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Dendritic cells (DC) 1 are class II-positive leukocytes specialized to initiate pri-
mary T cell-dependent immune responses (1-3) . DC were first identified in lym-
phoid tissues, and'most of the studies that have unraveled their unique stimulatory
capacity for resting T cells used DC isolated from lymphoid organs . New insight
into the biology of DC came from studies of murine epidermal Langerhans cells
(LC) in vitro (4-14) . These studies suggest that LC in the skin and possibly DC
in other nonlymphoid tissues as well represent precursors or immature elements
of the DC system (15, 16). Resident LC constitutively express class II MHC an-
tigens, but are only weak stimulators of resting T cells when isolated from the skin .
During 2-3 d of bulk epidermal cell (EC) culture, however, LC increase their sen-
sitizing activity for resting T cells 10-30-fold, and come to resemble lymphoid DC
in morphology and surface markers as well (4). Granulocyte/macrophage colony-
stimulating factor (GM-CSF) was identified as the principal mediator of this LC
maturation in vitro (6, 7) . GM-CSF maintains LC viability and increases function,
whereas IL-1 enhances LC function twofold when combined with GM-CSF but does
not support viability by itself (7).
As LC in situ are immature but presumably long-lived (17-19), we have now searched

for a cytokine that would keep LC alive without inducing their functional matura-
tion . Among apanel of purified cytokines tested, only TNFa exhibited this activity.
This finding reveals yet another facet of this pleotropic mediator (20, 21). Whether
TNFa plays any physiological role in LC homeostasis is unknown at present, but
appears possible as we found TNFct mRNA in freshly prepared EC.
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Materials and Methods
Mice.

	

Specific pathogen-free BALB/c (H-2d) and C3H/He (H-2') mice (6-12 wk old of
both sexes) were obtained from Charles River Wiga GmbH, Sulzfeld, FRG, and C3H/HeJ
mice were from Bolmholtgard Breeding and Research Centre Ltd., Ry, Denmark.

CultureMedium.

	

Themedium wasRPMI 1640 supplemented with 10% FCS(56°C, 0.5 h;
Seromed, Biochrom KG, Berlin, FRG), 1 MM L-glutamine, 5 x 10 -'M 2-ME, and 50 jig/ml
gentamicin sulfate .

Preparation of EC Suspensions.

	

EC suspensions were prepared from ear epidermis as de-
scribed (4), except that 1 % trypsin (40 min) was used for processing the ventral, thick ear
halves, and 0.6% (20 min.) for the dorsal, thin ear halves .

Identification ofLC.

	

LC were identified by staining with FITC-conjugated anti-I-A b,d mAb
(clone B21-2, rat IgG2b, TIB 229, from the American Type Culture Collection [ATCC], Rock-
ville, MD; themAbwas purified from culture supernatants and conjugated to FITC by stan-
dard methods; as an isotype-matched control mAb we used FITC-antiThy-1, Becton Dick-
inson & Co., Mountain View, CA) and/or by phase-contrast microscopy (LC in contrast to
contaminating keratinocytes exhibit cell surface processes, which are short and fine on fresh
LC, and large and long on cultured LC) (4, 5) . For evaluation by fluorescence microscopy
staining was performed on cells that were cytospun (Shandon Cytospin 2; Shandon Labor-
technik GmbH, Frankfurt, FRG) onto glass slides or attached to poly-L-lysine-coated mul-
dwell slides . For evaluation by flow cytometry (using a FACStar instrument ; Becton Dick-
inson Immunocytometry Systems, Mountain View, CA), cells were stained in suspension .
Propidium iodide was added at a final concentration of 0.5 leg/ml to stain dead cells and
exclude them from analysis by software gating .
LC Enrichmentfrom Freshly Prepared EC Suspensions.

