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Activated platelets and mast cells expose the inorganic polymer, polyphosphate (polyP)

on their surfaces. PolyP initiates procoagulant and proinflammatory reactions and

the polymer has been recognized as a therapeutic target for interference with blood

coagulation and vascular hyperpermeability. PolyP content and chain length depend

on the specific cell type and energy status, which may affect cellular functions. PolyP

metabolism has mainly been studied in bacteria and yeast, but its roles in eukaryotic

cells and mammalian systems have remained enigmatic. In this review, we will present

an overview of polyP functions, focusing on intra- and extracellular roles of the polymer

and discuss open questions that emerge from the current knowledge on polyP regulation.
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POLYPHOSPHATE METABOLISM

Inorganic polyphosphate (polyP) is abundantly found in every cell in nature, however previous
studies had mainly focused on prokaryotes to investigate polyP metabolism. PolyP is a
polyanion consisting of up to several hundreds of phosphate units (Pi) linked by energy-rich
phosphoanhydride bonds. PolyP is formed in bacteria by polyP kinase through transfer of
ATP/GTP’s γ-phosphate residues onto the nascent polymer chain (1, 2), while depolymerization
of polyP is catalyzed by exopolyphosphatase (ppx) (3). Dependency of polyP for bacterial growth
and survival initiated efforts to develop drugs that target polyP metabolism [reviewed in (4–6)].

Eukaryotic polyP metabolism is poorly understood with exception for S. cerevisiae cells.
Yeast expresses a polyP polymerase, vacuolar transporter chaperone, and polyP phosphatases
including exopolyphosphatase (Ppx1), endopolyphosphatases (Ppn1) and diadenosine and
diphosphoinositol phosphohydrolase (Ddp1) (7–10). Despite intensive investigations, mammalian
homologs for these polyP-related enzymes have not been identified, however diphosphoinositol
polyP phosphohydrolases (DIPPs) have been shown to degrade polyP in alkaline conditions (10).
The same report also demonstrated that intracellular polyP concentrations were dependent on
enzymes regulating inositol phosphorylation, such as phospholipase C, inositol polyP multikinase
and inositol hexakisphosphate kinase (Ip6k1) in yeast (10). Notably, genetic ablation of Ip6k1,
a gene coding for the kinase that generates diphospho-moieties through phosphorylation of the
5-position of inositol penta- and hexakisphosphate, has been shown to reduce platelet polyP
levels in mice (11). Together, the data suggest that polyP is intertwined with polyphosphorylated
inositol metabolism. Multiple cellular processes are regulated by the (poly)phosphorylated inositol,
including signal transduction, Ca2+ channel permeability and gene expression [reviewed in (12)].
Particularly, immune cell activation depends on membrane-bound phosphoinositides and soluble
inositol phosphates [reviewed in (13)].
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In yeast, intracellular concentrations of Pi are sensed
through Pi-responsive signaling (Pho-regulon) mediated by
both, polyP and diphosphoinositol pentakisphosphate (14, 15).
Under phosphate-limiting growth conditions, the transcription
factor Pho4 controls expression of high affinity Pi transporters
and secreted acid phosphatases to replenish intracellular Pi.
Orthologs of the yeast Pho-regulon seem not to exist in
multicellular eukaryotes. However, Pi sensor domains have been
identified as part of Pi transporters that are conserved among
various organisms and share a SPX domain (16). This common
SPX domain, named after yeast Syg1 and Pho81 and human
XPR1 (xenotropic and polytropic retrovirus receptor 1), binds
to diphosphoinositol pentakisphosphate and increases polyP
synthesis in yeast and plants. Mice with conditional deficiency of
Xpr1 in renal tubular cells develop proximal tubular dysfunction
(17). In humans, impaired XPR1 function due to mutations
in the Pi exporter is associated with primary familial brain
calcification (18). These findings indicate a link between Pi
sensing, intracellular Pi levels and polyP, although further studies
in eukaryotes are required to elucidate polyP regulation in vivo.

