET inhibit the innate immune response, reducing cell

viability, disrupting chemotaxis and phagocytosis and deregulating cytokine production by

macrophages, dendritic cells, and lymphocytes. These combined toxic effects promote bacte-

rial growth and dissemination throughout the host [9,10]. In late fulminant stages of the dis-

ease, increasing amounts of ET [11] are released into the bloodstream, and in combination

with LT cause edema, bleeding and hemorrhagic lesions (ET), and atypical collapse of the car-

diovascular system (LT), often culminating in cardiac arrest and death [12,13].

Mechanisms of junctional disruption by edema toxin

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006603 September 25, 2017 2 / 24

the UCSD School of Medicine Microscopy Core

(http://www.ninds.nih.gov/). The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist

https://doi.org/10.1371/journal.ppat.1006603
http://www.ninds.nih.gov/


Molecular pathways altered by the concerted effects of EF and LF were analyzed in trans-

genic Drosophila models by tissue-specific and conditional expression of the A-toxin subunit

using the GAL4/UAS system [14]. Expression in the developing wing revealed that EF caused

a phenotype very similar to that of a dominant-negative form of Rab11, a small GTPase of the

Rab subfamily essential for endocytic recycling [15,16]. Consistent with EF blocking Rab11-

dependent trafficking, two known cargo proteins, Delta (a transmembrane ligand activating

the Notch receptor) and the homophylic adhesion protein E-cadherin[17,18] failed to reach

their normal destination at apical adherens junctions (AJs). In addition, Rab11 levels were

severely reduced in response to EF expression in the wing imaginal disc. This newly recog-

nized activity of EF was also observed in mammalian cells, where ET caused a clear disruption

of AJs and Notch signaling in several endothelial cell lines, and was essential for B. a.-induced

vascular effusion in vivo [19]. To promote cargo vesicle fusion with the plasma membrane at

proper apical sites, Rab11 relies on its effector Sec15, which physically binds to the GTP-

bound/active form of Rab11[13,20,21]. Sec15 is a key component of the exocyst, an octameric

protein complex that triggers docking and SNARE-mediated fusion of cargo vesicles with the

plasma membrane [22]. When over-expressed in various cell types, Sec15 promotes the assem-

bly of large punctate structures[20] that also contain Rab11, Sec15, and other exocyst compo-

nents. Consistent with previous observations, we found that EF prevented the formation of

such Sec15-rich punctae. Interestingly, LF led to a similar inhibition of Sec15 punctae assem-

bly, although via a Rab11-independent mechanism, indicating that Sec15 acts as a convergence

point that integrates the effects of both anthrax toxins to block exocyst-mediated trafficking

and disrupt integrity of the endothelial barrier [19].

Subsequent studies revealed that cholera toxin also blocks Rab11-mediated trafficking, an

activity expected to increase intestinal epithelial permeability, paracellular water loss and diar-

rhea [23]. These similar cellular effects of ET and Ctx are likely to contribute to the hallmark

pathological features and symptoms associated with anthrax and cholera respectively [24].

In the present studies, we delve deeper into the molecular pathways connecting ET-induced

cAMP overload to inhibition of Rab11. We apply a combination of approaches involving

GTPase isoform-specific transgenes and antibodies, different Drosophila epithelial tissues,

human cell lines, and in vivo experiments in mice. Our results indicate that EF disrupts

Rab11-dependent processes after the GTP loading step. In flies, both cAMP effectors PKA and

Epac disrupt Rab11-mediated junctional transport when artificially activated, but disable early

versus late steps of the trafficking process, respectively. However, the Epac/Rap1 pathway

seems to serve as the primary mediator of EF-induced toxemia in mammalian systems as well

as in the Drosophila wing epithelium. Constitutive activation of Arf6, a small GTPases involved

in endocytic retrieval of junctional proteins [25], causes phenotypes nearly identical to that of

EF, and similarly alters Rab11 levels and distribution. These findings have potentially impor-

tant practical implications, since chemical inhibition of Epac (using the selective cAMP analog

ESI-09[26]) or Arf6 (using SecinH3[27] or Slit[28]) can reverse the effect of EF in a mouse

footpad edema assay and in human cells. Such small molecule interventions open new poten-

tial therapeutic avenues for alleviating pathological effects of cAMP toxins and potentially

other barrier disruptive agents.

Results

EF blocks Rab11 activity following GTP loading

In an effort better understand how EF blocks Rab11-dependent trafficking, we initially exam-

ined the behaviors of three YFP-tagged forms of Rab11: wild-type (wt), activated (�), and dom-

inant-negative (DN) [29]. These variants were first expressed in the wing primordium in
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which inhibition of Rab11 by EF was initially discovered and analyzed [19,23]. The sub-cellular

distribution of Rab11wtYFP detected by immuno-fluorescence appears as a grainy stain

restricted primarily to the apical pole of epithelial cells (Fig 1A). In addition to this wt pattern,

activated Rab11 (Rab11�YFP), a mutant that cannot hydrolyze GTP to GDP, displayed an

additional staining component that accumulates at or near apical adherens junctions (AJs)

(Fig 1B). This latter staining is in line with the known role of Rab11 in junctional delivery (see

S1 Fig for co-localization of Rab11� and Drosophila E-cadherin, D-Ecad). We conclude that

active GTP-bound Rab11 is selectively directed to cell-cell contacts at AJs. Consistent with this

hypothesis, a dominant-negative Rab11 (Rab11DNYFP), locked in its inactive GDP-bound

conformation, did not display a preferential junctional distribution nor apical accumulation

(Fig 1C). We then turned our analysis to larval salivary glands, which are comprised of large

polyploid secretory cells[30], where the junctional-specific distribution of Rab11�YFP appears

more pronounced (Fig 1E). In these cells, over-expressed Rab11wtYFP was distributed throu-

ghout the cytoplasm, albeit excluded from densely packed secretory granules, with higher lev-

els detected in the vicinity of intercellular junctions (Fig 1D). Rab11�YFP behaved similarly

but, in addition, exhibited a strong junctional staining component (Fig 1E and 1H). In con-

trast, Rab11DNYFP did not concentrate at junctions, but altered the size and shape of secre-

tory granules (Fig 1G, thin arrows), suggesting that Rab11 normally plays a role in the

formation or trafficking of these granules. These findings in the salivary gland confirm our

results in wing discs suggesting that the activated GTP-bound form of Rab11 is selectively

directed to AJs.

According to the hypothesis that only the activated form of Rab11 traffics to junctions, fac-

tors blocking Rab11 upstream of the GTP-loading step should have no effect on Rab11� distri-

bution, whereas inhibitory factors acting downstream of Rab11 should prevent Rab11� from

accumulating at AJs. To test this model, we employed two RNAi constructs, one for knocking-

down expression of Crag, which is the only known GEF specifically dedicated to activating

Rab11 [31], and the other for knocking-down Sec15, an important Rab11 effector required for

junctional delivery [18]. Specific inhibitory activities of these RNAi lines were confirmed using

epitope-tagged forms of Crag and Sec15 (See S2 Fig). When co-expressed with Rab11�YFP,

Sec15-RNAi clearly prevented Rab11�YFP from reaching the AJs (S3 Fig), consistent with

Sec15 acting downstream of Rab11 activation. In contrast, Crag-RNAi had no effect on

Rab11�YFP distribution, consistent with Crag acting upstream of Rab11 (S3 Fig). Next, we

examined whether EF blocks activation (GTP loading) of Rab11 or a subsequent step, by test-

ing the effect of EF on Rab11�YFP localization. Expression of EF blocked all Rab11� junctional

accumulation (Fig 1F, compare panels 1H and 1I showing higher magnifications, see S4 Fig

for quantifications of junctional Rab11� in response to EF expression). As the constitutively

activated mutant Rab11�YFP remains sensitive to EF, we conclude that this toxin acts after the

GTP-loading step.

