
Niu et al. Exp Hematol Oncol           (2021) 10:18  
https://doi.org/10.1186/s40164-021-00211-8

REVIEW

Predictive biomarkers of anti‑PD‑1/PD‑L1 
therapy in NSCLC
Mengke Niu1,2†, Ming Yi2†, Ning Li1, Suxia Luo1*   and Kongming Wu1,2*

Abstract 

Immunotherapy, especially anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) 
treatment has significantly improved the survival of non-small cell lung cancer (NSCLC) patients. However, the overall 
response rate remains unsatisfactory. Many factors affect the outcome of anti-PD-1/PD-L1 treatment, such as PD-L1 
expression level, tumor-infiltrating lymphocytes (TILs), tumor mutation burden (TMB), neoantigens, and driver gene 
mutations. Further exploration of biomarkers would be favorable for the best selection of patients and precisely 
predict the efficacy of anti-PD-1/PD-L1 treatment. In this review, we summarized the latest advances in this field, and 
discussed the potential applications of these laboratory findings in the clinic.
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Background
Lung cancer has a high incidence rate worldwide and is 
the main cause of cancer deaths [1]. The 5-year survival 
rate varies in different regions [2]. Non-small cell lung 
cancer (NSCLC) accounts for approximately 80–85% of 
all lung cancers [3, 4]. Recently, the anti-programmed cell 
death protein 1/programmed cell death ligand 1 (PD-1/
PD-L1) treatment has substantially changed the treat-
ment patterns of NSCLC. The anti-PD-1/PD-L1 treat-
ment with or without platinum-based chemotherapy has 
become the first-line strategy for NSCLC without driver 
gene mutations [5].

The immune system can specifically recognize the 
expression of tumor-specific antigens and eliminate 
tumor cells [6]. Alterations in effector cell signal trans-
duction molecule (T cell receptor/CD3), the levels of 
tumor antigens, the maturation of antigen-presenting 
cells (APC), tumor-derived soluble factors such as vas-
cular endothelial growth factor (VEGF), transforming 

growth factor-β (TGF-β), and IL-10 propel tumor 
immune escape [7–11]. PD-1 and PD-L1 are type I trans-
membrane proteins[12]. The interaction of PD-1 and 
PD-L1 leads to the phosphorylation of the cytoplasmic 
immunoreceptor tyrosine-based inhibitory motif (ITIM) 
and the immunoreceptor tyrosine-based switch motif 
(ITSM) and recruits Src homology 2 domain contain-
ing phosphatases 1/2 (SHP1/2) [13]. The recruitment of 
SHP1/2 inhibits the activation of T cells [14]. SHP1/2 and 
their downstream inhibitory signaling pathways suppress 
the activation of phosphatidylinositol 3-kinase (PI3K)/
protein kinase B (AKT) and mitogen-activated protein 
kinase (MAPK) [15, 16].

The anti-PD-1/PD-L1 treatment blocks the interac-
tion of PD-1 and its ligands, interferes with inhibitory 
signal transduction, restores the vitality of T cells, and 
thereby restarts the anti-tumor immune effect [17, 18]. 
NSCLC has high level of heterogeneity. The heterogene-
ity of molecular immune subtypes and immune micro-
environment results in the differences in the efficacy of 
PD-1/PD-L1 inhibitors [19]. The low response rate to 
PD-1/PD-L1 inhibitors hinders the clinical application 
[20]. Therefore, it is urgent to find reliable biomarkers 
to effectively predict the efficacy of PD-1/PD-L1 inhibi-
tors. In this review, we summarized the latest advances in 
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the predictive biomarkers of anti-PD-1/PD-L1 therapy in 
NSCLC.