	

Freshly prepared BALB/c EC suspen-
sions (viability >8517o ; containing 1-3 'Yo LC) were treated with antiThy-1 mAb(culture su-
pernatant from clone 13 .4, mouse IgM, TIB99 from ATCC) and low-tox-M rabbit comple-
ment (Cedarlane Laboratories, Hornby, Ontario, Canada) at a final concentration of 3 x
106 cells/ml . This treatment removed dendritic Thy-1' EC as well as the majority of keratino-
cytes that express low amounts of Thy-1 (22) . The cell suspension (viability 10-20%) was
washed twice with cold PBSwithout calcium and magnesium (Seromed), treated for 10 min
at 37 °C with 0.125% trypsin (No. 16-893-49; Flow Laboratories) at 106 cells/ml in the pres-
ence of 80 leg/ml DNAse I (Sigma Chemical Co ., St . Louis, MO), and finally washed again.
This procedure removed most dead cells and resulted in a viable (>90%) EC suspension con-
taining -15% (range 10-28%) LC . LC were then further enriched by either panning, or,
in some experiments by FACS .
LC Enrichment by Panning.

	

This was performed as described (6) . Briefly, after treatment
with anti I-E1 .d (clone 14-4-4S, mouse IgG2a, HB32 from ATCC), the cells were panned on
petri dishes coated with goat anti-mouse Ig. The nonadherent cells were washed off, and
the attached, LC-enriched cells were eluted by pipetting in the presence of mouse Ig. The
populations thus obtained consisted of 76-92% LC . The yield was 1-2 x 10* LC/mouse.
For sorting the cell suspensions were stained with FITC-anti-I-Al,d (clone B21-2, see above) .
Cell sorting was performed on a FACS III instrument (Becton Dickinson &Co., Sunnyvale,
CA) at 3,000 cells/s . The fluorescent fraction was >90o7o pure .

Culture of Enriched LC

	

105 fresh LC enriched by either panning or sorting were plated
in 16-mm wells (No. 3424 ; Costar Europe, Badhoevedrop, TheNetherlands) in 1 ml medium
with or without purified cytokines. After 72 h, and in a few experiments also after 24 or 36
h, the nonadherent cells were removed, the wells were rinsed twice with 1 ml medium, and
the pooled cells were washed twice. Then the percentage and viable yields of LC were deter-
mined and their accessory function was tested .

Purified Cytokines, Anti-GM-CSF Antibody.

	

For information on the panel of cytokines we
used, see Table I. Rabbit anti-murine GM-CSF serum (23) was kindly provided by Dr. S.
Gillis (Immunex Corp., Seattle, WA). A 1% vol/vol dose neutralized 20 ng/ml of recombinant
murine GM-CSF (Table II) .
LC Enrichment from 72-h bulk EC Cultures.

	

20 x 106 freshly prepared BALB/c EC were
plated in 100-mm petri dishes (No. 3003 ; Falcon Labware, Oxnard, CA) in 15 ml medium .
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TABLE I

Cytokines Tested on Epidermal Langerhans Cells

* U/mg unless otherwise stated .
is Both rTNFs gave similar results, but t was used in most experiments.

After 72 h nonadherent cells were removed and floated on dense albumin columns as de-
scribed (4) . The floating fraction contained all the LC at 40-757o purity.
T Cell Proliferative Assays.

	

To test the stimulatory capacity of LC for unprimed T cells,
we used the polyclonal response of periodate-modified T cells ("oxidative mitogenesis") and
the primary MLR as described (4). LC were irradiated (900 rad from a' 37Cs source) be-
fore addition to the assays . T cells were nylon-wool nonadherent, anti-la/complement-treated
spleen and mesenteric lymph node cells, which in part ofthe experiments were further purified
by an additional step involving sedimentation in discontinuous Percoll gradients (45-54-6370)
(8) in which dead cells and remaining accessory cells floated .

Preparation of Total Cellular RNA from EC.

	

Total cellular RNA was isolated from freshly
prepared as well as cultured (3 and 24 h) EC by the guanidinium isothiocyanate/cesium chlo-
ride method (24) . Cells in suspension (ti30 x 10 6 ) were washed in PBS, centrifuged, and
then resuspended in 5 ml of lysis buffer (4 M guanidinium isothiocyanate, 5 mM sodium
citrate, 0.570 N-lauroylsarcosine sodium salt, 0 .1 M 2-ME) . Adherent cells were first rinsed,
and then lysed by adding lysis buffer to the petri dishes . Lysed cells were loaded on a cesium
chloride density gradient (1 .5 ml of 5 .7 M cesium chloride, 1 ml each of 40, 30, and 2070
wt/vol cesium chloride), and centrifuged in a Sorvall TH 641 rotor at 36,000 rpm at 18°C