INTRACELLULAR ROLES
OF POLYPHOSPHATE

High cytoplasmic polyP levels have been found in various cell
lines, including NIH3T3 fibroblasts, Vero epithelial kidney cells
and Jurkat CD4+ T cells (19). Tissues with high energy demand
and high regeneration or proliferation capacity (e.g., brain, heart,
liver, and cancer cells) are rich in polyP (19–21). In line with
polyP’s function as energy storage pool, defective polyP synthesis
confers disadvantages for growth and survival of bacteria, fungi
and protozoa (9, 22, 23). In bacteria, polyP is bound to Ca2+ ions
and complexed with poly-β-hydroxybutyrate formingmembrane
channels utilized for DNA uptake (24, 25).

In eukaryotes, polyP has functions in mitochondria and the
polymer is enriched within the intermembrane compartment and
uncouplers of oxidative phosphorylation decrease mitochondrial
polyP levels in S. cerevisiae (26, 27). Degradation of polyP using
Ppx1 polyphosphatase, that is localized to the mitochondrial
intermembrane space by a cytochrome c-derived targeting
sequence, decreases the membrane potential and increases
NADH levels in mitochondria (28, 29). Moreover, polyP appears
to contribute to opening of the mitochondrial permeability
transition pore in cardiac myocytes. In these cells in culture,
Ppx1-mediated polyP degradation inhibits mitochondrial Ca2+

ion accumulation and interferes with Ca2+-induced cell death
that is associated with myocardial infarction and ischemia
reperfusion injury (30).

Based on the function of the polymer for growth and survival,
polyP is believed to have a role in malignant diseases. In cancer
cells, polyP has been detected in epithelial tumor cell lines derived
from prostate andmammary gland as well as in primarymyeloma
B cells (21, 31, 32). In addition to cancer-associated pro-coagulant
activities of extracellular polyP (see below), the polymer facilitates
various intracellular functions in cancer cells. PolyP increases the
kinase activity of mammalian target of rapamycin (mTOR) in
MCF-7 tumor cells and accumulates at nucleolar transcription

sites in myeloma cells. In contrast, Ppx1-mediated polyP
degradation and actinomycin D-induced transcription inhibition
abrogate these polyP effects (31, 32). Together, the data suggest,
that polyP may act as metabolic driving force in different cellular
compartments, thereby promoting tumorigenesis.

As a negatively charged polymer, polyP exerts chaperone
activity in bacteria such as E. coli (33, 34). Short and long chain
polyP regulate ribosomal translation efficiency and ribosomal
protein degradation, indicating a differential role of polyP
dependent on chain lengths in bacterial protein biosynthesis
(35, 36). Similarly to the polymer starch and its monomeric
form glucose, polyP is condensed phosphate and reduces the
concentration of Pi and thus the intracellular osmotic pressure
conferred by the ion. The polymer acts as Pi storage pool
and serves as non-enzymatic protein (pyro-)phosphorylation
mediator (37, 38) [as does inositol pyrophosphate (39, 40)]
in eukaryotes. PolyP also activates the cytoplasmic portion
of transient receptor potential (TRP) A1 and melastatin 8
in neurons (41, 42). Moreover, a recent report identified a
glucokinase that relies on polyP as phosphoryl donor in the
liver (43), indicating that future research on tissue-specific polyP
functions may broaden our view of its physiological roles in
various cell types. In this context, Ca2+-dependent, mTOR- and
TRP-regulated immune responses could be a potential target
for polyP.

Besides its establishedmitochondrial and nuclear distribution,
polyP accumulates in intracellular vesicles. Yeast, parasites, mast
cells and platelets store polyP in vacuoles, acidocalcisomes,
heparin-containing granules and dense granules, respectively
(44–48). Ca2+-complexed polyP derived from these acidic
organelles is insoluble, retained on the plasma membrane
in nanoparticle form upon release and provides the pro-
coagulant surface for factor XII (FXII) contact activation
(49). PolyP-containing vesicles are also found in lysosome-
related organelles derived from fibroblasts and astrocytes (50,
51). The latter cell type releases polyP as a neurotransmitter
from lysosomes expressing vesicular nucleotide transporter in
response to pH changes, exogenous polyP and Ca2+ ion
signaling (52). Taken together, these studies indicate that
polyP have fundamental functions for secretion and possibly
stability of lysosome-related vesicles in other cell types, such
as immune cells. However, quantification of Pi via malachite
green assay and 32Pi via radiodetection obtained from hydrolysed
polyP has to be interpreted with caution, since microbial
contaminations interfered with these assays to detect polyP
in human granulocytes in a previous report [update to (53)].
Analysis of in vivo polyP functions is an area of ongoing
research and recently a flow cytometry-based assay has been
established to quantify the polymer on cell surfaces (54). Table 1
provides a summary of polyP functions in different organisms,
cell populations and intracellular compartments.