We next examined the behavior of endogenous Rab11 in salivary glands and its response to

EF challenge using an antibody that detects all forms of Rab11 (α-Rab11). In wt glands, Rab11

shows a granular distribution with a higher concentration in the vicinity of cell junctions (Fig

1J and 1L), which may represent an enrichment in activated Rab11. In EF-expressing glands,

this juxta-junctional staining was clearly reduced: Rab11 dots were detected at similar levels as

in wt glands, but very few accumulated around the junctions (Fig 1K and 1M). These findings

are consistent with the hypothesis that EF prevents activated Rab11 from reaching the AJs. To

test this model further we employed an antibody that specifically detects the activated Rab11

pool (α-Rab11�). Consistent with the observations described above, we found that endogenous

activated Rab11 localized predominantly to AJs (Fig 1N and 1P). In EF-expressing glands, the

overall levels of activated Rab11� were not obviously altered, however, less activated Rab11

Mechanisms of junctional disruption by edema toxin
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Fig 1. EF inhibits Rab11 downstream of GTP loading. (A-C) Wing imaginal discs expressing wild-type (wt)

and mutant forms of YFP-tagged Rab11, using the strong wing-specific MS1096 GAL4 (abbreviated as

1096GAL4), and stained with a Rabbit anti-GFP antibody, reveal different sub-cellular distributions of Rab11.

Insets show corresponding Z-sections. (A) Rab11wt, showing apical restriction. (B) Rab11 activated (or

Rab11*), showing apical restriction plus junctional concentration, (C) Rab11 Dominant-Negative (or Rab11DN)

showing loss of apical/junctional staining. The bipartite staining of Rab11* is even more pronounced in salivary

glands (D-I). (D) 1096GAL4>Rab11wtYFP. (E) 1096GAL4>Rab11*YFP with higher magnification in (H). Arrows

point at intercellular junctions where Rab11* accumulates. (F) 1096GAL4>Rab11*YFP +EF. EF blocks Rab11*
targeting to the junctions, higher magnification shown in (I). Arrows point to intercellular junctions where Rab11*

Mechanisms of junctional disruption by edema toxin
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accumulated at the AJs (Fig 1O and 1Q, compare with 1N and 1P). Similarly, in EF-expressing

discs, activated Rab11 levels remained comparable to wt levels, while junctional accumulation

was severely reduced by EF (Fig 1R and 1S). We conclude that EF does not interfere with

Rab11 activation (GTP loading), but instead blocks Rab11 function at a subsequent step(s) to

prevent the activated form of Rab11 from trafficking to AJs.

Next, we tested whether the association between Rab11 and its known cargo protein

D-Ecad was affected by EF. As expected, co-labeling of Rab11 and D-Ecad in wt salivary glands

revealed strong co-localization at cell junctions (Fig 1T and 1U -wide arrow-) and in punctate

structures near the junctions (Fig 1U -thin arrow-). In glands expressing EF, however, D-Ecad

approached the cell surface (Fig 1V and 1W), but failed to fully localize to AJs, as revealed by

gaps in staining between cells (Fig 1W, arrows). Similarly, expression of Rab11DN led to an

accumulation of D-Ecad just under the junctions, while many gaps were visible between cells

(S5 Fig). These observations suggest that in salivary glands, Rab11 is not required for traffick-

ing D-Ecad to the proximity of junctions, but is critical for the final delivery at the plasma

membrane through vesicular fusion. Importantly, in EF-expressing glands, Rab11-DEcad co-

localization was abrogated (Fig 1V and 1W, wide arrows). We conclude that EF blocks the

association between Rab11 and trafficking vesicles containing cargo proteins such as D-Ecad,

leading to a failure in final step of junctional delivery with the consequence of weakened AJs.

PKA and Epac/Rap1 block Rab11 trafficking at distinct steps

cAMP stimulates two main effectors: PKA and Epac, a GEF that activates the small GTPase

Rap1 [32] [33]. We activated each branch of the cAMP pathway separately, using either a con-

stitutively active form of PKA (PKA�, consisting of the catalytic domain only [34]), or an acti-

vated form of Rap1 (Rap1�, which is locked in its GTP-bound form [35]). We previously

reported that both PKA� and Rap1� expressed in the wing primordium caused a reduction in

Rab11 levels, blocked apical accumulation of Delta, and prevented the formation of Sec15

structures in the wing primordium [23], suggesting that over-stimulation of each branch of the

cAMP pathway can inhibit Rab11. We thought to resolve the respective activities of PKA and

Rap1 on Rab11 function further, by co-expressing the activated form of Rab11 (Rab11�YFP)

with either PKA� or Rap1�. PKA� profoundly altered Rab11� distribution, both by eliminating

accumulation of Rab11� at AJs (Fig 2B and 2E, compare with 2A and 2D) in a similar, albeit

stronger, fashion to EF (Fig 1F and 1I), and also by preventing the formation of secretory gran-

ules (or dramatically reducing their size). These combined effects of PKA� result in Rab11�

being ubiquitously distributed throughout the cytoplasm (Fig 2B and 2E). A similar pattern

was observed when staining for total endogenous Rab11, which lost its tendency to concen-

trate around the junctions in response to PKA� expression (Fig 2H, compare with 2G). Sur-

prisingly, PKA� induced a strong increase in overall Rab11 levels in salivary glands, which is

no longer accumulates when co-expressed with EF. (G) 1096GAL4>Rab11DNYFP, showing that Rab11DN

does not concentrate at the junctions, but alters the morphology of secretory granules (thin arrows). (J-M):

detection of the endogenous Rab11 reveals that it collects near junctions in a punctate pattern (J), with higher

magnification in (L). This preference is abrogated in EF-expressing glands (K), with higher magnification in (M).

Selective staining of the activated component of endogenous Rab11 (Rab11*) reveals that this functionally

relevant form accumulates next to cell junctions in salivary glands (N), sagittal view in (P), an effect that is

reduced in EF-expressing glands (O), sagittal view in (Q). The effect of EF on endogenous Rab11* is also visible

in wing imaginal discs: (R) wt, (S) 1096GAL4>EF. Co-labeling of Rab11 and D-Ecad, the Drosophila ortholog of

E-Cadherin (T-W) reveals co-localization of Rab11 and D-Ecad at the AJs in wt salivary glands (T), (U) higher

magnification. Thick arrow indicates AJs, thin arrow indicates punctate stain near the AJs. Co-localization is lost

upon EF expression (V) in salivary glands, (W) higher magnification.

https://doi.org/10.1371/journal.ppat.1006603.g001
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Fig 2. PKA* and Rap1* block Rab11 at distinct steps of junctional trafficking. (A-F) Rab11*YFP

distribution (detected by a Rabbit anti-GFP antibody) is differentially affected by PKA* versus Rap1* in

Drosophila salivary glands. (A) Rab11* (in 1096GAL4>Rab11*YFP glands) shows a strong preference for the

intercellular junctions (see D for higher magnification). (B) PKA* induces ubiquitous redistribution of Rab11* (in

1096GAL4>Rab11*YFP+PKA* glands, see E for higher magnification). (C) Rap1* expression does not alter

Rab11* targeting to the junctions, but blocks the final membrane fusion event (in 1096GAL4>Rab11*YFP

+Rap1* glands, see F for higher magnification). (G-I) Endogenous Rab11 (detected by a mouse anti-Rab11

Mechanisms of junctional disruption by edema toxin
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opposite to its effect in wing imaginal discs[19,23]. Consistent with Rab11-dependent traffick-

ing being disrupted by PKA�, adherens junctions appeared weakened in PKA�-expressing

glands, with more D-Ecad accumulating in the cytoplasm and around the AJs (Fig 2K) than in

the wt glands (Fig 2J). In contrast to PKA�, Rap1� expression in salivary glands did not prevent

Rab11�YFP from accumulating near cell boundaries (Fig 2C and 2F). However, instead of the

typical single sharp line coinciding with cell junctions observed with Rab11�YFP alone (Fig

2D), co-expression with Rap1� resulted in a double row of Rab11� staining, revealing a narrow

gap between adjacent cells (Fig 2F, arrows). This phenotype suggests a failure of the final

fusion event between cargo vesicles and the plasma membrane. Consistent with these observa-

tions, endogenous total Rab11 staining was also concentrated in a sub-junctional zone in

response to Rap1� expression (Fig 2I,arrows), revealing narrow intercellular gaps. These

Rap1�-expressing glands also showed an accumulation of small D-Ecad-rich vesicles near

inter-cellular boundaries, while normal AJs failed to form (Fig 2L). These results confirm the

view that over-activation of each branch of the cAMP pathway can block Rab11-dependent

trafficking, but that PKA� does so at an early step when vesicle loading takes place, while

Rap1� acts later during the final vesicle delivery process.