Cytokine
Expressed

in : Activity* Dose Source

mu rIL-1 E. coli 6 x 10 6 10 ng/ml P. LoMedico, Hoffman-La-Roche,
Nutley, NJ

hu rIL-2 E. coli 3 x 106 100 U/ml Amersham, Buckinghamshire, UK
mu IL-3 Natural 10 7 100-1,000 U/ml Genzyme Co ., Boston, MA
mu rIL-4 Yeast 108 100-1,000 U/ml Genzyme
mu rIL-5 Baculovirus 10 5 U/ml 10-100 U/ml W. Strober, NIAID
hu rIL-6 Yeast 107 10-1,000 Ulml Genzyme
mu rIL-7 cos7sup 1 .5 x 10 9 U/ml 250 Ulml S. Gillis, Immunex Co ., Seattle, WA
hu rG-CSF E . coli 108 100-1,000 U/ml Amersham
hu rM-CSF Yeast 108 100-1,000 U/ml Genzyme
mu M-CSF Natural 8 x 10 7 100-1,000 U/ml R. Stanley, Albert Einstein College

of Medicine, Bronx, NY
mu rGM-CSF Yeast 4 x 107 0.1-2 .0 ng/ml S. Gillis
mu IFN-a Natural 2 x 10 6 200 U/ml Stratech Scientific Ltd., London, UK
mu IFN-# Natural 1 .2 x 10 8 100 U/ml Stratech Scientific Ltd.
mu rIFN-y CHO cells 1 x 108 10-100 U/ml Holland Biotechnology, Leiden, NL
mu rTNF-at E. cola 2.6 x 10 7 31-500 U/ml G. R. Adolf, Bender Co ., Vienna,

Austria
mu rTNF-as E. coli 4 x 107 31-500 U/ml Genzyme
hu rTNF-a E. coli 6 x 107 100-5,000 U/ml G. R. Adolf
hu rTNF-a E. coli 2 x 107 100-5,000 U/ml Genzyme
mu EGF Natural - 5-200 nglml Flow Lab., Meckenheim, FRG
mu FGF Natural - 100-200 ng/ml Flow Lab., Meckenheim, FRG
mu NGF-/3 Natural - 100 ng/ml Boehringer Mannheim, Vienna,

Austria
mu NGF 7S Natural - 100 ng/ml Boehringer Mannheim
hu rPDGF CHO cells - 2-100 ng/ml Amersham
TGF-9 Natural - 0.1-10 ng/ml R&D Systems, Inc.,

(porcine) Minneapolis, MN
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TABLE II
GM-CSF As Well As Murine TNF-a Support the Survival of LC

105 LC enriched by either panning (>75%) or sorting (>90%) were cultured
in 1 ml medium t additives . After 72 h, viable LC yields were determined and
expressed relative to the number of LC at the start (100%) . Data are means
t SD with the number of experiments in parentheses .

for 18 h . The pellet containing total cellular RNA was resuspended in 0.1% SDS in
diethylpyrocarbonate-treated water and extracted three times with an equal volume of 1-but-
anol/chloroform (1 :1) and once with chloroform . RNA was precipitated with 0 .1 vol of 3 M
sodium acetate pH 5 and 2.2 vol of 100% ethanol overnight at -20°C, pelleted by centrifuging
at 12,000 g for 10 min, resuspended in water, and then stored at -80°C.
cDNA Probes.

	

Murine GM-CSF cDNA probe (cloned into pgem3; 0.88 kb ; Barn HI/Eco
RI insert ; provided by Dr. N . M . Gough [25]), murine TNRtx cDNA probe (in pUC9; 1 .3
kb ; Pst 1/Barn HI insert ; provided by Dr. A. Cerami, The Rockefeller University, New York,
NY), murine IL-la clone pILI 1301 (1 .7 kb ; Barn HI/Barn HI insert; provided by Dr. P
LoMedico [26]), mouse mA5 tubulin cDNA (in pUC9; 1 .6 kb; Eco RI/Eco RI insert; provided
by Dr. Don W Cleveland [27]), and chicken 0-actin cDNA (in pBR322; 1 .9 kb; Hind III/Hind
III insert; provided by Dr. D. W. Cleveland [28]) were labeled with tx-[32P]dATP (Amer-
sham International, Amersham, UK) using the oligoprimer procedure (29) to a specific ac-
tivity of 1-5 x 10 9 cpm/Ag DNA.
RNA Blots.