Tumor feature related biomarkers
PD‑L1 expression level
A known mechanism for PD-1/PD-L1 to promote tumor 
immune escape is adaptive immune resistance [21]. Mul-
tiple clinical trials have been performed to evaluate the 
relationship between the expression of PD-L1 on tumor 
cells and the response rate to PD-1/PD-L1 inhibitors 
(Fig.  1). The high level of PD-L1 expression heralds the 
potential benefit of anti-PD-1/PD-L1 treatment [22, 23]. 
In the phase I KEYNOTE-001 study, among patients who 
had previously treated with anti-PD-1 therapy, patients 
with PD-L1 tumor proportion score (TPS) ≥ 50% had 
a median overall survival (OS) of 15.4  months (95% CI: 
10.6–18.8 months) (Table 1) and the 5-year OS rate was 
25.0%; while in the PD-L1 TPS 1%-49% group and PD-L1 
TPS ≤ 1% group, the median OS were 8.5  months (95% 
CI: 6.0–12.6  months) and 8.6  months (95% CI: 5.5–
10.6  months), and the 5-year OS rates were 12.6% and 
3.5%, respectively [22]. In the multicenter, single-arm, 
open-label phase II clinical trial (PePS2), the incidence 

of durable clinical benefit (DCB) in the PD-L1 TPS ≥ 50% 
group was 53% (95% CI: 30–75%) (Table  1), while the 
PD-L1 TPS 1–49% group and PD-L1 TPS ≤ 1% group 
were 47% (95% CI: 25–70%) and 22% (95% CI: 11–41%) 
[23]. In KEYNOTE-024 study, pembrolizumab treatment 
lengthened the survival time of NSCLC patients with 
PD-L1 TPS ≥ 50%, relative to platinum-based chemo-
therapy (HR = 0.63, 95% CI: 0.47–0.86, p = 0.002) [24] 
(Table  1). However, only evaluating PD-L1 level can’t 
accurately select patients. Other studies showed that 
regardless of the level of PD-L1 expression, renal cell 
cancer (RCC) or NSCLC patients with anti-PD-1/PD-L1 
treatment had survival benefits [25, 26]. The outcome of 
PD-1/PD-L1 blockade therapy was also determined by 
other characteristics including the immune status, the 
activity of the tumor-infiltrating T cells and the sensitiv-
ity of cancer cells to T cells [27]. Therefore, clinical deci-
sions should be made carefully based on the results of 
PD-L1 expression.

Tumor mutation burden (TMB)
Whole-exome sequencing (WES) and sequencing 
of cancer gene panels (CGPs) are used to measure 

Fig. 1  Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC. First, increased PD-L1 level is an indicator of the pre-existed anti-tumor 
immune response which is positively correlated to response rate to anti-PD-1/PD-L1 treatment. Second, TIL is the effectors of anti-tumor immune 
response, which could be boosted by PD-1/PD-L1 inhibitors. Besides, TMB and neoantigens determine cancer immunogenicity which is the 
basis of anti-tumor response. In addition, multiple other factors such as suppressive immune cells, driver gene mutations, gut microbiota, tumor 
metabolites such as IDO1 also participate in anti-tumor immunity and affect the efficacy of anti-PD-1/PD-L1 therapies
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deoxyribonucleic acid (DNA) mutations in tumor tis-
sue [28]. The tumor tissue TMB (tTMB) is positively 
correlated with tumor neoantigen load (Fig.  1) [29]. 
Multiple retrospective studies showed that tTMB was 
closely associated with the efficacy of PD-1/PD-L1 
inhibitors and patient’s prognosis. In KEYNOTE-158, 
for patients treated with pembrolizumab, the tTMB-
High group had a higher objective response rate than 
the non-tTMB-High group (29 vs. 6%) (Table 1) [30]. In 
CHECKMATE-026, patients with high tTMB receiving 
nivolumab treatment had a longer progression-free sur-
vival (PFS) (9.7 vs. 5.8 months; HR = 0.62, 95% CI: 0.38–
1.00) (Table  1) and higher response rate (47 vs. 28%) 
than patients receiving chemotherapy [31]. Similarly, the 
results of CHECKMATE-227 showed that in patients 
with high tTMB, nivolumab plus ipilimumab group had a 
longer PFS than chemotherapy group (7.2 vs. 5.5 months; 
HR = 0.58, 97.5% CI: 0.41–0.81, p < 0.001) [32] (Table 1).