In adult Drosophila wings, both PKA� and Rap1� cause phenotypes similar to that of EF

(compare Fig 2N and 2O with 2Q) consisting of smaller wings with blisters and thicker veins.

The PKA� phenotype, however, is predominantly restricted to the center of the wing (Fig 2N),

while Rap1�, like EF, affects the entire wing blade (Fig 2O and 2Q). Consistent with PKA� and

Rap1� intersecting a common pathway, we found that co-expression of Rap1� and PKA� led to

a drastically enhanced synergistic phenotype (Fig 2P). While these gain-of-function studies

reveal that both PKA and Rap1 signaling can interfere with Rab11 trafficking when artificially

stimulated, we also tested which cAMP pathway might be required to mediate the effects of

EF. We selectively blocked the Epac/Rap1 branch by expressing different EpacRNAi trans-

genes, which did not produce any notable phenotype on their own (S6 Fig). When combined

with EF, however, EpacRNAi significantly reduced the EF phenotype (Fig 2R, compare with

2Q, see S6 Fig for quantifications). In contrast, reducing the levels of PKA-C1, the major PKA

catalytic subunit in Drosophila (by two heterozygous loss-of-function PKA-C1 alleles), had lit-

tle if any effect on the EF phenotype (S6 Fig). We conclude that the Epac/Rap1 pathway is the

predominant mediator of EF in the wing epithelium.

EF prevents association of Rab11* with its effectors

In order to direct cargo vesicles to the AJs and promote their fusion with the plasma mem-

brane, Rab11 must interact with several known effectors, including Rab11-FIPs (Rab11 Fam-

ily-Interacting Proteins [36]) and Sec15, a component of the exocyst complex that is critical

for its assembly [20]. Drosophila has a single ortholog of Rab11-FIP (dRip11 [37]), as well as

antibody) in salivary glands of the indicated genotypes (G) Wild-type (+/+). (H) 1096GAL4>PKA*. Rab11 shows

higher levels and loss of junctional preference. (I) 1096GAL4>Rap1*, Rab11 still accumulates near the junctions.

(J-L) D-Ecad staining of salivary glands. The salivary gland-specific SglGAL4 was used for these stains. (J) Lin-

ear AJs form in wild-type glands. (K) PKA* expression results in weakened junctions and cytoplasmic retention

of D-ECad in punctate vesicles. (L) Rap1* expression causes D-Ecad to accumulate around the junctions in

small vesicles. (M-R) Wing phenotypes implicating both cAMP effector pathways in Rab11 inhibition, from flies of

the following genotypes: (M) wild-type (N) 1096GAL4>PKA*. (O) 1096GAL4>Rap1* (more similar to the EF

phenotype, see panel Q). (P) 1096GAL4>Rap1*+PKA* (showing synergism between PKA* and Rap1*). (Q)

1096GAL4>EF. (R) 1096GAL4>EF+EpacRNAi. Knock-down of Epac expression significantly suppresses the EF

phenotype. See S6 Fig showing quantifications of these phenotypes. In contrast, loss-of-function alleles of

PKA-C1 do not reduce the EF phenotype significantly (S6 Fig).

https://doi.org/10.1371/journal.ppat.1006603.g002
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unique representatives of all core exocyst components [18]. We first tested the effect of EF on

Rab11 effectors by expressing a full length GFP-tagged dRip11 UAS transgene [37] in the salivary

glands. When expressed alone, this fusion protein was strongly concentrated at cell junctions

(Fig 3A). Co-expression of EF with dRip11 reduced, but did not eliminate junctional accumula-

tion of dRip11 and also resulted in forked and irregular cell borders (Fig 3B). Because Rip11 is a

Rab11-binding protein, we also examined association between these two proteins, which we

visualized by expressing Rab11�YFP (detected with a rat anti-GFP antibody) and staining for the

endogenous dRip11. This particular double stain revealed frequent co-localization of the two

proteins in bright dots in the vicinity of intercellular junctions (Fig 3C, arrows in lower panel).

Co-expression of EF with Rab11�YFP severely reduced its co-localization with Rip11 (Fig 3D

and 3G), supporting the hypothesis that high levels of cAMP trigger a dissociation of Rab11 and

Fig 3. EF prevents association between Rab11* and its effector Rip11. (A) Drosophila salivary glands stained with a Rabbit anti-GFP antibody (Rb α-GFP),

showing that dRip11GFP accumulates at cell-cell junctions in 1096GAL4>dRip11-GFP larvae. (B) 1096GAL4>dRip11-GFP+EF glands. Junctional staining is

moderately weakened by EF. (C-F) Salivary glands co-stained with a Rat anti-GFP antibody (Rt α-GFP) and a Rabbit anti-dRip11 antibody (Rb α-Rip11),

showing that the co-localization between Rab11* and dRip11 detected with this antibody combination is lost or reduced upon co-expression of Rab11*YFP with

EF, PKA*, or Rap1*. Lower panels show higher magnifications. Insets show representative examples of vesicles with or without Rab11*/dRip11 co-localization.

(C) 1096GAL4>Rab11*YFP, arrows indicate Rab11*/dRip11 co-localization. (D) 1096GAL4>Rab11*YFP+EF. (E) 1096GAL4>Rab11*YFP+PKA*. (F)

1096GAL4>Rab11*YFP+Rap1*. Arrows point to adjacent but non-overlapping punctae. (G) Quantification of Rab11*YFP/dRip11 co-localization in panels C-F

measured by the Pearson’s coefficient. (H-I) MDCK cells transfected with constructs expressing human Rip11-GFP and Rab11wt-DsRed. (H) Untreated cells

showing Rab11-Rip11 co-localization throughout the cell with higher levels of Rip11 and Rab11 at cell borders. (I) Rip11 and Rab11 no longer co-localize in cells

treated with ET (Edema Toxin = EF+PA). While a minor component of Rip11 is still evident at cell borders, Rab11 fails to reach the cell borders.

https://doi.org/10.1371/journal.ppat.1006603.g003
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Rip11, or prevent their initial association. Similarly, co-expression of PKA� with Rab11� also

largely eliminated co-localization of Rab11� and Rip11 (Fig 3E and 3G). Interestingly, Rap1� also

affected this association: Rab11�YFP and Rip11 proteins remained present in adjacent but non-

overlapping vesicles (Fig 3F, quantifications in 3G), suggesting that both Rap1� and PKA� have

effects on the Rab11�-dRip11 interaction albeit through distinct mechanisms.

In contrast to full-length dRip11, a truncated dominant-negative form of dRip11 (dRip11DN)

retaining only the C-terminal Rab11-binding domain[37], did not accumulate at cell-junctions

in salivary glands, consistent with its N-terminal cholesterol-binding domain being essential for

associated cargo vesicles to traffic to AJs. Instead, dRip11DN was distributed in a reticulated pat-

tern throughout the cytoplasm, although it did show higher juxta-junctional levels (S7 Fig).

Small cytoplasmic Rab11 staining punctae strongly co-localized with dRip11DN-GFP (S7 Fig),

consistent with dRip11DN retaining its Rab11-binding domain. Interestingly, when co-

expressed with EF, this punctate co-localization was not reduced, but rather transformed into

rings that encircled secretory granules (S7 Fig). Thus, EF does not abrogate association between

Rab11 and dRip11DN. Because deletion of the first 700 aa of Rip11 (a region containing a veri-

fied PKA phosphorylation site in humans [38] and several such predicted sites in Drosophila)

results in an EF-resistant association between Rab11� and dRip11DN, it is possible that PKA

phosphorylation may contribute to this dissociation.