	

The purified RNA was quantitated by A260 and analyzed by electrophoresis
in 1% agarose/6% formaldehyde gels followed by blot transfer to Hybond N nylon mem-
branes (Amersham) . Blots were hybridized overnight with 10 6 cpm/ml at 65°C and washed
for 30 min each in 3 x SSC/1 °!o SDSs 1 x SSC/1% SDS, 0.3 x SSC/0.1% SDS, and 0.1 x
SSC/0.1% SDS at 65°C. Filters were exposed 1-4 d to Cronex film with intensifying screens .

Additives to culture medium

Recovery of
viable LC after
72 h in culture

None 4.0 t 2.6 (10)
mu rGM-CSF 0.1 ng/ml 31 .6 t 4.7 (3)

0.5 ng/ml 48 .4 t 3.8 (3)
1 .0 ng/ml 48 .2 t 4.3 (3)
2.0 ng/ml 48 .1 f 5.8 (30)

mu rGM-CSF 0.5 ng/ml
+ anti-GM-CSF 0.0250% vol/vol 3 .5 t 2.3 (4)
+ anti-GM-CSF 0.0125% vol/vol 26 .5 t 4.9 (2)

mu rTNF-a 31 U/ml 21 .8 t 9.9 (5)
62 U/ml 45 .4 ± 6.5 (15)
125 U/ml 46 .8 t 4.8 (15)
250 U/ml 42 .4 f 7.1 (7)
500 U/ml 45 .7 t 7.8 (7)

Anti-GM-CSF (0.5% v/v)
+ mu rTNF-a 62 U/ml 48 .7 t 4.5 (10)
+ mu rTNF-a 125 U/ml 49 .0 t 4.6(10)

mu rGM-CSF (2 ng/ml)
+ m rTNF-a 62 U/ml 53 .3 t 9.7 (10)
+ m rTNF-a 125 U/ml 50 .3 t 5.1 (5)

hu rTNF-a 100 U/ml 4.5 t 2.1 (3)
500 U/ml 5.7 t 3.8 (3)

1,000 U/ml 19 .0 t 4.5 (3)
5,000 U/ml 16 .7 f 3.8 (3)

All other cytokines in
Table I <10% (3)
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Results
Murine TNF-ci Supports the Survival ofEnriched LC in Culture.

	

In accordance with
previous results we found that enriched LC (>75% by panning or sorting; results
were comparable with LC enriched by either method) die when cultured in medium
alone, but survive when GM-CSF is included (GM-CSF reached plateau activity
at 0.5 ng/ml, and was routinely used at 2.0 ng/ml) (Table II) . When we tested a
panel ofadditional cytokines we found that one other cytokine, namely murine TNFa,
supported LC viability as well . Maximal activity of murine rTNF-a was reached
at 62 U/ml (Table II). It was, therefore, used at 62 or 125 U/ml in all further experi-
ments. The observed TNF effect on LC viability did not appear to be due to the
induction of GM-CSF production during the assay as it was not abolished by the
addition of rabbit anti-mouse GM-CSF serum in doses up to 0.5% vol/vol, which
blocked 10 ng GM-CSF/ml (Table 1I) . Surprisingly, human TNF-ci was not active
at comparable doses, and therefore, this particular TNF activity exhibited a species
preference . At higher doses (see Table II) human TNF partially supported LC via-
bility, but we have not studied whether the induction of GM-CSF was responsible
for this effect . LC cultured in GM-CSF, when viewed under an inverted phase-contrast
microscope, exhibited many large dendritic and veiled processes as described previous-
ly (4) . The cell surface processes of LC cultured in murine TNFa were less prominent
(not shown) and similar to the ones found on LC isolated from bulk EC cultured
overnight (5). LC did not proliferate in culture as demonstrated by [3H]thymidine
autoradiography (data not shown) .