Blood TMB (bTMB) is discovered as a new and less 
invasive alternative, which is measured by detecting 
plasma cell-free DNA (Fig.  1) [28]. bTMB is positively 
correlated to tTMB [28]. Compared with bTMB < 6 sub-
group, the bTMB ≥ 6 subgroup had higher objective 
response rate (39.3 vs. 9.1%) and longer PFS (HR = 0.39, 
95% CI: 0.18–0.84, p = 0.01) (Table  1) [28]. However, 
the relationship between bTMB and patient’s survival 
showed a non-linear correlation [33]. For patients treated 
with PD-L1 inhibitors, the bTMB-High (≥ 14 mutations/
Mb) and bTMB-Low (≤ 7 mutations/Mb) subgroups 
had longer PFS and OS than bTMB-Medium (8–13 
mutations/Mb) subgroup [33]. The positive correlation 
between baseline circulating tumor DNA (ctDNA) and 
bTMB score explained the better prognosis of the bTMB-
low patients [33]. In addition, compared with patients of 
bTMB-Medium, bTMB-low patients had longer response 
duration and higher stable disease rate [33]. In general, 
hypermutation promoted the production of tumor neo-
antigens, enhanced tumor immunogenicity and improved 
the response rate to PD-L1 inhibitors [34].

Neoantigens
Neoantigens are derived from somatic mutation [35], 
which bind to major histocompatibility class I (MHCI) 
and are expressed on the surface of cancer cells. Neo-
antigens endow the tumor with high immunogenicity 
and induce anti-tumor immune response (Fig.  1) [36]. 
Neoantigens are released by tumor cells and captured 
by professional APC, and then the effector T cells tar-
geting cancer specific antigens are activated [37]. Acti-
vated T cells migrate and infiltrate into tumor bed, 
specifically recognize the antigens on tumor cells and kill 
cancer cells [37]. The tumor clones with potent immu-
nogenicity are eliminated, and the cancer cells with 

weak immunogenicity escape immune surveillance [38]. 
Many studies proved that anti-PD-1/PD-L1 therapy com-
bined with radiotherapy or oncolytic virus increased the 
release of neoantigens and amplified the specific immune 
response [39–41]. Compared with no durable clinical 
benefit (NDB) patients, DCB patients had higher bur-
den of candidate neoantigens. High candidate neoan-
tigen burden was associated with improvement in PFS 
(HR = 0.23, 95%CI: 0.09–0.58, p = 0.002) [42] (Table  1). 
The efficacy of immunotherapy was not only related to 
the quantity of neoantigens, but also related to the quality 
of neoantigens [43]. High-quality neoantigens especially 
clonal neoantigens, could bind to multiple HLA alleles 
[43]. The clonal neoantigens promoted the activation 
and infiltration of neoantigen reactive T cells express-
ing high level of PD-1, and tumors enriched clonal neo-
antigens were more sensitive to PD-1 blockers [34]. The 
incidence rate of DCB in patients with high mutation 
burden and low neoantigen subclonal fraction was higher 
than patients with high subclonal neoantigen fraction or 
low clonal neoantigen burden (92 vs. 11%) [34] (Table 1). 
Immune elimination of neoantigen-containing tumor cell 
subpopulations and genetic events such as chromosomal 
deletions or loss of heterozygosity in tumor cells lead to 
the loss of neoantigens, which contribute to the emer-
gence of acquired resistance to anti-PD-1/PD-L1 treat-
ment [44].