EXTRACELLULAR POLYPHOSPHATES

While intracellular polyP activities are established only recent
data have revealed a role of extracellular polyP in mammalian
and human cardiovascular biology. The in vivo activation of
FXII in the initiating steps of the intrinsic blood coagulation

Frontiers in Medicine | www.frontiersin.org 2 April 2019 | Volume 6 | Article 76

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Mailer et al. PolyP-Mediated Reactions

TABLE 1 | Overview on polyP-mediated activities in various cell types.

Organism Location PolyP-function Effect References

Bacteria Various phyla PolyP metabolism Increased virulence (22)

Membrane pore formation Vector uptake (25)

Protein biosynthesis Expression control, chaperone activity (33–36)

Fungi S. cerevisiae Pi sensing Pi regulon (16)

Pi metabolism Pi reservoir (37)

Mitochondrial energy storage Supported oxidative phosphorylation (27)

D. discoideum PolyP secretion Growth inhibition (55, 56)

Animals Amoeba histolyticum PolyP metabolism Increased biological fitness (23)

Osteoblasts Mineralization inhibition Apatite binding (57)

Myocytes Mitochondrial permeability transition pore activation Ca2+ ion accumulation (30)

Hepatocytes Metabolic contribution Metabolic control (28, 43)

Neurons TRPA1, TRPM8 signaling Stimulating co-factor (41, 42)

Astrocytes Vesicular release Neurotransmitter (51, 52)

Fibroblasts Fibroblast growth factor binding Unknown (50, 58, 59)

Epithelial cells mTOR pathway Proliferation (31)

Endothelial cells mTOR, P2Y1, and Wnt pathways Induced apoptosis, permeability, cell adhesion (60–63)

Platelets PolyP secretion Bradykinin formation (48)

Platelets PolyP secretion FXIIa-mediated coagulation (48, 64)

Platelets Extracellular nuclear protein binding Increased vascular permeability (62)

Mast cells, basophils PolyP secretion Bradykinin formation (46)

Neutrophils mTOR inhibition, autophagy induction NET formation (65)

Plasma B cells Unknown mechanism Apoptosis (66)

Plasma Increased C1 esterase inhibitor activity Matrix for C1 esterase inhibitor regulation (67)

Plasma Complement system Inhibition (68)

Plasma Platelet factor 4 binding Autoimmune-induced thrombocytopenia (69)

system has been an enigma for many years [reviewed in (70)].
FXII activation by binding to negatively charged kaolin or
ellagic acid (“contact activation”) provides the mechanistic basis
for activated partial thromboplastin time (aPTT), the clinical
coagulation test (with an estimated 4–5 billion tests annually).
However, the natural surface that induces FXII contact activation
in vivo had been unknown. Activated platelets induce plasma
clotting in a FXII-dependent manner, indicating that platelets
release FXII-activating structures. Studies in mice and human
plasma revealed that polyP serves as the long sought FXII-
activating surface on activated platelets linking primary and
secondary hemostasis. Vice versa, humans with polyP deficiency
(Hermansky Pudlak Syndrome) have defective platelet-driven
FXII activation and clotting [(48) and reviewed in (71) and
(72)]. In addition to FXII activation, polyP has been reported
to modulate other coagulation reactions in vitro, however
a potential role of these pathways in vivo remains to be
demonstrated (64, 73–75). The chain length of synthetic polyP
determines its solubility and FXII activation capacity in plasma
(76). However, natural platelet polyP forms insoluble Ca2+ ion-
rich nanoparticles independently of the chain length of the
polyP molecules that are maintained on the surfaces of pro-
coagulant platelets and thus activate FXII (49). Hence size
of polyP does not matter for FXII-activating potency of the
physiologically occurring Ca2+-saturated polymer. Similarly to
polyP, also synthetic polyI:C, a dsRNA analog that activates

Toll-like receptor 3, has been shown to have pro-coagulant
activity (77).