We next examined the relationship between Rip11 and Rab11 in mammalian Madin-Darby

canine kidney (MDCK) cells, in which the role of Rab11 in cadherin trafficking has been well

established [39]. Co-expression of human Rab11-DsRed and EGFP-Rip11 constructs in these

cells revealed strong co-localization throughout the cytoplasm, and a tendency for both pro-

teins to accumulate at cell margins (Fig 3H). Upon treatment with ET, however, we observed

a significant reduction in Rab11 and Rip11 co-localization, and a reduction in Rab11 locali-

zation at the plasma membrane (Fig 3I, see S8 for Pearson’s coefficient quantifications).

Mirroring our observations in Drosophila salivary glands, EGFP-Rip11 accumulation at cell

boundaries was reduced by ET-treatment (Fig 3I). Interaction between endogenous acti-

vated Rab11 and its effectors was also tested in human brain microvascular cells (HBMECs)

transfected with a mammalian Sec15-GFP construct. High-level expression of Sec15-GFP

led to formation of punctate fluorescent structures (S9 Fig), the formation of which depends

on Rab11 [19]. Consistent with Sec15 associating with the active form of Rab11, we detected,

using an anti-Rab11� antibody, a high degree of co-localization between Sec15-GFP fluores-

cence and Rab11�. In this context of Sec15 over-expression, we also visualized co-localization

of Rab11� with endogenous Rip11 (S9 Fig). When these cells were treated with ET, Sec15-GFP

punctae were significantly reduced after 6 hours, and the remaining punctae no longer co-

localized with Rab11� or Rip11 (S9 Fig). Cumulatively, these experiments suggest that EF-

induced dissociation of Rab11� from its effectors Rip11 and Sec15 is a well-conserved process

across species.

Activation of the small GTPase Arf6 phenocopies aspects of EF

treatment

Junctional homeostasis is also established by a balance of Rab11-mediated delivery of junc-

tional cargo and retrieval of proteins via endocytic processes. Arf6, a small GTPase of the Arf

subfamily (ADP-ribosylation factors) is involved in early steps of endocytosis from the plasma

membrane, exocytosis, and endosomal recycling, and is predominantly localized to the plasma

membrane and endosomes [25]. Arf6 activation contributes to sepsis by promoting vascular

leakage through excessive internalization of VE-cadherins [40] and additionally interacts

directly with exocyst components [41]. We tested whether Arf6 also exerted a role in mediating
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the phenotypes caused by cAMP-producing toxins in our system by expressing an activated

form of this small GTPase (Arf6�). Strikingly, Arf6� caused a wing phenotype nearly identical to

that induced by EF (Fig 4A and 4B) or Rab11DN [19], consisting of small narrowed wings with

thickened veins and blisters. In contrast, the wild-type form of Arf6 (Arf6wt) when expressed

alone did not cause any detectable phenotype (Fig 4D). However, both activated and wild-type

forms of Arf6 strongly enhanced the EF wing phenotype (Fig 4C and 4E). Further analysis

revealed that Arf6� reduced the levels and apical restriction of Rab11 in the wing discs (Fig 4H

and 4I), diminished the formation of Sec15-rich structures, and reduced total Sec15 levels (Fig

4J and 4K), in a manner similar to what we observed with EF [19]. Arf6� expression also

reduced the levels of junctional and total D-Ecad (Fig 4M, compare to 4L), as would be expected

from its wing phenotype and effects on Rab11 and Sec15. Given the striking similarities between

Arf6� and EF phenotypes, we tested whether Arf6 contributes to mediating the effect of EF in

the developing wing, making use of an Arf6-RNAi construct that is highly effective in suppress-

ing Arf6 expression (S2 Fig). Arf6-RNAi did not produce any noticeable phenotype on its own

(Fig 4F), but did exert a significant suppression of the EF wing phenotype (Fig 4G, compare

with 4A). Arf6-RNAi suppression of the EF phenotype was yet more pronounced at the level

of junctional E-Cadherin expression (Fig 4O, compare to 4N). We also tested whether Arf6�

Fig 4. Activation of Arf6 partially mimics the effect of EF. (A-G) Wings showing EF and Arf6-dependent phenotypes. (A) 1096GAL4>EF. (B)

1096GAL4>Arf6*. Activated Arf6 (Arf6*) causes a phenotype very similar to that caused by EF. (C) 1096GAL4>EF+Arf6*, showing an additive

phenotype. (D) 1096GAL4>Arf6wt wing, displaying a wild-type phenotype. (E) 1096GAL4>EF+Arf6wt wing revealing synergy between EF and

Arf6wt. (H-I) Wing imaginal discs stained with an anti Rab11 antibody. (H) In wild-type discs, Rab11 displays a dotted apical distribution. (I) In discs

expressing Arf6* (1096GAL4>Arf6*), Rab11 levels are reduced, and apical restriction is lost. (J-K) Wing imaginal discs expressing Sec15-GFP.

(H) Sec15-GFP expressed at high levels in 1096GAL4>Sec15-GFP discs forms large fluorescent punctae. Like EF, Arf6* expression in (K)

1096GAL4>Sec15-GFP+Arf6* discs blocks formation of Sec15-GFP punctae and reduces Sec15-GFP levels. (L-O) D-Ecad staining in wing

imaginal discs. (L) D-Ecad stain in wild-type discs, revealing the apical network of AJs. (M) In 1096GAL4>Arf6* discs, apical D-Ecad levels are

severely reduced, an effect similar to that of EF (N). Arf6-RNAi suppresses the EF phenotype and partially restores normal D-Ecad at AJs (O). (P)

A 1096GAL4>Rab11*YFP salivary gland showing Rab11* targeting to the AJs, revealed by an anti-GFP stain. (Q) Arf6* blocks Rab11* targeting

to cell junctions in 1096GAL4>Rab11*+Arf6* glands. (R) Endogenous Rab11 stain of wild-type salivary glands. (S) Arf6* causes endogenous

Rab11 to accumulate in the cytoplasm and diminishes its localization at junctions. (T) D-Ecad stain of wild-type salivary glands. (U) Arf6* results in

accumulation of large intracellular inclusions of D-Ecad in 1096GAL4>Arf6* salivary glands.

https://doi.org/10.1371/journal.ppat.1006603.g004
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altered the distribution of Rab11�YFP in salivary glands. As observed with EF (Fig 1F and 1I),

Arf6� reduced the concentration of Rab11�YFP at the AJs (Fig 4Q, compare to 4P), revealing

that Arf6� similarly inhibits Rab11 at a step subsequent to GTP loading. In contrast to EF,

however, Arf6� induced an intracellular accumulation of Rab11, while also reducing Rab11

levels near the junctions (Fig 4S, compare to 4R), and caused striking accumulations of

D-Ecad below the apical plasma membrane (Fig 4U, compare to 4T). In aggregate, these

observations suggest that the Arf6 pathway inhibits Rab11 activity, but does so through a

mechanism distinct from that of EF.

Inhibitors of either Arf6 or Epac protect against ET in human cells and in

vivo

As described above, activation of PKA�, Rap1�, and Arf6� mimic features of the EF phenotype

in Drosophila. We wondered whether the same might be true in mammalian systems and thus

examined the relative contributions of each of these pathways in EF-induced toxemia in vari-

ous experimental models relevant to B.a. infection in mammals. In HBMECs, ET treatment

reduced total cadherin levels and weakened AJs as indicated by staining with an anti-pan-cad-

herin (p-Cad) antibody (Fig 5B, compare with 5A), as shown previously [19]. Western-blot

analysis confirmed a drastic decrease in p-Cad and Rab11 levels in response to treatment with

ET or dcAMP (S11 Fig). Similar reductions in Rab11 levels in response to EF have been docu-

mented histochemically in Drosophila wing imaginal discs [19]. To inhibit the Arf6 pathway,

we treated HBMECs with Slit2, a secreted peptide that activates the Robo4 receptor to promote

vascular stability via stimulation of the ArfGAP GIT[28]. Cells co-treated with ET and Slit2

appeared resistant to ET, as clearly illustrated by the robust rescue of junctional pan-cadherin

Fig 5. Arf6 and Epac/Rap1 play key roles in mediating EF toxicity in mammalian systems. (A-E) HBMECs (Human Brain Microvascular Endothelial