Driver gene mutations
Next-generation sequencing (NGS) is widely used 
for tumor genome analysis [45]. The gene alterations 
detected by targeting NGS may herald the response rate 
to PD-1/PD-L1 inhibitors (Fig.  1) [45]. Kirsten rat sar-
coma 2 viral oncogene homolog (KRAS) mutation status 
was positively correlated with PD-L1 expression [46]. In 
addition, KRAS mutant-type tumors had more TILs and 
higher TMB, which presented the inflammatory phe-
notype of adaptive immune resistance and increased 
immunogenicity [46]. Compared with KRAS wild sub-
group, KRAS mutated subgroup had a higher objec-
tive response rate (odds ratio = 1.51, 95% CI: 1.17–1.96, 
p = 0.002) (Table 1) [46]. TP53-mutated tumors had high 
PD-L1 expression and CD8+ T cell density [47]. Patients 
with TP53 mutations and no serine/threonine kinase 11 
(STK11) or epidermal growth factor receptor (EGFR) 
co-mutations had higher response rate and longer PFS 
to anti-PD-1 therapy (HR = 0.32, 95%CI: 0.16–0.63, 
p < 0.001). Pathways related to immune cell cytotoxicity, 
T cell chemotaxis, antigen processing were upregulated 
in this tumor subtype [47]. EGFR with exon 19 dele-
tion, L858R mutation and T790M mutation upregulated 
the expression of PD-L1, which attenuated cytotoxicity 
of lymphocytes and induced T-cell exhaustion through 
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PD-1/PD-L1 axis [48–50]. Among patients who treated 
with anti-PD-1 therapy, patients with EGFR mutations 
had worse prognosis (median PFS: 5.3  months, 95% 
CI: 1.3–12.4  months) [51]. The anaplastic lymphoma 
kinase (ALK)-rearranged upregulated PD-L1 expres-
sion and promoted tumor immune escape [52]. How-
ever, ALK-mutated patients who treated with anti-PD-1 
therapy presented worse PFS than patients with EGFR 
mutations (ALK: 0.6 (95% CI: 0.2–2.1) months, EGFR: 
1.8 (95% CI: 1.2–2.1) months), suggesting that PD-L1 
expression was not a reliable biomarker for immuno-
therapy for patients with ALK rearrangement [53]. The 
mesenchymal epithelial transition (MET) exon 14 skip-
ping alterations occur in 3%-4% of lung cancers [54]. A 
large proportion of lung cancer cells with MET exon 14 
alterations expressed PD-L1 [55]. Lung cancer patients 
with MET exon 14 mutations responded modestly to 
single-agent or combination immune checkpoint inhibi-
tors (objective response rate: 17%, 95% CI: 6%-36%) [55], 
and didn’t seem to benefit from immunotherapy [56]. 
Kelch-like ECH-associated protein 1 (KEAP1) somatic 
mutations promoted tumorigenesis and reduced thera-
peutic sensitivity by activating the KEAP1/nuclear factor 
erythroid-2-related factor-2 (NFE2L2) stress response 
pathway [57–60]. NFE2L2/KEAP1 mutations were 
associated with high TMB and PD-L1 expression, and 
the efficacy of immunotherapy was better in patients 
with NFE2L2/KEAP1 mutations than other treatments 
(median OS: 22.52 months vs. 12.89 months, p = 0.0034) 
[61]. The mutation status of other rare driver genes such 
as ROS1, HER2, RET may also affect the response to 
PD-1/PD-L1 inhibitors [62, 63].

Inflammation related genes
Some expression signatures reflect the inflammatory 
state of tumors, such as genes related to T cell activa-
tion, chemokine expression, and adaptive immune resist-
ance (Fig. 1) [64, 65]. Patients with significantly elevated 
inflammatory profile scores tended to be sensitive to 
PD-1/PD-L1 inhibitors. Compared with non-respond-
ers, responders had significantly higher inflammation 
signature scores [65]. In addition, inflammation scores 
was correlated with epithelial-mesenchymal transition 
(EMT) scores. Thompson’s study showed that the com-
bination of EMT phenotypic feature scores and inflam-
mation gene scores increased the accuracy of prediction 
[65]. Therefore, it is predicted that reversal of EMT may 
improve the resistance to anti-PD-1/PD-L1 therapy [65]. 
Further study found that in the same NSCLC cohort, the 
eight genes associated with antigen processing machinery 
(APM) scores could more effectively predict the efficacy 
than inflammation scores [66]. Also, our previous study 
indicated that some immune response-related signatures 

related to the efficacy of immune checkpoint inhibitor in 
lung adenocarcinoma [4].