PolyP is a chelator for positive metal ions and dense
granules of platelets contain polyP bound to Ca2+ and
possible Zn2+ ions at high concentrations (47). In plasma,
Ca2+-saturated polyP has a half-life of about 90min (76),
due to degradation by polyphosphatases, such as alkaline
phosphatase that has exopolyphosphatase activity (48, 78).
Synthetic polyP derived from melted phosphoric acid is
mostly complexed to Na+ ions. Counterions regulate structure,
biophysical properties and biological activities of polyP (49).
Most of the in vitro studies have been performed with
synthetic (often Ca2+-free) polyP in the absence of phosphatases.
Physiologically occurring Ca2+-polyP is not soluble and
operates on the cell surface. The low solubility in plasma
challenges suggested functions for the extracellular polymer
in solution. In contrast Ca2+-free synthetic polyP of short
and medium sized chain length (50–150 Pi moieties) depletes
free Ca2+ ions leading to anti-coagulant effects similarly to
EDTA (76).

Most cell culture experiments have been performed
with medium sized synthetic polyP (10–50µM, based on
monophosphate units). In buffer or plasma environments
in vitro, synthetic polyP is associated with an array of binding
partners, including von Willebrand factor, coagulation factors
XII, V and XI, complement factors C1s, C5b6, C6, and C7
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(64, 68, 73, 74). Medium chain polyP and heparin have been
reported to bind C1 esterase inhibitor (C1INH), thereby
increasing function of the inhibitor (67, 79). However, FXII is
readily activated by platelet-derived polyP to initiate the intrinsic
coagulation cascade in vivo, indicating that increased activity
of physiologic C1INH levels following polyanion binding is
not sufficient to prevent FXIIa-driven coagulation. In contrast,
high dosages of C1INH (15 IU/kg) but not low dosages (7.5
IU/kg) decrease ischemia/reperfusion injuries (80), suggesting
that polyP binding to supra-physiological C1INH levels has
the capacity for regulating thrombosis. The amount of polyP
exposed on activated platelet surface is not precisely known,
and it remains to be analyzed whether low amounts of platelet-
derived C1INH that is retained on the surface of activated
platelets and is possibly bound to polyP have a role in regulating
serine proteases in vivo (81).

PolyP increases endothelial cell permeability in vivo,
stimulates expression of cell adhesion molecules and induces
apoptosis in culture (60). Follow-up studies, have elucidated
the pathways involved in these endothelial reactions. PolyP
application activates NF-κb and β-catenin pathways via
receptor for advanced glycation end products, P2Y1 receptor
signaling and Wnt signaling (61, 62). Vice versa, the anti-
thyroid drug methylthiouracil interferes with polyP-mediated
inflammation of the endothelium in vivo (82). On the other hand,
probiotic-derived polyP improves epithelial barrier function
and may contribute to immunomodulatory mechanisms against
commensal bacteria in the gut via NF-κb inhibition (83).

High extracellular polyP levels (>500µM) elicit scaffolding
effects that control amyloidogenic processes (84). In addition,
polyP binds to fibroblast growth factor (FGF) (58). However,
possible effects of polyP-FGF complexes on FGF-receptor
signaling have remained controversial, as both increased and
inhibited mitogenic activities have been reported (58, 59). A
possible explanation for the dual activities might be that FXII,
which initially promotes angiogenesis via urokinase plasminogen
activator receptor (uPAR) signaling (85), gets rapidly depleted
following polyP application via binding of FXIIa to C1INH. In
the presence of serum-derived C1INH, FXIIa gets rapidly cleared
and might limit FXII(a)/uPAR-driven pathways. Supporting
this idea, tumor cells secrete exosomes that expose polyP and
are associated with worse outcome involving immune evasion
possibly through reduced FXII(a)/uPAR-driven differentiation
of tumor-reactive T cell subsets (21, 86, 87). Moreover, human
plasma cells induce apoptosis following polyP treatment, whereas
other lymphocyte populations do not (66).

