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Differential metabolic activity and discovery of therapeutic
targets using summarized metabolic pathway models
Cankut Çubuk 1, Marta R. Hidalgo2, Alicia Amadoz3, Kinza Rian1, Francisco Salavert4, Miguel A. Pujana5, Francesca Mateo5,
Carmen Herranz5, Jose Carbonell-Caballero6 and Joaquín Dopazo 1,4,7

In spite of the increasing availability of genomic and transcriptomic data, there is still a gap between the detection of perturbations
in gene expression and the understanding of their contribution to the molecular mechanisms that ultimately account for the
phenotype studied. Alterations in the metabolism are behind the initiation and progression of many diseases, including cancer. The
wealth of available knowledge on metabolic processes can therefore be used to derive mechanistic models that link gene
expression perturbations to changes in metabolic activity that provide relevant clues on molecular mechanisms of disease and drug
modes of action (MoA). In particular, pathway modules, which recapitulate the main aspects of metabolism, are especially suitable
for this type of modeling. We present Metabolizer, a web-based application that offers an intuitive, easy-to-use interactive interface
to analyze differences in pathway metabolic module activities that can also be used for class prediction and in silico prediction of
knock-out (KO) effects. Moreover, Metabolizer can automatically predict the optimal KO intervention for restoring a diseased
phenotype. We provide different types of validations of some of the predictions made by Metabolizer. Metabolizer is a web tool
that allows understanding molecular mechanisms of disease or the MoA of drugs within the context of the metabolism by using
gene expression measurements. In addition, this tool automatically suggests potential therapeutic targets for individualized
therapeutic interventions.
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INTRODUCTION
Because of their multigenic nature, cancer and other complex
diseases are often better understood as failures of functional
modules caused by different combinations of perturbed gene
activities rather than by the failure of a unique gene.1 In fact, an
increasing corpus of recent evidences suggest that the activity of
well-defined functional modules, like pathways, provide better
prediction of complex phenotypes, such as patient survival,2,3

drug effect,4 etc., than the activity of their constituent genes. In
particular, the importance of metabolism in cancer5 and other
diseases6 makes of metabolic pathways an essential asset to
understand disease mechanisms and drug MoA and search for
new therapeutic targets.
Gene expression changes have been used to understand

pathway activity in different manners. Initially, conventional gene
enrichment7 and gene set enrichment analysis (GSEA)8 were used
to detect pathway activity from changes in gene expression
profiles.9 However, these methods provided an excessively
simplistic view on the activity of complex functional modules
that ignored the intricate network of relationships among their
components. Other methods took advantage of network struc-
tures to gain understanding in mechanisms of action10 using
massive transcriptomic data on massive cell perturbation reposi-
tories.11 Newer versions of enrichment methods, specifically

designed for signaling pathways, took into account the connec-
tions between genes.12 Nevertheless, such approaches still
produced a unique value for pathways that are multifunctional
entities and did not take into account important aspects such as
the integrity of the chain of events that triggers the cell functions.
More recently, mechanistic models focuses into the elementary
components of the pathways associated to functional responses
of the cell,3,13 providing in this way a more accurate picture of the
cell activity.14 Specifically, in the context of metabolic pathways,
constraint based models (CBM) have been applied to find
relationship between different aspects of the metabolism and
the phenotype.15 CBM using transcriptomic gene expression data
allowed the analysis of human metabolism in different scenarios
at an unprecedented level of complexity.16,17 However, as many
mathematical models, CBM present some problems, such as their
dependence on initial conditions or the arbitrariness of some
assumptions, along with difficulties of convergence to unique
solutions.15,18 Moreover, with limited exceptions,19 most of the
software that implement CBM models only run in commercial
platforms, such as MatLab and working with them require of skills
beyond the experience of experimental researchers.
In spite of the complexity of metabolism, metabolic modules