Cells) stained with an anti pan-Cadherin antibody. (A) The pan-Cadherin (p-Cad) stain clearly delineates cell borders in untreated cells (UT). (B) ET (EF

+PA) treatment results in strong reduction in Cadherin staining and loss of AJs. (C) Co-treatment of cells with ET and the Slit2 peptide, which prevents Arf6

activation via induction of ArfGAP activity, fully restores AJs compromised by ET treatment. (D) Co-treatment with the Epac-specific inhibitor ESI-09

partially rescues p-Cad expression at AJs. (E) Co-treatment with the PKA-inhibitor H89 does not appreciably rescue junctional expression of pCad at cell

borders but does restore intracellular p-Cad staining (F-I) ET-induced footpad swelling (edema) can be suppressed by pharmacological intervention. (F) ET-

injected footpads develop a striking edema. Pre-treatment with ESI-09 consistently blocks this symptom. Pre-treatment with (G) SecinH3, a compound that

indirectly suppresses the activation of Arf6 (****p<0.0001, ***p<0.001), and (H) the Epac pathway inhibitor ESI-09, but not the PKA inhibitor H89,

abrogate EF-induced edema (****p<0.0001, ns non significant). (I) AG1024, a compound that may indirectly block Rap1 activation, acts as a potent inhibitor

of ET-induced edema at early times, but offered more modest protection at a later time point (****p<0.0001, *p<0.05).

https://doi.org/10.1371/journal.ppat.1006603.g005
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accumulation (Fig 5C). These findings suggest that Arf6 contributes to EF-induced inhibition

of the Rab11/exocyst complex and weakening of AJs. Next, to determine the relative contribu-

tion of each branch of the cAMP pathway, we co-treated ET-intoxicated cells with ESI-09, an

inhibitor specific for Epac[26], or with H89, a well-characterized inhibitor of PKA[42]. We

found that only ESI-09 could partially restore cadherin expression at AJs (Fig 5D), although

junctions did not appear as regular as in untreated cells. In contrast, H89 provided no obvious

rescue to the ET-induced junctional phenotype (Fig 5E). We conclude that Epac/Rap1 is the

predominant pathway mediating the effects of ET on exocyst-dependent junctional cadherin

trafficking in HBMECs.

We next examined the relative contributions of the PKA and EPAC pathways as well as

Arf6 in a quantitative in vivo footpad-swelling assay, in which intra-dermal injection of ET

results in a robust and quantifiable edema (Fig 5F) [43]. In mice pretreated with SecinH3, a

compound that inhibits the Arf6-GEF ARNO thereby lowering Arf6 activity [28], ET-induced

swelling was strongly reduced (Fig 5G). Indeed, in animals in which systemic pre-treatment

with the drug induced observable symptoms of malaise (presumably indicative of potent sys-

temic pharmacological action), ET-induced edema was virtually abolished. We then examined

contributions of the cAMP effector PKA and Epac to ET-induced edema, by comparing the

relative abilities of H89 and ESI-09 to block ET-induced footpad swelling (Fig 5F and 5H).

Reinforcing the results of our experiments in flies and with HBMECs, we found that while

ESI-09 virtually abolished ET-induced edema, H89 had little or no effect (Fig 5H). We con-

clude that the Epac/Rap1 pathway is the primary mediator of EF-induced edema. In addition,

we tested the effect of AG1024 [44], an inhibitor of insulin-like growth factor receptor (IGF-

1R) [45]. Because IGF-1R has been shown to indirectly stimulate Rap1 [46], we hypothesized

that inhibition of IGF-1R by AG1024 might conversely result in Rap1 inhibition. Indeed, pre-

treatment of mice with AG1024 also led to significant reduction of edema, which was particu-

larly strong at early time points (Fig 5I). These findings, together with results described above

provide a framework for how effector pathways contribute to cAMP-mediated disruption of

Rab11-dependent membrane trafficking (See Fig 6 for summary diagram). In addition to a

prominent role of the Epac/Rap1 branch in mediating the effect of ET, our study reveals a pre-

viously unappreciated form of negative cross-regulation between the machineries responsible

for the delivery versus retrieval of membrane bound cargo. Importantly, small molecule inhib-

itors such as SecinH3, ESI-09, and AG1024 offer potential for new therapeutic avenues for

treating a range of diseases involving compromised barrier integrity of epithelial or endothelial

sheets.

Discussion

In previous studies, we established that two cAMP toxins, EF from Bacillus anthracis [19] and

Ctx from Vibrio cholerae [23], block Rab11-mediated endocytic recycling of cargo such as sig-

naling ligands and adhesion proteins (reviewed in [15,16]), ultimately leading to inhibition of

Notch signaling and loss of barrier integrity. However, the precise mechanisms by which

cAMP overproduction interfered with Rab11-dependent trafficking remained to be explored.

Here, we examined how cAMP effector pathways converge on discrete nodes of the trafficking

process subsequent to the GTP loading step to efficiently interrupt endocytic recycling.

EF disrupt Rab11-dependent trafficking after the GTP loading step

As is typical of small GTPases, Rab11 cycles between active (GTP-bound) and inactive (GDP-

bound) conformations, the former permitting interaction with effector proteins to carry out

downstream functions. Two types of regulators, activating GEFs and inactivating GAPs
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provide control for this essential cycle. In the particular case of Rab11, Crag (the Drosophila
homolog of human DENND4A) is the only known Rab11-dedicated GEF [31]. Similarly, only

one Rab11-specific GAP has been identified: EVI5 [47–49]. Neither of these regulators con-

tains an identified cAMP-binding domain that could provide a direct link between cAMP and

upstream regulation of Rab11. Consistent with this inference, we found that EF acted on

Rab11 at a step subsequent to GTP loading. Indeed, transport of vesicles carrying the constitu-

tively activated mutant Rab11�YFP were blocked by EF, while total endogenous levels of

Rab11-GTP did not appear to be greatly altered.

EF blocks interaction between Rab11 and its effectors Rip11 and Sec15

Association between Rab11 and its effectors Rip11 and Sec15 was abrogated by EF in several

settings, including Drosophila salivary glands and human cells. The Rab11 effector Rip11 is an

attractive candidate for mediating some of EF effects, as it contains a verified PKA phosphory-

lation site located in the central portion of the protein [38]. Indeed, PKA-dependent phos-

phorylation of Rip11 is required for cAMP-potentiated insulin secretion in pancreatic β-cells

[38]. In addition, Ser/Thr phosphorylation is responsible for Rip11 transition from the insolu-

ble to cytosolic fraction in intestinal CACO-2 cells [50]. Although it was not determined

whether the latter modification was specifically PKA-dependent, this study proposed a model

in which phosphorylation of Rip11 is essential for cycling to a free state following interaction

with Rab11 and specific membrane compartments prior to its re-associating with Rab11. Our

data show that the association between Rab11 and Rip11 can be disrupted by EF in Drosophila
and mammalian endothelial or embryonic kidney cells. It is possible that unrelenting phos-

phorylation of Rip11 by PKA may cause the premature dissociation of Rab11 and its effectors,

Fig 6. Summary diagram. EF-induced cAMP overload can activate either or both of the PKA and Epac/Rap1 effector pathways

depending on biological context. In this model, uncontrolled cAMP production by EF leads to activation of PKA and/or Epac. PKA

stimulation promotes dissociation of Rab11 from its effectors Rip11 and Sec15. This premature dissociation may prevent the activated

form of Rab11 from reaching the AJs, and thereby block delivery of cargo proteins (e.g., Cadherins and Notch ligands). In some cellular

contexts, dissociation of Rab11-GTP from Rip11 may also lead to Rab11 degradation (e.g., Drosophila wing discs and human

endothelial cells), while in others, only to the loss of junctional accumulation (e.g., Drosophila salivary glands). Over-activation of Rap1

by Epac leads to inhibition of exocyst-mediated vesicle fusion at the cell surface. Epac/Rap1 may act indirectly via sequential activation

of RalA and Arf6, which cross inhibits Rab11-mediated cargo delivery to junctions, or directly through an unknown mechanism. The

relative contribution of each cAMP-responsive pathway may depend on cell type and organism, although, the Epac/Rap1 branch