Presentation of polyP on activated platelets allows for contact
of polyP with immune cells. Activation of platelets increases
the intracellular Ca2+ ion concentration via stromal interaction
molecule 1 to release Ca2+ ions from the sarcoplasmatic
reticulum (88), which opens store-operated calcium entry
channels in the plasma membrane (89). Ca2+-mediated platelet
activation mirrors the process of T cell stimulation (90).
Moreover, conjugates of platelet-CD4+ T cells have been
reported (91) and T-cell proliferation and differentiation is
modulated by platelet-releasedmolecules, such as platelet factor 4
(92), soluble CD40 ligand (93), ADP/ATP (94) and transforming

growth factor-β (95). Recent findings also suggest that platelets
inhibit pro-inflammatory interleukin (IL)-17 secreting effector
T helper (Th17) cells in a tumor model (96). Taken together,
these studies suggest that polyP modulates immune responses via
direct or indirect pathways.

Neutrophils express FXII that is translocated to the plasma
membrane upon activation and facilitates uPAR signaling via
an autocrine mechanism (97). FXII signaling in neutrophils is
independent of FXII cleavage and promotes adhesion, migration
and formation of neutrophil extracellular traps (NET). In
transfer experiments, neutrophils derived from FXII-deficient
bone marrow show reduced tissue infiltration and better wound
healing in the host, compared to neutrophils derived from wild-
type bone marrow. PolyP treatment of neutrophils in vitro is
independent on uPAR signaling and promotes the generation
of NET through decreased mTOR acitivity and autophagy
induction (65). Supporting a link between polyP and neutrophils,
neutrophil-mediated inflammation is reduced in polyP-deficient
mice in two independent mouse models with (i) genetic IP6K1
ablation or (ii) pharmacological IP6K1 inhibition (98). The data
suggest that both neutrophil FXII and platelet-derived polyP
contribute to NET formation.

Both polyP and heparin are negatively charged polymers
and polyP has been shown to substitute for heparin.
Both heparin and polyP derived from mast cells drive the
activation of the kallikrein-kinin system (46, 99). Antibodies
that recognize complexes of platelet factor 4 (PF4) bound
to heparin induce platelet aggregation in heparin-induced
thrombocytopenia (HIT). These antibodies also cross-react
with PF4/polyP complexes (69), indicating that polyP might
contribute to HIT offering a rational for the recently described
heparin-independent HIT forms (100).

POLYPHOSPHATE-MEDIATED
INFLAMMATION

PolyP promotes the autocatalytic activation of FXII to the serine
protease FXIIa and FXIIa production is amplified by the protease
plasma kallikrein (PKa) through a feed-forward mechanism of
FXIIa-cleaved plasma prekallikrein (PK, fluid phase activation).
Deficiency in FXII is not associated with obvious abnormalities
in humans and mice. However, FXII-deficient plasma (Hageman
trait) has a prolonged aPTT. Mice lacking FXII (F12−/−)
have largely defective arterial and venous thrombus formation
(101) and are protected from thromboembolic diseases without
showing hemostatic abnormalities (48, 102). The impact of FXII
on thrombosis recently steered the World Health Organization
to establish an international standard for human plasma-derived
FXII (103). The fact that FXII deficiency is not associated with
bleeding, suggests that FXII-mediated intrinsic blood coagulation
contributes to other vascular pathways rather than hemostasis
[reviewed in (104)].