Enriched LC When Cultured in TNF-ci Are Weak Stimulators ofResting T Cells in Contrast
to LC Cultured in GM-CSF. We have described previously that freshly isolated LC
are weak stimulator cells for resting T cells (4-6). In accordance with preceding
studies (6, 7), we found that enriched LC when cultured in GM-CSF (plateau effect
at 0 .5 ng/ml) for 72 h matured into potent stimulator cells (see Table II) and ex-
hibited a similar activity as LC that had matured in companion bulk EC cultures .
LC cultured for 72 h in 62 or 125 U/ml murine TNFa, however, were 10-30-fold
less active at limiting doses (Tables IIIVI). Thelow stimulatory capacity was reflected
by the formation of only few accessory cell/T cell clusters during the assay (Fig . 1) .
LC cultured in TNF alpha plus GM-CSF developed stimulatory activity, which in-
dicated that the poor activity of LC cultured in TNF-ci alone was not due to a toxic
effect of TNF alpha (Table IV). The low stimulatory activity was also not due to
induction and carryover of a suppressive factor, as the addition ofconditioned media
did not alter the potent stimulatory activity of LC enriched from bulk EC cultures
(Table IV) or of LC cultured in GM-CSF (not shown). LC cultured in TNF-ci when
added to the assays also did not suppress T cell proliferation induced by LC en-
riched from bulk EC cultures (not shown). We next tested the activity of LC cul-
tured in either GM-CSF or TNF-ci at 24 or 36 h to exclude that LC when cultured
in TNFa acquired potent but transient stimulatory activity early on . The respec-
tive experiments (Table V andVI) demonstrated that LC cultured in GM-CSF pro-
gressively increase their stimulatory activity, whereas those cultured in TNFa re-
main weak from the beginning . When LC were cultured for 36 h in TNFa, and
then GM-CSF was added to the wells, stimulatory activity developed (Table VI).
This demonstrated that TNFa did not irreversibly block LC maturation .
As LC cultured in TNF-ci or GM-CSF differed in stimulatory capacity we were
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TABLE III

LC Cultured for 72 h in TNF-a Are Weak Stimulators (Oxidative
Mitogenesis Assay) in Contrast to LC Cultured in GM-CSF

LC were enriched to 82 % by panning, cultured for 72 h in culture medium sup-
plemented with 2 ng/ml mu rGM-CSF or 125 U/ml mu rTNF-a . Then their
stimulatory function for 3 x 10 5 periodate-modified (syngeneic BALB/c) T cells
was tested (oxidative mitogenesis assay) and compared with LC isolated from
companion 72-h bulk EC cultures (enrichment to 60% by flotation on dense al-
bumin columns) . T cells alone took up <1,800 cpm .

interested to see whether there was a difference in expression of class II MHC an-
tigens as well . From previous work we know that during LC maturation in bulk
EC culture there is about a fivefold increase in surface class II molecules that reaches
plateau levels more quickly than the stimulating activity ofLC (12-18 versus 60-72 h)
(5, 11) . Enriched LC cultured in TNFa or GM-CSF for 72 h exhibited comparable

TABLE IV

LC Cultured for 72 h in TNF-a Are Weak Stimulators (Primary
Allogeneic MLR) in Contrast to LC Cultured in GM-CSF. The

Low Stimulatory Activity Is Not Due to a Toxic Effect or
Induction of a Suppressive Factor.

LC were enriched to >90% by FAGS, cultured for 72 h in culture medium sup-
plemented with 2 ng/ml mu rGM-CSF, 62 U/ml mu rTNF-a, as well as GM-
CSF + TNF-a . Then their stimulatory function for 3 x 105 C3H T cells was
tested (primary allogenic MLR) . Stimulatory activity was compared with LC
enriched (60%) from companion 72-h bulk EC cultures by flotation on dense
albumin columns . T cells alone took up <400 cpm . Note that LC cultured in
TNF, but not LC cultured in GM-CSF with or without TNF are weak stimula-
tors . Note also that the addition of conditioned medium taken from LC cultured
for 72 h in TNF (a) is not suppressive .