have been defined to provide a comprehensive curated summary
of the main aspects of metabolic activity and account for the
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production of the main classes of metabolites (nucleotides,
carbohydrates, lipids, and amino acids).20 Here we present a
simple model that accounts for the activity of metabolic
modules20 taking into account the complex relationships among
their components and the integrity of the chain of biochemical
reactions that must occur to guarantee the transformation of
simple to complex metabolites. The likelihood of such reactions to
occur is inferred from gene expression values within the context
of metabolic modules. The model has been used in a pan-cancer
study that has demonstrated high precision in detecting cancer
vulnerabilities.21 In order to make these models accessible and
easily usable to the biomedical community, we have developed
Metabolizer, an interactive and intuitive web tool for the
interpretation of the consequences that changes in gene
expression levels within metabolic modules can have over cell
metabolite production.

IMPLEMENTATION
Inferring the metabolic activity of a KEGG module
Pathway Modules20 are used to depict the complex interactions
among proteins carrying out the reactions that account for the
main metabolic transformations in the cell. Here, a total of 95
modules were used, that comprise a total of 446 reactions and 553
genes (Additional Table 1). The pathway modules were down-
loaded through REST-style KEGG API from the KEGG MODULE
(http://www.genome.jp/kegg/module.html) database in plain text
format files that include information of the metabolites, genes and
reactions. Metabolic pathways were downloaded from KEGG
PATHWAY database in KGML format files. Then, each KEGG
module is made up of reaction nodes (composed by one or
several isoenzymes or enzymatic complexes22), which are
connected by edges in a graph that describes the sequence of
reactions that transforms simple metabolites into complex
metabolites, or vice-versa. The potential catalytic activity level of
a KEGG module can be derived from the potential catalytic
activities of all the reaction nodes, assuming all the intermediate
metabolites are present and available. Under this modeling
framework, the potential for catalytic activity of a reaction node
is inferred from the presence of the constituent proteins. However,
given the difficulty of obtaining direct measurements of protein
levels, an extensively used proxy for protein presence is the
observation of the corresponding mRNA within the context of the
module.3,13,23–27 Then, the contribution of potential catalytic
activities of all individual nodes to the whole module metabolic
activity can be derived by using a recursive method that
sequentially traverses the module from the simpler to the more
complex metabolite. Assuming a value of 1 for the initial node of
the module, the potential catalytic activity of the subsequent
nodes is calculated by the formula:

Si ¼ ni � 1�
Y

sa2Ai
1� sað Þ

 !

In the formula, Si is the catalytic activity of the current node i, ni is
the catalytic node activity value inferred from normalized gene
expression values of the current node i, Ai is the set of edges
arriving to the node i that, within this modeling framework,
accounts for the flux of metabolites produced by the correspond-
ing reactions in other nodes with activity values sa.
The resulting integrity value of the whole sequence of reactions

represented in the module is summarized by the value of catalytic
activity propagated until the last node, which carries out the last
the transformations of the chain of reactions that ultimately
produces the final metabolite.21 This method is an adapted
version of the propagation algorithm on graphs successfully used
to estimate cell signaling activities in cancer.3 Here, in metabolism,
there are only reactions instead of gene interactions such as
activations and inhibitions that appear in signaling. Then, the
formula accounts for the integrity of the chain of reactions that
connect the initial to the final metabolite. Additional Fig. 1
outlines the procedure.

Differential metabolic module activity estimation
Similarly to normalized gene expression values, module metabolic
activity values calculated in this way make sense only within a
comparison context, which allows deciding whether the estimated
metabolic activity of a given module has changed significantly
across the compared conditions or not. Here, Wilcoxon test is used
to assess the significance of the observed changes of module
metabolic activity when samples of two conditions are compared.
Since many modules are simultaneously tested, multiple testing
effects need to be corrected. FDR method28 is used for this
purpose.