microRNA(miRNA)
MiRNA modifies the expression of target genes by regu-
lating protein translation [67]. miRNA dysregulation is 
closely associated with carcinogenesis and can promote 
or suppress cancer by targeting a group of genes (Fig. 1) 
[68]. In addition, miRNA regulates anti-tumor immu-
nity. Some miRNAs interfere with antigen processing 
and presentation, upregulate human leukocyte antigen 
(HLA)-G expression and downregulate natural killer 
group 2, member D (NKG2D) ligand to form immune 
escape [69]. Circular RNA circ-CPA4 upregulated 
PD-L1 expression in NSCLC cells by downregulating 
let-7 miRNA [70]. 10-high expressed miRNAs (miR-93, 
miR-138-5p, miR-200, miR-27a, miR-424, miR-34a, miR-
28, miR-106b, miR-193a-3p, miR-181a) were found in 
responders treated with anti-PD-1 treatment, and asso-
ciated with significantly improved PFS and OS (median 
PFS: 6.25  months vs. 3.21  months, HR = 0.45, 95% CI: 
0.25–0.76; median OS: 7.65  months vs. 3.2  months, 
HR = 0.39, 95% CI: 0.15–0.68) (Table 1) [71].

Tumor microenvironment related biomarkers
Tumor‑infiltrating lymphocyte (TIL)
Previous reports shown that PD-L1 expression was sig-
nificantly associated with intratumoral T cells infiltra-
tion in NSCLC [72]. The transcription factor thymocyte 
selection-associated high mobility group box gene (TOX) 
in tumor-infiltrating CD8+ T cells promotes T cell 
exhaustion by upregulating the expression of immune 
checkpoint proteins PD-1, T cell immunoglobulin and 
mucin-domain containing-3 (TIM-3) [73], T cell immu-
noglobulin and ITIM domain (TIGIT) [74], and cytotoxic 
T lymphocyte antigen 4 (CTLA-4), thereby attenuates 
the outcome of anti-PD-1 therapy (Fig.  1) [75]. Based 
on PD-L1/TIL status, NSCLC tumor immune micro-
environments were divided into type I (PD-L1+, TIL+), 
type II (PD-L1−, TIL−), type III (PD-L1+, TIL−) and 
type IV (PD-L1−, TIL+) [76]. The difference in clinical 
factors related to different tumor immune microenvi-
ronment types determines the patient selection for com-
bination immunotherapies [76]. Type I tumors benefit 
greatly from anti-PD-1/PD-L1 therapy. However, Type 
III tumors are resistant to anti-PD-1/PD-L1 monother-
apy, which could be reversed by the combining adju-
vant therapy to recruit T cells into tumor bed [77]. The 
proportion of CD8+ cells among the overall population 
of CD3+ TILs has a close relationship with anti-PD-1/
PD-L1 treatment outcomes. It has been shown that High 
CD8-to-CD3 ratio was positively correlated with disease-
free survival (DFS) and OS (DFS: HR = 0.954, 95%CI: 
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0.965–0.983, p = 0.002; OS: HR = 0.965, 95%CI: 0.931–
1.001, p = 0.057) (Table  1) [78]. The early proliferation 
of CD8+ T cells after anti-PD-1 therapy heralded a good 
clinical response to anti-PD-1 therapy [79]. T cell recep-
tor (TCR) is expressed on the surface of T cells and com-
posed of α chains and β chains, which form diversity and 
specificity through somatic DNA rearrangement [80]. 
TCR binds to MHC/antigen short peptide complex and 
triggers immune response (Fig. 1) [81]. The TCR β chain 
complementarity determining region 3 of PD-1+ CD8+ 
T cells was sequenced by multiplex PCR. The diversity 
of TCR before anti-PD-1/PD-L1 treatment heralded a 
better survival outcome (6.4 vs. 2.5  months, HR = 0.39, 
95% CI: 0.17–0.94, p = 0.021), and the clonality of TCR 
after treatment also heralded clinical benefit (7.3 vs. 
2.6 months, HR = 0.26, 95% CI: 0.08–0.86, p = 0.002) [82].

Consolidation therapy with durvalumab after concur-
rent chemo-radiotherapy (cCRT) could significantly 
improve the overall survival and median progression-
free survival of patients as compared with placebo group 
[83]. Radiotherapy stimulated anti-tumor immunity by 
promoting the release of tumor neoantigens and driving 
the immune attack of CD8 + TILs [84]. Post-cCRT PD-L1 
upregulation might be in response to radiotherapy-
related immune attack, which provided theoretical basis 
for the application of PD-L1 blockers following cCRT 
[85]. In addition, increased CD8 + TIL density after cCRT 
was associated with favorable survival [85].