Stimulator cells
[ 3H]TdR uptake with doses of

1 x 10 4 3 x 10 3 1 x 103 3 x 102
cpm (x 10 -3)

Sorted LC, cultured 72h in :
(a) TNF-a 7.0 5 .0 0 .5 0 .4
(b) TNF-a + GM-CSF 70 .0 55 .0 35 .0 18 .0
(b) GM-CSF 71 .0 54 .8 37 .0 19 .0

LC, enriched from 72h bulk EC
cultures ND 55.0 30 .0 25 .00
+ 12 .5% conditioned medium a ND 80.0 35 .0 20 .0
+ 12 .5% conditioned medium b ND 75.0 35 .0 21 .0

Stimulator cells
[ 3H]TdR

3 x 10 3
uptake with doses

1 x 10 3 3 x 10 2 1
cpm (x 10-3)

of
x 102

LC, enriched from 72-h bulk EC
cultures 131 .0 81 .0 27 .0 6 .0

Panned LC, cultured 72h :
in GM-CSF 108 .0 59 .0 18 .0 5 .0
TNF-a 17 .0 4.0 1 .4 0 .6
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FIGURE 1 .

	

Cluster formation during T cell proliferative responses as observed under the in-
verted phase-contrast microscope. The pictures were taken from an experiment as outlined in
Table III. The wells containing top doses of stimulators were photographed at the time of har-
vesting (i.e ., 40 h after onset) . Many large clusters and T blasts are seen with LC cultured for
72 h in GM-CSF as stimulators (A), but not with LC cultured in TNF-a (B). T cells without
LC added are small and round, and neither clusters nor blasts are present (C).

TABLE V

Two LC populations (both enriched to X90% by FACS) were cultured for 24
(LC no . 1) and 72 h (LC no . 2), respectively, in culture medium supplemented
with 2 ng/ml mu rGM-CSF, 62 U/ml mu rTNF-a, as well as mu rTNF-a +
anti-GM-CSF (0.5%) . LC nos. 1 and 2 were harvested at the same time and
their stimulatory function for 3 x 105 periodate-modified (syngeneic BALB/c)
T cells was tested (oxidative mitogenesis assay) . Stimulatory capacity was com-
pared with LC enriched to 60% from companion 72-h bulk EC cultures . T cells
alone took up <800 cpm.

165

LC Cultured in TNF-a

Throughout the

Stimulator cells

Are

Culture Period

[3H]TdR
3 x 103

Weak Stimulators

of 72 h

uptake with doses
1 x 10 3 3 x 102 1

of
x 102

cpm (x 10' 3)

Sorted LC no . 1, cultured 24h in
(a) GM-CSF 83 .3 43 .8 23 .1 8.6
(b) TNF-a 21 .8 12 .3 3.2 1 .5
(c) TNF-a + anti-GM-CSF 17.8 9.3 3.5 1.1

Sorted LC no . 2, cultured 72h in
(a) GM-CSF 180.7 126.4 72 .1 33 .1
(b) TNF-a 37.6 19 .8 5.1 2.7
(c) TNF-a + anti-GM-CSF 38.0 10 .9 4.0 1 .7
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levels of I-A antigens when studied by flow cytometry (Fig. 2) . The fact that en-
riched LC survive for 24 heven in plainmedium (6) enabled us to determine whether
the upregulation of class 11 antigens would occur even if no exogenous cytokines
were added. After 24 h ofculture surface I-A antigens had reached the plateau levels
found on LC cultured for 72 h under all the conditions tested, i.e., when fresh LC
were cultured in medium alone, in medium supplemented with neutralizing rabbit

TABLE VI
The Low Stimulatory Activity ofLC Cultured in TNF-a

Is Quickly Reversed by GM-CSF
[3H]TdR uptake with doses of

LC were enriched to 84`16 by panning, and cultured for 36 as well as 72 h in
2 ng/ml mu rGM-CSF or 125 U/ml rTNF-a. In addition, part of the LC was
first cultured in TNF alone for 36 h, and then GM-CSF was added to the cul-
ture wells. The stimulatory activity for 3 x 105 periodate modified (syngeneic
BALB/c) T cells was tested (oxidative mitogenesis assay) after 36 as well as 72 h
of culture . T cells alone took up <1,100 cpm.

FIGURE 2.

	

Cell surface levels of Ia antigens on fresh and cultured LC as assesssed by flow cytom-
etry. Cells were stained with a saturating dose of FITC-mAb to I-Ab.d (clone B21-2) or with an
isotype-matched FITC anti-mouse IgM control (not shown) to determine background staining
(indicated by vertical bar). (A) LC freshly isolated by panning; (B) LC cultured for 24 h in medium
+ anti-GM-CSF (0.5%); la staining was identical with LC cultured 24 h in medium alone, or
in medium supplemented with GM-CSF or TNFa (data not shown) . LC cultured for 72 h in
GM-CSF (C, TNFa (D), and in TNFa + GM-CSF (E); LC enriched from companion 72-h
bulk EC cultures (F) . The enrichment of LC was 92% (A), 83% (B), and 75% (C-E).