Class prediction
The class prediction functionality includes two sub-functionalities:
training process, where the predictor is built using a training set,
and classification process, where the predictor can be used for
class prediction purposes.
In order to build a predictor a training set composed by samples

belonging to two or more classes is required. The selection of
samples that properly represent the variability of the classes is
critical for the generalizability of the predictor. Two powerful
prediction algorithms, Random Forest (RF),29 as implemented in
the R randomForest package (https://cran.r-project.org/web/
packages/randomForest/), and support vector machines (SVM),30

as implemented in the R e1071 package (https://cran.r-project.org/
web/packages/e1071/), can be chosen to train the predictor. The
algorithm uses the profiles of metabolic module activities of the
two or more groups of samples compared. The accuracy obtained
by the predictor is assessed by k-fold cross-validation and the area
under the receiver operating characteristic (ROC) curve.
Once a model has been trained, the predictor can be saved and

can be used in a second phase to classify unknown samples. Thus,
using the option “Test existing model” in the Metabolizer web
interface, a list of samples can be uploaded and the proper

Table 1. TCGA samples used in this study

Cancer type Abbreviation Tumor samples Normal samples Patients alive Deceased patients

Breast invasive carcinoma BRCA 1057 113 900 146

Kidney renal clear cell carcinoma KIRC 526 72 345 173

Liver hepatocellular carcinoma LIHC 294 48 184 112

Prostate adenocarcinoma PRAD 379 52 367 7

Total 2256 285 1796a 438a

aThe sum of these columns does not equal the total number of tumor samples plus normal samples because survival information was missing for some
patients
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predictor can be selected from the list of saved predictors. The
predictor chosen will return a table with the probabilities of
belonging to any of the classes for each sample.

Prediction of the impact of KOs in metabolism
The model proposed can be used not only to derive metabolic
module activity profiles in real conditions but also in simulated
conditions. Therefore, KOs or over-expressions, alone or in
combinations, can easily be simulated by changing the values of
the targeted genes to 0 or 1 (or to any other low or high value
between 0 and 1), respectively. Then, the simulated condition is
compared to the original condition and a fold change threshold of
2 (that can be modified by the user) can be used to detect the
most relevant changes in module metabolic activity. Since only
two individual conditions (before and after KO) are compared a
conventional test cannot be applied here.
In addition to individual gene interventions, the effect of drugs

with known targets (as described in DrugBank31) over the different
metabolic modules can be studied. It is possible to simulate the
effect of drugs alone, in combinations, or combined with gene
KOs or over-expressions. Since it is common that genes participate
in more than one pathway and drugs often affect to more than
one gene, it is not infrequent that the predicted drug effects are
accompanied of unexpected results. This fact reinforces the utility
of comprehensive holistic modeling approaches like the one
presented here. The gene intervention strategy implemented here
is similar to the one used in the PathAct web tool32 in the context
of signaling pathway genes.
Obviously, off-target effects not described in DrugBank cannot

be included in the predictions. However, Metabolizer would allow
conjecturing new off-target effects by checking inconsistencies
between the expected metabolic module activities from the
prediction and the real ones observed upon the application of the
drug.

Automatic detection of optimal therapeutic targets
The KnockOut option of Metabolizer implements the Auto
Knockout functionality to find the optimal KO to revert a condition.
Within this modeling framework a gene KO is easy to simulate.
Simply, the expression value is multiplied by 0.01. The model
recalculates the module activity profiles. It is worth noting that a
gene can participate in more than one module and that,
depending on the location of the KO gene in the topology of
the module, the KO can have a drastic or an irrelevant effect on
the module activity.
Then, if two groups of samples are provided, metabolizer finds

the KO intervention that makes samples of one of the classes
resemble more to samples of the other class at the level of
metabolic module activity profiles. This functionality has been
designed to compare diseased to healthy conditions, or similar
scenarios, and find the KO intervention that produces the
maximum reversion from the disease to the healthy condition.
Firstly, a class predictor is built, using RF, that best discriminate

among the two classes compared. Since only 553 genes
participate in the modules, for each sample all the possible gene
KOs can be carried out. For each simulated KO, the metabolic
values are recalculated and the predictor estimates the possibility
that the resulting metabolic profile belongs to the opposite class.
All metabolic profiles resulting from the KO are ranked by this
probability and the higher probabilities represent the most
promising KO interventions. Combinations of KOs are not feasible
in interactive mode but they can be experimented manually in the
individual sample mode. Additional Fig. 2 shows a schema of the
procedure.