Suppressive immune cell
Tumor-infiltrating regulatory T lymphocytes (Tregs) 
express PD-L1, PD-L2 on the surface, which highly 
inhibit the activity of tumor-specific effector T cells 
[86]. Indoleamine 2,3-dioxygenase 1 (IDO1) induces T 
cells immune suppression and Treg hyperactivation by 
l-tryptophan (Trp) depletion and kynurenine (Kyn) accu-
mulation in the tumor microenvironment (Fig.  1) [87]. 
Serum kyn/trp ratio may reflect the anti-PD-1 immune 
resistance mechanism [88]. Myeloid-derived suppres-
sor cells (MDSCs) mainly play an immunosuppressive 
role in the tumor microenvironment [89]. Some inflam-
matory factors such as TGF-β, IFN-γ, and IL-6 drive the 
activation of MDSCs [90]. Chemokines such as C–C 
motif chemokine ligand 2 (CCL2) [91] and C-X-C motif 
chemokine ligand 12 (CXCL12) [92] recruit MDSCs 
to tumor sites. MDSCs inhibit the immune response of 
tumor-specific T cells by upregulated PD-L1 expression 
(Fig. 1) [93].

Extracellular vesicles (EVs)
EVs are a collection of membrane-bound carriers, which 
carry lipids, proteins, and nucleic acids [94]. Budding 
inward through endosomal pathways to form exosomes 

and sprouting out of the plasma membrane to form 
microvesicles [95]. EVs bind to target cells and initiate 
signal transduction through receptor-ligand interactions 
or internalize through endocytosis [96]. EVs mediate 
cancer cell sensitivity to chemotherapy and radiotherapy, 
and are promising strategy in liquid biopsy for cancer 
diagnosis and predictive markers [97, 98]. The exchange 
of EVs between immune cells affects innate immunity 
and adaptive immunity [99]. Local dendritic cells (DCs) 
secreted-EVs could induce T cell activation [95]. EVs are 
key components in the microenvironment that bridge 
the communication between tumor cells and stromal 
cells [100]. By extracting EVs miRNAs from advanced 
NSCLC patients receiving anti-PD-1/PD-L1 therapy for 
sequencing analysis, a remarkable difference in the con-
centration of specific miRNAs between responders and 
non-responders was found [101]. As a non-invasive liq-
uid biopsy, early detection of tumor-derived EVs may 
help to predict the efficacy of anti-PD-1/PD-L1 therapy 
[102–104].

Biomarkers in peripheral blood
Circulating cancer‑associated macrophage‑like cells 
(CAMLs)
Tumor associated macrophage (TAM) promotes the 
invasion characteristics of malignant cells by secret-
ing growth factors and cytokines such as VEGF, MMP, 
TNF-α [105]. TAM and circulating tumor cells (CTC) 
migrate to the blood circulation through lymphatic or 
capillary barrier, which enhance tumor invasion and 
distant metastasis [106]. As a diffuse TAM (Fig.  1), the 
isolation of CAMLs from peripheral blood of various 
cancer patients may be evidence of tumor metastasis 
and neovascularization [107]. CAMLs were quantified 
by the CellSieve system using multiplex immunostain-
ing [108]. CAMLs ≥ 50 μm was defined as giant CAMLs. 
The size of CAMLs after completion of CRT was related 
to disease progression and patient’s survival [109]. The 
presence of giant CAMLs before anti-PD-L1 mainte-
nance therapy indicated a poor prognosis (median PFS: 
8  months, HR = 2.5, 95% CI: 1.1–5.8, p = 0.025; median 
OS: 25  months, HR = 3.5, 95% CI: 1.3–9.6, p = 0.034) 
(Table  1). The tumor-stimulating effect of CAMLs may 
limit the efficacy of anti- PD-L1 therapy [109].