4

Stimulator cells 3 x 10 3 1 x 10 3 3 x 102 1 x 10 2
cpn (x 10 -3)

Panned LC, cultured in
GM-CSF (36 h) 99 .2 34.7 14 .0 4.0
TNF alpha (36 h) 20 .2 6.7 1 .6 0.8
GM-CSF (72 h) 147.0 105.6 41 .5 15 .2
TNF alpha (72 h) 34 .3 12 .3 3.2 1.3
(36 h), then + GM-CSF 156.1 69 .7 34 .4 9 .0
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anti-mouse GM-CSF, GM-CSF, or TNFa. The mechanism for this upregulation
of class II antigens, therefore, has yet to be identified .

TNF-a mRNA Is Expressed by Freshly Prepared EC

	

To get a clue as to whether our
in vitro findings could have any relevance for LC in the epidermal microenviron-
ment we examined whether EC express mRNA specific forTNFa, GM-CSF, and
IL-la. Freshly prepared EC in several experiments expressed TNFa mRNA, less
or no GM-CSF mRNA, andno detectable IL-1 mRNA (Fig . 3). Interestingly, when
tested after 3 h of culture, i.e., under conditions when LC maturation is known to
occur, EC expressed significant levels of GM-CSF, and at 24 h IL-1 mRNA as well
(Fig. 3 A). Freshly prepared EC from LPS-responsive C3H/He and LPS-unresponsive
C3H/Hej mice showed comparable expression of TNFci mRNA (data not shown) .

Discussion
When we searched for a cytokine that would keep highly enriched LC alive during

72 h ofculture, but unlike GM-CSF, would not induce their potent stimulatory ac-
tivity for resting Tcells, we were surprised that among the panel ofpurified cytokines
tested murine TNFa exhibited such an effect (plateau at 62 U/ml ; Tables IIVI).
It was interesting, that human TNFa was not active at comparable doses (Table II).
This particular TNFa activity, therefore, exhibited a species preference similar to
that recently described for the growth factor effect of murine TNFa on thymocytes
(30) and a T cell line (31) . After our initial observation, several concerns immedi-
ately arose. First, we had to exclude that the survival and low stimulatory activity
ofLC were simplydue to the induction ofinsufficient amounts ofGM-CSF by TNFa.
In agreement with previous studies (6, 7), we found that as little as 0.5 ng/ml of
GM-CSF was sufficient for maximal recovery as well as functional maturation of
highly enriched LC during 72 h ofculture. Thefinding that culturing LC in TNFa

FIGURE 3.

	

Northern blot anal-
ysis ofcytokine (TNFa, GM-
CSF, IL-1-a) mRNA expression
in BALB/c EC . Total cellular
RNA(20 ug/lane) from BALB/c
EC cultured for 0, 3, and 24 h
waselectrophoresed, transferred
to Hybond Nnylon membranes,
and hybridized with the respec-
tive 52P-labeled cytokine cDNA
probes (2 d film exposure), and
as a control, with actin and
tubulin cDNA probes (6 h film
exposure) (a) . Note that even
though the amounts of RNA
per lane were constant (see b:
ethidiumbromide stained 1%
agarose/6% formaldehyde gels
before transfer), the expression
of actin and tubulin is not, and
therefore, it appears tobe regu-
lated. One lane was used to
probe actin and tubulin .
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plus rabbit anti-GM-CSF in doses neutralizing as much as 10 ng/ml GM-CSF did
not alter LC recovery or function (Tables II and V) as compared with culturing
LC in TNF-ci alone indicated that the effect ofTNFawas not due to the induction
of GM-CSF. Second, we had to exclude that the low stimulatory capacity of LC
cultured in TNFac was caused by a toxic or a suppressive effect. When LC were
cultured in TNFa plus GM-CSF, or first in TNFa and then for another 36 hours
in GM-CSF, stimulatory function developed (Table VI). This indicated that the low
stimulatory capacity of LC cultured in TNF-a alone was not simply due to a toxic
effect ofthis cytokine, and that TNFa did not block the maturation of LC mediated
by GM-CSF The addition ofconditioned medium taken from LC cultured in TNFU
to theTcell proliferative assays did not alter the potent stimulatory capacity of purified
LC cultured in GM-CSF or of LC enriched from 72 h bulk EC cultures (Table IV).
This showed that the low stimulatory capacity of LC cultured in TNFci was not
due to the induction of a suppressive factor. The question whether other cytokines
are intermediate to the effect of TNFa on LC remains unsolved at present. The
finding that none of the many cytokines tested except GM-CSF and TNFa sup-
ported LC viability (Table II) indicates that TNF-ci is indeed functioning directly.
It does not exclude, however, that a combination of the cytokines we tested or some
other mediator is induced and responsible for the observed effect .
We then had to ask whether TNFa could at all play a role for LC homeostasis