Implementation in a web server
Metabolizer is a web-based application that implements the
above described functionalities. Metabolizer web client has been
developed in HTML5 with web components while the server
component is written in R programming language. The program

Fig. 1 Metabolizer graphic interface with a representation of the modules. On the right side there is a list of KEGG pathways with arrows up or
down in case they contain modules with up or down activations, respectively. When the arrow is gray, the change in activity is not significant.
Red up arrows indicates a significant increase in activity and blue down arrow a significant decrease of activity in the module. Below the
pathway list, there is another list with the modules within the pathway with the same code for arrows
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recodes gene expression data (either from microarray or from
RNA-seq) into estimates of enzymatic activities along the
sequence of reactions that transform simple into complex
metabolites or vice-versa. Metabolizer can be used for several
purposes that include: (1) estimation of differential metabolic
activity by comparing two conditions, (2) derivation of class
predictors for further classification of new samples using
metabolic activities as multigenic biomarkers; (3) search of
therapeutic targets by predicting the ultimate impact of KOs on
the final metabolite production activity of the modules, and (4)
automatic detection of the optimal KO that makes the metabolic
profile of an initial condition as close as possible to a final
condition (e.g., the KO that reverts a disease to the normal status).
In addition to human metabolism, Metabolizer includes the

metabolism of 5 more model species, namely mouse, rat,
zebrafish, Drosophila and worm, taken from the KEGG repository
too.
The input for Metabolizer consists of files of normalized gene

expression values (in TSV format) along with an accompanying
text file containing the experimental design. A tutorial explains in
detail the required format.
The results produced include a graphical output that represents

the metabolic modules analyzed in which the sequences of
enzymatic reactions that transform simple into complex metabo-
lites are highlighted. In this way, disruptions or activations in the
metabolite transformation chain can be easily visualized providing
a straightforward interpretation of its real impact on the ultimate
metabolite production activity. A convenient graphic interface,
based on the CellMaps33 libraries, provides an interactive view of
the metabolic modules with configurable color-coded representa-
tion of the metabolic modules and their components. In this
interface, gene activity and module activities are simultaneously
represented providing a visual, intuitive indication on relevant
changes in the activity of the genes and their final impact in the
activity of the modules (see Fig. 1)
In addition, tables listing the modules showing a significant

change in the activity are provided, along with the statistics and
the corresponding p-values.
In addition to anonymous use for occasional users, Metabolizer

allows user registration. In this case, all the comparisons and
operations carried out are maintained in a user account.
Metabolizer can be found at: http://metabolizer.babelomics.org.

PERFORMANCE OF METABOLIZER IN CLASS COMPARISON
Samples and data processing
We downloaded RNA-seq counts for a total of 2256 cancer
samples and 285 healthy reference tissue samples, corresponding
to breast invasive carcinoma (BRCA), liver hepatocellular carci-
noma (LIHC), kidney renal clear cell carcinoma (KIRC), and prostate
adenocarcinoma (PRAD) cancer types (see Table 1), from The
Cancer Genome Atlas (TCGA) repository (https://dcc.icgc.org/). We
used the COMBAT method34 for batch effect correction and the
trimmed mean of M-values normalization method (TMM)35 for
gene expression normalization. Normalized gene expression
values were log-transformed and re-scaled between 0 and 1.

Sensitivity and specificity of models of metabolic module activity
Using module activities estimated for all the samples a predictor
able to differentiate cancer from healthy samples was built using
RF29 to estimate the sensitivity and specificity of modules to
predict class membership. Since the number of features is not too
high (there are only 95 modules), feature selection was not
considered necessary here. Specifically, we repeated 50 times the
five-fold cross-validation on the dataset: two groups, one
composed of normal samples and another, with the same size,
composed of tumor samples randomly sampled were constructed.
Four fifth parts were used to train a RF29 predictor and the
remainder fifth part was used to test the predictor with all the
module activities. Since the real labels of the fifth part are known,
the correct and wrong assignations per class were used to
calculate the area under the ROC curve (AUC). Table 2 shows that
the predictive power for the four cancer types in Table 1 using
module activities as features is extremely high. The AUC in real
class comparisons can be compared to the poor AUC values in
artificial classes obtained by random permutation of cancer and
control labels. This strongly suggests that module activities
account for real biological features that change between cancers
and normal tissues.