FXII and FXIIa are both ligands of uPAR that is expressed
on antigen-presenting cells and promotes differentiation of
pro-inflammatory Th17 cells (85, 87). Consistently, F12−/− mice
were shown to be protected from Th17-driven experimental
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FIGURE 1 | Schematic overview of Factor XII-mediated pathways in edema and thrombosis formation. Factor XII (FXII) activation is driven by autocatalytic activation

promoted by binding to negatively charged surfaces (contact activation), such as polyphosphate (PolyP) retained on platelet surface. FXIIa production is amplified by

plasma kallikrein (PKa) that is produced from FXIIa-cleaved plasma prekallikrein (PK). C1 esterase inhibitor (C1INH) blocks the activity of FXIIa and PKa to prevent

PKa-driven edema formation via cleavage of high molecular weight kininogen (HK) to release bradykinin (BK). Binding of BK and its metabolite des-Arg(9)BK to

bradykinin receptors (B1R, B2R) promotes vascular permeability and immune cell activation. FXII and FXIIa bind urokinase plasminogen activator receptor (uPAR) to

stimulate immune responses (left). FXIIa initiates the activation of the intrinsic coagulation cascade via activation of factor XI (FXI), factor IX (FIX) and factor X (FX) to

form a thrombus (right).

autoimmune encephalomyelitis (EAE) development (87).
Autoimmune diseases, such as EAE, require the extravasation
of auto-reactive Th1 and Th17 cells to infiltrate and attack
target cell structures. Furthermore, FXIIa increases vascular
permeability via the kallikrein-kinin system, in which bradykinin
(BK) is produced by PKa-mediated high molecular weight
kininogen cleavage. BK is a peptide hormone and BK signal
transduction is mediated by G-coupled kinin B1 and B2 receptors
on endothelial cells as well as leukocytes [reviewed in (105)].
Kinin B1 receptor expression is induced by pro-inflammatory
cytokines (e.g., IL-1β) and stimulated by BK and the C-terminal
truncated BK derivate des-Arg(9)BK, whereas constitutively
expressed kinin B2 receptors recognize BK [reviewed in (106)].
Deficiency in kinin B1 receptors affects Th-cell migration and
outcome in murine EAE models and possibly humans with
multiple sclerosis (107), suggesting that several FXII-dependent
pathways can interact with T-cell homeostasis. In line with this
notion, increased populations of Th17 cells have been reported
in patients with defective FXIIa regulation (108).

Proteolytic activity of FXIIa is regulated by C1INH, a serpin
that irreversibly inhibits FXIIa through covalent binding into
its reactive center. C1INH also has the capacity to inhibit
several other serine proteases, including PKa, active factor XI
(FXIa) and complement factors C1r and C1s. Impaired FXIIa
inhibition augments BK formation by the kallikrein-kinin system
and is associated with a BK-mediated life-threatening inherited
swelling disorder, hereditary angioedema (HAE) [reviewed in
(109)]. C1INH deficiency has no impact on thrombosis and
HAE patients have a normal thromboembolic risk [reviewed in
(110)]. HAE is a rare disease that is mainly autosomal dominant
inherited and characterized by reduced C1INH levels (HAE

type I) or function (HAE type II). In addition HAE has been
reported in patients with normal C1 esterase inhibitor activity
(HAE type III). Disease-causing HAE type III mutations have
been mapped to the F12 gene. Analysis of mutant FXII T309K
and T309R (positions refer to the mature protein) revealed that
mutant FXII is defective in a single O-linked glycosylation, which
promotes contact-driven FXIIa formation (111). Additionally,
the mutations create new serine protease cleavage sites and thus
increase FXIIa- and plasmin-mediated mutant FXII zymogen
activation (112). Other HAE type III associated mutations have
been linked to plasminogen and angiopoeitin (113, 114). While
BK is short-lived and degraded within seconds, the activity of
FXIIa or activation of FXII is increased in HAE leading to
sustained and prolonged BK formation (115, 116). A schematic
overview depicting PolyP/FXII-mediated pathways is shown
in Figure 1.

In addition to the kallikrein-kinin system, FXIIa triggers
the intrinsic blood coagulation pathway that has a role in
thrombus formation [reviewed in (117)]. Thrombi occlude
vessels causing tissue ischemia but also function in host defense
in a concept termed “immunothrombosis.” A recent report on
bacterial sepsis-associated pro-coagulant mechanisms showed
that inflammation-driven thrombosis occurs earlier in the spleen
compared to liver despite similar bacterial burden in both
organs, suggesting that organ-specific environment rather than
bacterial components contribute to microthrombus formation
(118). Bacteria-derived polyP is highly pro-coagulant in vitro,
however, it is unknown whether bacteria have the capacity to
expose or secrete their long chain polyP (>1,000 Pi moieties).