(blocked by ESI09, and possibly by AG1024) appears to be the primary mediator of EF in fly wings, human endothelial cells, and

mouse footpads. The Arf6 GTPase inhibits Rab11* targeting to the AJs, an effect that may be mediated by its interaction with exocyst

components. Inhibition of Arf6 by Slit2 or Secin H3 provides protection against EF in cultured humans cells and in vivo in mice,

respectively.

https://doi.org/10.1371/journal.ppat.1006603.g006
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potentially leading to a failure to reach the AJs. While this PKA-dependent phosphorylation of

Rip11 has been demonstrated in human pancreatic cells, it is not known whether it occurs in

Drosophila. As dRip11 contains 19 candidate PKA phosphorylation sites, further investigation

will be necessary to determine whether phosphorylation of one or more of these sites occurs

and promotes the dissociation between dRip11 and Rab11. Intriguingly, Drosophila Sec15 also

harbors several putative PKA phosphorylation sites, although such predicted sites are missing

in its human counterpart. Importantly, we found that artificial stimulation of Rap1 also causes

a loss in Rab11�/Rip11 co-localization resulting in correlated but separated staining foci of

these two proteins, suggesting that the later acting Epac/Rap1 pathway may feedback on this

process (see below).

Essential contribution of the Epac/Rap1 branch of the cAMP pathway

The second branch of the cAMP pathway mediated by the cAMP-regulated GEF Epac and

its partner Rap1 [32] contributes significantly to the effect of EF in flies, and surprisingly

appears to play the predominant role in the mammalian systems we examined. In flies, acti-

vated Rap1 (Rap1�) causes a wing phenotype more similar to that of EF and Rab11DN than

that of PKA�. We previously reported that Rap1� reduces the levels of Rab11 and prevents

formation of Sec15 punctae [23]. In the present study, we find that blocking expression of

Epac significantly reduces the intensity of the EF phenotype. In addition, Rap1� alters the

distribution of Rab11� and inhibits Rab11�/Rip11 co-localization. We hypothesize that the

final exocyst- and SNARE-dependent fusion event with the apical plasma membrane is sub-

jected to inhibition by exuberant Rap1� activity, leading to accumulation of non-functional

Rab11� just beneath the plasma membrane. Consistent with this hypothesis, Rap1 has been

implicated by many studies in regulating of both cadherin and integrin-mediated cell-cell

adhesion (reviewed in [51] [52] [53]). Further indicating a functional connection between

Rap1 signaling and Rab11-dependent trafficking, Rap1 and Rab11 over-expressed in hu-

man cells co-localize in a recent study [54]. Additional experiments will be required to elu-

cidate the molecular interactions connecting the activities of these two GTPases. The small

GTPase RalA is a possible candidate for mediating the activity of Rap1, through activation

of the Rap1 effector Rgl1, a positive regulator (GEF) of RalA. Because lowering the dose of

Rgl1, or expressing a dominant-negative form of RalA, can suppress Rap1�-induced pheno-

types in Drosophila, it has been proposed that RalA may act downstream of Rap1 [35]. Also,

RalA is known to directly bind to exocyst components Sec5 [55] [56] [57] and Exo84 [58]

and plays a central role in regulating exocyst-mediated processes in several settings, includ-

ing the release of Von-Willebrand Factor from endothelial cells, or insulin secretion in pan-

creatic β-cells (reviewed in [51] and [59]). In addition, a recent study identified Arf6 as a

key component acting downstream of RalA, mediating its effect on exocyst-dependent

delivery of raft micro-domains to the plasma membrane [60]. Thus, RalA over-activation-

may contribute to mediating the effect of cAMP toxins on exocyst inhibition downstream

of Rap1, although this hypothesis needs to be tested in future experiments.

EF causes a loss in Rab11 and cadherin levels

We previously showed that EF caused a drastic reduction in total Rab11 levels in wing epithelial

cells[19]. Here, we find that this effect is also evident in HBMECs treated with ET, but is depen-

dent on cell context, since inhibition of Rab11 function can be uncoupled from reduction in

total Rab11 levels in Drosophila salivary glands. This reduction in Rab11 levels is unlikely to

derive from transcriptional inhibition, as infection of HBMECs with B. a Sterne did not result

in any change in levels of Rab11 transcripts (Nina Van Sorge, personal communication).
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Similarly, in Drosophila wings, where EF also triggers great reduction in Rab11 protein levels,

mRNA transcript levels again were not greatly affected (Valentino Gantz, personal communica-

tion). In HBMECs, where Rab11 levels are reduced by ET treatment, we observed that total lev-

els of cadherins were also severely reduced in ET-treated cells. Although the precise mechanism

responsible for the loss of these proteins following ET treatment remains to be explored, it is

worth noting that degradation of VE-cadherins has been observed following silencing of Rab11

in human endothelial cells [61], in which Rab11 is important for stabilizing cadherins at the

AJs. Thus, it is possible that following EF intoxication, Rab11 and cadherins are routed to the

lysosomal pathway and degraded, further impairing endocytic recycling and junctional integ-

rity. Such an attractive hypothesis could explain the catastrophic loss of cadherins observed in

ET-treated cells.

The “cAMP paradox”

Numerous studies have demonstrated the positive role of physiological induction of cAMP in

junction establishment and stabilization, through stimulation of both PKA and Epac [38,62]. It

may therefore seem counterintuitive that cAMP produced by EF or other toxins may exert an

opposing effect and jeopardize junctional integrity. In principle, high versus low concentra-

tions, sustained versus transient production, and perinuclear vs cortical subcellular distribu-

tion of toxin-delivered cAMP could elicit such opposite outcomes. In the particular case of

Rab11-dependent trafficking, low physiological levels of cAMP may exert their positive effects

by promoting the release of Rip11 from Rab11, as necessary to allow the final fusion event

between recycling endosomes and the plasma membrane. In contrast, pathologically elevated

cAMP concentrations may cause premature dissociation of the Rab11-Rip11 complex and per-

manently block that cycle. Similarly, uncontrolled stimulation of Rap1 by Epac could also have

a negative impact on junctional transport: titration of critical partners, failure to return to com-

plete the necessary GTP/GDP cycle, or negative feedback interference with other important

steps, could explain the occurrence of this apparent paradox. Another molecule potentially at

play during the response to cAMP is the small GTPase RhoA. RhoA can be phosphorylated by

PKA, which inhibits its activation and prevents increased endothelial permeability during

inflammation [63], the potential interplay between RhoA and the exocyst downstream of cAMP

signaling in EF-intoxicated cells also merits further examination.

Integration of membrane trafficking delivery and retrieval pathways

The small GTPase Arf6 initiates retrieval of membrane proteins from cell junctions in a wide

variety of cells types [25]. Arf6, a member of the ADP-ribosylation factor subfamily, is located

at the plasma membrane and some endosomal compartments, and is involved in endocytosis

from the plasma membrane, vesicular recycling, and exocytosis [64]. Importantly, Arf6 plays a

role during sepsis to mediate acute VEGF-induced vascular permeability [40,65]. Whether

linchpin regulators of opposing vesicular trafficking pathways such as Arf6 and Rab11 interact

had not yet been extensively explored. In this study, we present evidence that these trafficking

systems do in fact engage in cross-inhibitory interactions. Consistent with the published role

of Arf6 in promoting VE-cadherin endocytosis [66], the activated form of Arf6 (Arf6�) caused

phenotypes similar to those of EF. Our findings suggest that the activity of Arf6 negatively

feeds back on vesicular transport to the plasma membrane by inhibiting Rab11 function. Previ-

ous studies showed that Arf6 physically interacts with the exocyst component Sec10 [41],

defining a possible avenue for our observed effects of Arf6 on Rab11 levels and distribution.

Given the negative regulation of Rab11 by Arf6 in flies and its known role in compromising

barrier function in the mammalian vasculature during sepsis [28,40], we tested whether
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inhibitors of this pathway might antagonize the effects of EF. In human endothelial cells, we

indeed found that treatment with Slit2, a secreted peptide indirectly blocking Arf6 function,

could reverse the effects of EF, restoring junctional integrity. Similarly, pharmacological inhi-

bition of Arf6 by SecinH3, a compound that inhibits the ArfGEF ARNO, potently blocked EF-

induced edema in a mouse footpad assay.