PD‑L1+ aneuploid circulating tumor endothelial cells 
(CTECs)
The aneuploidy of chromosome influences gene expres-
sion and determines tumor heterogeneity, which is 
closely related to the evolution of tumor [110–112]. 
CTECs, aneuploid CD31+ circulating tumor endothelial 
cells [113], are derived from aneuploid CD31+ tumor 
endothelial cells in tumor tissue and promote tumor 
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angiogenesis [114, 115]. The PD-L1+ CTECs had mor-
phological and karyotype changes after immunotherapy 
[116]. Anti-PD-1 could effectively eliminate haploid 
small CTECs, while relatively increase polyploid large 
PD-L1+ CTECs [116]. Patients with PD-L1+ CTECs sub-
type were resistant to anti-PD-1 treatment. The median 
PFS of patients with PD-L1+ CTECs was 5 months (95% 
CI: 3.9–6.1  months) (Table  1), which was shorter than 
that of patients without PD-L1+ CTECs (8 months, 95% 
CI: 4.9–11  months). It was speculated that the interac-
tion of PD-L1 on CTECs with PD-1 on T cells inhibited 
the tumor-specific immune attack of CD8+ T cells and 
affected the efficacy of immunotherapy (Fig. 1) [116].

Other peripheral blood cells
Among many indicators that reflect inflammation, the 
high neutrophil to lymphocyte ratio (NLR) heralded a 
poor prognosis in many malignant tumors [117, 118]. 
Multiple studies found that NSCLC patients with high 
NLR had low response rate to immune checkpoint 
inhibitors (ICIs) [119, 120]. A meta-analysis showed that 
patients with high NLR before ICIs therapy had poor 
prognosis (PFS: HR = 1.44, 95%CI: 1.26–1.65, p < 0.001; 
OS: HR = 2.86, 95%CI: 2.11–3.87, p < 0.001) (Table  1) 
[119]. Similarly, another retrospective study also veri-
fied the predictive value of NLR for anti-PD-1 treatment 
[120]. Lactate dehydrogenase (LDH) is an indicator of 
cancer-related inflammation [121]. According to the val-
ues of LDH and NLR, lung cancer patients were divided 
into 3 groups (good, 0 factors; intermediate, 1 factor; 
poor, 2 factors). Compared with the good group, the 
intermediate group and poor group were more easily 
resist to anti-PD-1/PD-L1 treatment [121]. In addition, 
NLR and LDH might be useful indicators for predict-
ing irAEs [122]. Neutrophils were highly correlated with 
myeloid phenotype, which promoted lymphocyte deple-
tion [123]. Tumor-infiltrating CD8+ T cells to neutrophils 
(CD8/PMN) ratio could distinguish responders treated 
with anti-PD-1 therapy [123]. Combining neutrophil 
antagonists improved immunotherapy outcomes [123]. 
Besides, the amount and activity of NK cells in respond-
ers were highly elevated [124].

Gut microbiota
Gut microbiota has a symbiotic relationship with the 
host [125]. In addition to playing a barrier role in the 
gastrointestinal tract, microorganisms are related to the 
immune function of the plora [126]. Immune cells are 
activated through cross-reactivity between microbial 
proteins and tumor antigens [127]. DCs induce acti-
vated T cells outside the intestine, recognize tumor anti-
gens and exert anti-tumor effect [127]. In addition, the 
microbial proteins translocate from the intestine to the 

blood circulation, trigger initial immunity in secondary 
lymphoid organs and induce the activation of T cells. T 
cells migrate to the tumor site and participate in immune 
surveillance (Fig.  1) [127]. The composition of microor-
ganisms may affect the efficacy of PD-1 inhibitors [128]. 
A study showed that the fecal Akkermansia muciniphila 
could be detected in 69% (11/16) and 58% (23/40) of 
patients exhibiting partial response or stable disease, 
whereas it was detectable in 34% (15/44) of patients who 
progressed or died [129]. Gut microbiota profiles of fecal 
specimens could be assessed by 16S ribosome RNA gene 
sequencing. Alipis putredinis, Prevotella copri and Bifi-
dobacterium longum were enriched in the responders, 
and Ruminococcus_unclassified was enriched in non-
responders. Patients with higher microbiota diversity 
had significantly longer PFS (HR = 4.2, 95%CI: 1.42–12.3, 
p = 0.009) (Table 1) [130]. The microbiota associated with 
clinical benefit varies in different studies, which implied 
that the difference between diet, host genetics, lifestyle 
factors, and human species may contribute to the diver-
sity of gut microbiome and further affect the efficacy of 
ICIs [131, 132].