in vivo. The available data allow neither to firmly support nor to dismiss such a
provocative hypothesis . A condition sine qua non would be that EC express TNF-a
in situ . We found that freshly prepared EC contain TNF-ci mRNA, but this does
not necessarily mean that TNF-ci mRNA is constitutively transcribed and trans-
lated in situ . Recent immunohistochemical studies of human epidermis suggest, how-
ever, that TNF-ci protein might indeed be present in normal epidermis (32) . Re-
cently it was shown that cultured human keratinocytes can produce and release TNFa,
even though the constitutive production was found to be low (33) . This is also true
for murine keratinocytes, as in conditioned media of subconfluent keratinocyte
monolayers cultured for 24 h TNF activity did not exceed 7 U/ml and often was
not unequivocally detectable at all in the standard L929 assay (unpublished results) .
This does not a priori exclude that TNFa might reach a concentration in situ at
which the effect on LC that we observed in vitro could occur. In our in vitro culture
experiments we added TNFoi at 62 U/ml just once at the beginning to LC that
had undergone trypsinization and panning. IfTNFa hadbeen added continuously
and had acted upon unmodified LC, the concentration needed to keep LC viable
might have been lower. One should also take into account that in situ even a low
constitutive TNF-a release into the narrow, synapse-like intercellular space should
result in substantial local concentrations . Recently, atransmembrane form ofTNFa
(34) has been described that seems to be active through cell to cell contact and thus
allows a localized action . Therefore, yet another possibility would be that amembrane-
bound form ofTNFa is expressed by keratinocytes and mediates a paracrine effect
on LC in the epidermal microenvironment . In future studies it will be necessary
to monitor cytokines as well as cytokine receptors in situ under various conditions
to substantiate if indeed a network of cytokines acts in concert to regulate the via-
bility and function of LC in vivo as suggested by the in vitro studies outlined here
and described previously (6, 7) .



Summary
Freshly isolated murine epidermal Langerhans cells (LC) are weak stimulators

of resting T cells but increase their stimulatory capacity 10-30-fold upon 2-3 d of
culture together with other epidermal cells . This maturation of LC is mediated by
two keratinocyte products . Granulocyte/macrophage colony-stimulating factor (GM-
CSF) maintains viability and increases function . IL-1 alone does not keep LC alive,
but when combined with GM-CSF further enhances their stimulatory activity.
We have now searched for a cytokine that would keep LC in a viable, but func-

tionally immature state. When LC (enriched to >75%) were cultured in the pres-
ence ofGM-CSF (2 ng/ml) or murine (TNFa) (plateau effect at 62 U/rnl), the recovery
ofviable LC after 72 h was identical . The LC cultured in murine TNFa, however,
were 10-30 times less active in stimulating resting T cells . A series of experiments
demonstrated that this phenomenon was not due to the induction of insufficient
amounts ofGM-CSF, the induction of a suppressor factor, or a toxic effect ofTNFa.
Interestingly, the observed TNF-a activity exhibited a species preference, as human
TNFa was not active at comparable doses .
We have observed an unexpected effect ofTNFa on LC in vitro. Though we found

that freshly prepared epidermal cells express TNFa mRNA, further studies are needed
to establish whether TNFa plays a role in vivo by keeping resident LC in a viable,
but functionally immature state.
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