An emerging lesson from the current and prior studies is that blocking multiple steps of

branching pathways that converge on critical nodes in endocytic recycling may allow patho-

gens to weaken host protective mechanisms that rely on junctional integrity [24]. For example,

LF, the other toxic factor secreted by B.a, blocked exocyst-mediated vesicular docking down-

stream of Rab11 via inhibition of MAPK signaling. It will be interesting to explore how the var-

ious effects of EF and LF are integrated to achieve an efficient inhibition of junctional delivery,

and if any compound identified in this study can also block some of the downstream effects of

LF. Altogether, our study suggests that a broad range of barrier disruptive diseases ranging

from cAMP related toxemia to inflammatory autoimmune diseases that involve positive feed-

back loops between immune activation and barrier disruption, could potentially be treated

with compounds that inhibit Arf6 or Epac/Rap1, or by yet undiscovered compounds that may

boost Rab11 activity.

Materials and methods

Ethics statement

All experiments were performed in strict accordance with guidelines from the National Insti-

tute of Health and the Animal Welfare Act, approved by the Animal Care and Use Committee

of University of California, San Diego and the National Institute of Allergy and Infectious Dis-

eases, National Institutes of Health (approved protocols s00227m and LPD-8E). Anesthesia

and euthanasia were performed using Isoflurane and CO2, respectively. All efforts were made

to minimize suffering of animals employed in this study.

Drosophila genetics

UAS-EF construct and line were described previously[19,23]. UAS-Rab11wtYFP/TM3 (#97

90), UAS-Rab11�YFP (3rd chr. # 9791), UAS-Rab11DNYFP (#23261), UAS-CragRNAi (2nd

chr. #53261), UAS-CragHA (3rd chr. #58463), UAS-Arf6RNAi (3rd chr. #51417), UAS-PkaDN/

CyO (#5282), and Pka-C1B10 (#32018) lines were obtained from Bloomington Drosophila

Stock Center (BDSC). UAS-EpacRNAiv50272 and UAS-EpacRNAiv50273 were obtained

from Vienna Drosophila Resource Center (VDRC). UAS-Rap1�/TM6 and UAS-PKA�/CyO

were generated by I. Hariharan (UCB), and D. Kalderon (Columbia University), respectively.

UAS-Rip11GFP and UAS-Rip11DNGFP were kindly provided by Don Ready (Purdue Univer-

sity). UAS-Arf6� was generated in the Olson laboratory (UT Southwestern).

Immunological stains of wing discs and salivary glands

Imaginal discs were dissected, fixed and stained using standard procedures. Salivary glands were

dissected similarly, fixed for 30 minutes, and left attached to carcasses until ready to mount in

SlowFade (LifeTechnologies #S36936), using double sided tape as a spacer to prevent tissue

squashing. Antibodies: rabbit anti-GFP antibody (1/500, ThermoFisher #A6455), rat-anti GFP

antibody (1/500, SCBT #sc-101536), mouse anti-Rab11 (1/200, BD Biosciences #610657), mouse

anti Rab11-GTP (1/100, NewEast Biosciences #26919), D-Ecad (1/500, DSHB #DCAD2). The

rabbit anti-Rip11 (1/1000) was a gift from D. Ready (Purdue University) and A. Satoh (Hiro-

shima University, Japan), and guinea pig anti-Sec15 (1/1000) was kindly provided by Hugo
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Bellen (Baylor College of Medicine). Images were collected by confocal microscopy on a Leica

TCS SP5. All images were acquired using a 40X or 63X objective, and all higher magnifications

were obtained using a 4X digital zoom. Co-localization quantifications in Fig 3 used the coloc2

tool in ImageJ.

Transient expression of DsRed-Rab11A and Rip11-EGFP in MDCK cells

MDCK cells (ATCC CCL-34) were maintained in DMEM (Corning; Manassas, VA) contain-

ing 10% FBS, 1% Penicillin/streptomycin, 2 mM L-glutamine and were incubated in 37˚C, 5%

CO2 atmosphere. Cells were gently dislodged with 0.05% trypsin (Mediatech) and were elec-

troporated with cDNA expressing DsRed-Rab11A (Addgene) and Rip11-EGFP (Kind gift

from Dr. Rytis Prekeris, Univ. of Colorado, Denver) using Neon Transfection system (Life

Technologies) according to manufacturer’s protocol. Briefly, cells were rinsed once with PBS

and resuspended at a density of 107 cells/ml. cDNA expressing DsRed-Rab11A and Rip11-

EGFP were added to the suspension, and cells were electroporated with a 10 μl Neon tip at

1650 V, 20 ms width and 1 pulse. Cells were transferred to 600 μl pre-warmed medium of

which 300 μl cell suspension was plated on each well of 8 chamber tissue culture treated glass

slide (BD Falcon, Bedford, MA). Cells were treated with 10 μg/ml EF +20 μg/ml PA for 4 h

before fixation with 4% para-formaldehyde in PBS for 30 min at 37˚C and processed for imag-

ing. Fluorescence images were collected using a Delta Vision RT microscope. Colocalization

between Rab11 and Rip11 was determined by measuring the Pearson’s correlation coefficient

(PCC) using the Velocity 6.3 imaging and analysis software (PerkinElmer). Costes automatic

thresholding method [67] was applied for background discrimination.

HBMEC intoxications and Sec15GFP transfections

HBMEC cultures were maintained in DMEM (Corning) containing 10% FBS, 1% Penicillin/

streptomycin, 2 mM L-glutamine, and were incubated in 37˚C, 5% CO2 atmosphere. Cells

were gently dislodged with 0.05% trypsin (Mediatech Inc.) and cultured on glass poly-D-lysine

coated chamber slides (BD Falcon #354108). At about 80% confluence, EF and PA (0.2 μg/ml

and 0.4μg/ml, respectively) were added to cells. Drug co-treatments included: Slit2 (10μg/ml,

R&D systems # 8616), ESI-09 (TOCRIS #4773, 100μM), and H89 (TOCRIS #2910, 10μM).

After 24 h (Fig 5), cells were fixed for 10 min at -20˚C in 100% Methanol, then washed with

0.1% Triton in PBS. Cells were stained with a mouse anti pan-Cadherin antibody (Abcam,

clone CH-19, 1/100). For S6 Fig, transfection of the Sec15-GFP was performed with the

FuGENE 9 transfection reagent (Roche) according to manufacturer recommendations. Cells

were treated with ET (2 μg/ml EF and 4 μg/ml PA), and fixed after 6hrs of treatment for 30

mins in 4% paraformaldehyde in PBS. Cells were stained with rabbit anti Rip11 (Novusbio

#NBP1-81855, 1/500) and mouse anti Rab11-GTP (NewEast Bioscience #26919, 1/100) anti-

bodies overnight at 4˚C. Coverslips were washed, and incubated with secondary antibodies

before mounting with Prolong Gold with DAPI mounting media (ThermoFisher).

Mouse footpad edema studies

BALB/cJ mice (8–10 weeks old, female; Jackson Laboratories) were intraperitoneally injected

with drugs. SecinH3 (TOCRIS #2849), AG1024 (Selleckchem, S1234), ESI-09 (TOCRIS #4773)

or H89 (TOCRIS #2910), or with vehicle (70% DMSO in isotonic glucose for SecinH3, 30%

DMSO in isotonic glucose for other drugs) 2–3 h prior to injection of ET (0.15 μg/20 μl, right

footpad) or PBS (20 μl, left footpad), and in the case of SecinH3, also 2 h post toxin injection.

ESI-09, AG1024 and H89 were administered at 10 mg/kg and SecinH3 was administered as
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250 μl of 2.5 mM solution. Edema was assessed at 8–10 h, and 18–24 h by dorsal/plantar mea-

surements using digital calipers.