Intracellular polyP gets released during necrosis and may
act as a damage associated molecular pattern inducing immune
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FIGURE 2 | Schematic overview of polyphosphate-mediated pathways. A summary of the diverse mechanisms that are affected by polyP and have been reported for

distinct cell types is shown. Polyphosphate (polyP) regulates intracellular mechanisms (gray) related to metabolism, signaling and apoptosis. The effect of polyP on

phoshoregulation has been shown in yeast, the impact on mitochondrial activity in yeast and cardiomyocytes. Protein binding and vesicular secretion of polyP was

reported for neurons and polyP-driven proliferation has been shown for tumor cells. Active and passive release of polyP promotes extracellular pathways to activate

coagulation factors (FXIIa and FXa), to generate bradykinin (BK) and to stimulate cells via urokinase plasminogen activator receptor (uPAR)- and mammalian target of

rapamycin (mTOR)-driven mechanisms. Signaling via these mediators were reported to affect endothelial cells and immune cells.

responses through P2Y signaling (62). Indeed, long chain polyP
induces thrombosis via FXII activation but also leads to platelet
activation and consumptive coagulopathy (119). Moreover,
polyP serves as phosphoryl donor for adenylate kinase in the
extracellular space (120). Thus, polyP may regulate ADP/ATP
ratio and signaling via purinergic receptors in immune cells.
An overview of the complex network by which polyP impacts
on cellular mechanisms in different cell types to facilitate
coagulation and inflammation is depicted in Figure 2.

INTERFERENCE WITH
POLYPHOSPHATE FUNCTIONS

Intracellular polyP levels have been modulated in S.
cerevisiae through phosphate starvation and abrogation of
the mitochondrial membrane potential by uncouplers (27),
indicating that intracellular polyP broadly influences cell
metabolism. Moreover, Ppx1-mediated degradation of polyP
regulates mitochondrial Ca2+ ion efflux (30).

Mammalian enzymes that control formation and degradation
of polyP have remained unknown. To interfere with polyP/FXIIa-
driven inflammation plasma derived C1INH (BerinertTM) and
B2R antagonist (IcatibantTM) dampen bradykinin formation
and signaling and have been used for treatment of excessive
bradykinin-mediated swellings in HAE patients (121, 122).
Neutralizing FXIIa antibody 3F7 prevents thromboembolism and
bradykinin generation with minimal therapy-associated adverse
effects such as increased bleeding (123). Interference with the
extracellular polyP/FXII pathway is a promising strategy to
dampen coagulation and inflammation [reviewed in (124)]. To

directly target extracellular polyP, neutralization and degradation
approaches have been tested. Structural homology of polyP
and heparin suggests that the polycation protamine sulfat,
the heparin antidote, can also neutralize polyP. Indeed, polyP
inhibitor screening identified various polycation substrates, such
as spermidine, histone H1, polymyxin B and cationic polymers as
possible agents for interference with polyP-mediated coagulation
and inflammation (125). Moreover, the recombinant polyP-
binding domains of E. coli ppx (PPX_112) bind to polyP
with high affinity and block polyP-mediated FXII activation.
Similarly, degradation of polyP with recombinant ppx inhibits
arterial and venous thrombus formation without interfering with
hemostasis, indicating that polyP operates via FXII in in vivo
coagulation (126).

Interference with polyP developed evolutionary in blood-
sucking insects. Sand flies express salivary proteins that enable
the insects to feed on mammalian blood without triggering BK-
mediated itching or FXIIa-mediated clotting. These proteins,
termed PdSP15a and PdSP15b, provide a positively charged
helix that efficiently binds to and neutralizes polyP (127). Taken
together, polyP inhibition has been shown to block thrombosis
and inflammation and provides an opportunity for efficient and
safe future treatment.

OUTLOOK

Recent advantages to visualize, measure and detect polyP
and to modulate polyP metabolism offers the possibility to
analyze cell-specific roles for polyP (11, 28, 126, 128). Open
research questions include regulation of polyP in mammalians
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and eukaryotic cells, and possibilities to target polyP-mediated
activities in therapeutic settings.
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