The application of cumulative antibiotics (ATB) could 
reduce the diversity of gut microbiota and disrupt the 
microbial balance [133, 134], which significantly weak-
ened the efficacy of PD-L1 inhibitors and affected sur-
vival outcomes (median PFS: 1.9  months, HR = 1.5, 
95%CI: 1.0–2.2, p = 0.03; median OS: 7.9  months, 
HR = 4.4, 95%CI: 2.6–7.7, p < 0.01) [135]. A study indi-
cated that proton pump inhibitor (PPI) affected the diver-
sity of gut microbiota through gastric acid [136]. The data 
of the phase II POPLAR and phase III OAK trial showed 
that in the population of anti-PD-L1 therapy, patients 
treated with ATB or PPI had shorter OS (HR = 1.20, 
95%CI: 1.04–1.39) (Table  1), and the application of PPI 
was significantly related to shorter PFS (HR = 1.26, 
95%CI: 1.10–1.44) [137]. As a promising treatment 
method, fecal microbiome transplantation (FMT) could 
improve the diversity of gut microbiota and the efficacy 
of immunotherapy [138, 139].

Patient’s clinical characteristics
Factors such as genes, hormones contribute to the differ-
ences in immune response between males and females 
[140]. The differences may affect the efficacy of immuno-
therapy for male and female malignant tumors [140]. In 
a meta-analysis, by comparing the effects of anti-PD-1/
PD-L1 plus chemotherapy and chemotherapy alone in 
men and women, it was found that the pooled OS-HRs 
were 0.76 (95% CI: 0.66–0.87) for men and 0.48 (95% 
CI: 0.35–0.67) for women [141]. Another meta-analysis 
showed that the pooled OS-HRs were 0.78 (95% CI: 0.60–
1.00) in men and 0.97 (95% CI: 0.79–1.19) in women for 
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anti-PD-1 alone, compared with 0.76 (95% CI: 0.64–0.91) 
in men and 0.44 (95% CI: 0.25–0.76) in women for anti-
PD-1/PD-L1 plus chemotherapy [141] (Table  1). This 
implied that anti-PD-1 monotherapy may have a greater 
impact on men, and women may obtain greater survival 
benefits from the combination of anti-PD-1/PD-L1 and 
chemotherapy [141]. Nearly 80% of lung cancers are 
related to smoking. Exploratory analysis showed that 
among patients treated with anti-PD-1 treatment, cur-
rent and former smokers had significantly higher over-
all response rate than non-smokers (36 vs. 26 vs. 14%) 
(Table 1) [142]. In addition, the increase of smoking years 
was associated with positive anti-PD-1 therapy response 
[143]. The patras immunotherapy score (PIOS) including 
the patient’s performance status (PS), body mass index 
(BMI), lines of treatment (LOT) and age was calculated 
through the formula (PS × BMI/LOT × age). Patients 
with high PIOS score had the best response to anti-
PD-1 treatment (median PFS: 15  months vs. 5  months, 
HR = 0.469, 95% CI: 0.295–0.747; median OS: 32 months 
vs. 14  months, HR = 0.539, 95% CI: 0.317–0.918) 
(Table 1) [144].

Conclusion
Anti-PD-1/PD-L1 treatment is a promising treatment 
strategy for NSCLC. However, there are still numerous 
patients who are difficult to benefit from anti-PD-1/
PD-L1 treatment. Various biomarkers for predicting 
efficacy are being explored. In the present stage, PD-L1 
expression is the most widely adopted biomarker in 
clinical practice. TMB, TIL and neoantigen are signifi-
cantly correlated with the efficacy of anti-PD-1/PD-L1 
therapy. Gut microbiota, inflammatory genes, and dys-
regulated miRNA play an important role in anti-tumor 
immune regulation. Combining of multiple biomarkers 
may increase the predictive robustness and guide the 
implementation of cancer precision medicine.
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