Immunoblot analysis

Untreated or ET intoxicated (24h) HBMEC cells were lysed in RIPA buffer (Cell Signaling

Technology) supplemented with mammalian protease inhibitor cocktail (Sigma Aldrich). The

lysates were clarified by centrifugation at 1000 g for 10 min at 4˚C and LDS sample buffer

(NuPAGE) was added. Samples were boiled at 95˚C, run on a 4–12% SDS polyacrylamide gel

(Life Technologies) and transferred onto PVDF membrane (Bio-RAD). After incubation with

primary antibodies against Rab11 (#71–5300, Thermo Scientific), Cadherins (CH-19, Abcam

#ab6528), and actin (sc69879, Santa Cruz Biotechnology), blots were probed with respective

HRP conjugated secondary antibodies and developed using SuperSignal West Pico chemilu-

minescent substrate (Thermo Scientific).

Supporting information

S1 Fig. Activated Rab11 (Rab11�) preferentially accumulates at AJs in Drosophila wing

imaginal discs. (A-C) Expression of Rab11wt in 1096GAL4>Rab11wtYFP wing discs. (A)

Rab11wtYFP detected with a rabbit anti-GFP antibody appears as a peppered stain near the api-

cal surface. (B) D-Ecad/GFP double stain. (C) corresponding D-Ecad stain marking AJs. (D-F)

Expression of Rab11� in 1096GAL4>Rab11�YFP wing discs. (D) Rab11�YFP detected with a

rabbit anti-GFP antibody. In addition to a peppered apical stain, Rab11� shows a distinctive

net-like pattern at cell borders. (E) D-Ecad/GFP double stain, revealing that Rab11�YFP tends

to accumulate at the AJs. (F) Corresponding D-Ecad single stain.

(TIF)

S2 Fig. RNAi transgenes specifically block expression of cognate proteins Sec15, Crag, and

Arf6. (A) A 1096GAL4>UAS-Sec15GFP salivary gland, stained with an anti-GFP antibody.

(B) Sec15GFP expression in strongly inhibited by co-expression of a Sec15RNAi construct. (C)

A 1096GAL4>UAS-CragHA salivary gland stained with an anti-HA antibody. (D) CragHA

expression is suppressed by co-expression of a CragRNAi construct. (E) A 1096GAL4>UAS-

Arf6Myc gland stained with an anti-Myc antibody. (F) Arf6Myc expression is blocked by co-

expression of an Arf6RNAi construct.

(TIF)

S3 Fig. Blocking expression of Sec15, but not of the Rab11GEF Crag, prevents Rab11�YFP

targeting to cell junctions in Drosophila salivary glands. (A-C) Rab11�YFP detected with a

rabbit anti-GFP antibody in salivary glands. (A) Rab11�YFP selectively accumulates at the AJs

in 1096GAL4>Rab11�YFP salivary glands. (B) Rab11� distribution is unchanged in 1096GA

L4>Rab11�YFP+CragRNAi glands. (C) Rab11�YFP fails to accumulate at the AJs in 1096GA

L4>Rab11�YFP +Sec15RNAi salivary glands.

(TIF)

S4 Fig. EF prevents Rab11� accumulation at AJs. Images from experiment described in Fig 1,

panels E, F, H and I, were analyzed to quantify the effect of EF on junctional accumulation of

Rab11�. Individual image crops from intercellular boundaries were generated. For each crop,

average fluorescence was determined in ImageJ, and normalized to the average fluorescence

found inside the corresponding cell. EF expression significantly reduces Rab11� accumulation

at intercellular borders, (p<0.0001).

(TIF)
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S5 Fig. Inhibition of Rab11 function in salivary glands leads to abnormal accumulation of

D-Ecad around AJs, and intercellular gaps. (A-D) Salivary glands stained with an anti-

D-Ecad antibody. (A) A wild-type salivary gland showing D-Ecad accumulation at AJs. (B) A

SglGAL4>Rab11DN salivary gland, in which Rab11 inhibition in this tissue leads to D-Ecad

accumulation in broad zones around intercellular gaps. (C-D) Higher magnifications. (C) A

wild-type salivary gland showing D-Ecad forming AJs (arrows). (D) A SglGAL4>Rab11DN

salivary gland, revealing gaps between cells, and broad accumulation of D-Ecad around them

(arrows). D-Ecad fails to form AJs.

(TIF)

S6 Fig. Reduction of Epac -but not PKA- levels, suppresses the EF wing phenotype. (A-F)

wings of the following genotypes: (A) Wild-type (+/+). (B) 1096GAL4>EF. (C) 1096GA

L4>EpacRNAi. (D) 1096GAL4>EF+EpacRNAi. Inhibition of Epac expression potentlyreduces

the EF phenotype. (E) PKA-C1B10/+ (B10 is a loss -of-function allele of PKA). (F) 1096GAL4>

EF; PKA-C1B10/+. Reduction of PKA-C1 levels, either in a heterozygote loss-of-function PKA-

C1 alleles (B10/+) or in flies expressing a dominant negative form of PKA-C (C1-DN), does not

obviously alter the EF phenotype. (G) The surface areas of wings of the indicated genotypes were

measured in Photoshop. Results were plotted as a histogram, with relevant p-values indicated. EF

expression reduces wing size significantly compared to widl-type (wt) (****p<0.0001). EpacRNAi

ameliorates the EF phenotype (****p<0.0001).

(TIF)

S7 Fig. EF does not disrupt dRip11DN/Rab11 co-localization in salivary glands. (A-C)

1096GAL4>Rip11DN-GFP salivary glands, stained with (A) a rabbit anti GFP antibody, (B) a

mouse anti Rab11 antibody, and (C) both antibodies, showing that Rab11 and Rip11DN-GFP

co-localize in punctate vesicles. (D-F) 1096GAL4>Rip11DN+EF salivary glands stained with a

rabbit anti-GFP antibody (D), a mouse anti-Rab11 antibody (E), and both antibodies (F),

showing that Rab11 and Rip11DN still co-localize in EF-expressing glands. However, EF alters

the distribution of both proteins, transforming small punctate staining into a ring-shaped halo

surrounding secretory vesicles.

(TIF)

S8 Fig. ET treatment reduces Rab11/Rip11 co-localization in MDCK cells. Co-localization

between Rip11-GFP and DsRed-Rab11A in co-transfected MDCK cells measured by the Pear-

son’s correlation coefficient (PCC) is reduced by ET treatment (n = 43, p<4.85X10-9).

(TIF)

S9 Fig. ET treatment reduces Sec15/Rab11� and Rab11�/Rip11 co-localization in HBMEC

cells. (A-C) HBMECs, untreated. (D-F) HBMECs treated with ET for 6hours. Co-localization

of Rab11� with Sec15 (B and E) and Rab11� with Rip11 (C and F) can be visualized following

transfection of cells with Sec15-GFP. High-level expression of Sec15-GFP, and staining with

an anti-Rab11� antibody (A) reveals a high degree of Sec15/Rab11� co-localization (B). In ET-

treated cells, this co-localization is severely reduced (E). A double label Rab11�/Rip11 stain,

reveals Rab11�/Rip11 co-localization (C), which is also abrogated by ET (F).

(TIF)

S10 Fig. Arf6RNAi rescues normal apical D-Ecad levels in EF-expressing wing discs. Apical

levels of D-Ecad in wing discs was measured using ImageJ. Arf6RNAi restores normal levels of

apical D-Ecad in 1096GAL4>EF+Arf6RNAi discs (p<0.0001). Arf6RNAi does not notably

affect apical levels of D-ECad. Surface areas of wings of the same genotypes were also mea-

sured, and Arf6RNAi showed a modest yet significant restorative effect in EF-expressing
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wings (in 1096GAL4>EF+Arf6RNAi wings, p<0.05).

(TIF)

S11 Fig. ET treatment reduces the levels of cadherins and Rab11 in HBMECs. (A-B) West-

ern blot analysis of HBMECs cells. (A) Rab11A (~28 kD) and pan-Cadherin (~97 kD) levels

are severely decreased in ET-treated cells (24hrs), while control actin (~42 kD) levels are only

slightly reduced. (B) dcAMP, a cell-permeant stable analog of cAMP that is insensitive to phos-

phodiesterase, also causes a severe loss of Rab11, suggesting that the reduction of Rab11 levels

induced by ET is mediated by cAMP.

(TIF)
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