Comparison of Metabolizer to other methods
Different approaches for the detection of different aspects of
metabolic module activity have been proposed. In order to
compare the accuracy of Metabolizer in detecting metabolic
module activity, we have used a version of GSEA based on logistic
regression36 as implemented in the mdgsa Bioconductor package
(http://bioconductor.org/packages/release/bioc/html/mdgsa.html)

Fig. 2 Classification performance obtained using module activities inferred with Metabolizer and CBM-based reaction activities for the
prediction of BRCA subtypes. BRCA subtypes are defined on the bases of PAM50 gene activities and therefore, gene expression is taken as the
gold standard classification performance
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and a popular PT-based algorithm SPIA,37 as implemented in the
SPIA Bioconductor package (http://bioconductor.org/packages/
release/bioc/html/SPIA.html). For these methods, gene sets were
defined using the genes within the metabolic modules. Addition-
ally, the SPIA method requires also of the topology of the
modules. In order to adapt the modules to the pathway format
needed for the SPIA function the relations between metabolites
on a module are considered as activations. GSEA detects only
differential activity while SPIA and Metabolizer also detect
whether this different activity implicates activation or deactiva-
tion. Four cancers (Table 1) were used for the comparison. The
sensitivity of the method was measured as to the number of
modules detected as differentially active by comparing the four
cancers in Table 1 with respect to their corresponding healthy
tissues. The specificity was measured as the number of
differentially active modules (false positives) found by each
method in a comparison involving individuals of the same class.
In addition, we utilized a well-known version of CBM method,38

as implemented in the IMAT tool39 using the human metabolic
network Recon 2 V2.02,40 for comparing its performance to
Metabolizer as well. The IMAT tool maximizes the number of
highly expressed reactions that are active and the number of lowly
expressed reactions that are inactive. The reaction activity is
inferred from the binarization of the corresponding gene
expression values following a Boolean logic from gene-protein-
reaction (GPR) rules within the context of metabolic networks.41

CPLEX (V12.6.2) solver was used for solving Mixed Integer Linear
Programming problems. Optimum solutions provide flux values of
reactions and these flux values were used to classify reactions as
active and inactive. All parameters were set as in the original
article.38 The binary results of reactions (active/inactive) were used
to train a classifier. Since this CBM method is based on a pathway
definition (Recon 2)40 which is different from the KEGG metabolic
modules used here,20 we use a different benchmarking framework
in which reaction values are used as predictor features.42

Given that classifiers based either on Module activities or on
CBM reaction activities were able of distinguishing between
cancer and normal tissues with almost 100% accuracy we
challenged them with a more complex classification problem:
distinguishing between cancer subtypes in the case of breast
cancer. The BRCA dataset (Table 1) contains PAM50-defined43

subtypes Basal-like, HER2-enriched, Luminal A, and Luminal B of
Breast Invasive Carcinoma.44 The performance of a RF29 classifier
trained using Metabolizer module activities and reaction activities
obtained by CBM were compared by five-fold cross validation,
using gene expression based classification as a gold standard. It is
worth noticing that only one gene belonging to the metabolic
modules, PHGDH, was in the list of PAM50 genes used to define
the BRCA subtypes.
We first compared the capability for detecting differentially

activated modules when cancer is compared to the corresponding
unaffected tissue in four distinct cancer types: BRCA, LIHC, KIRC,
and PRAD (Table 1). For this contrast, we used the conventional
approach based on unstructured gene sets, the GSEA,36 and an
approach that takes into account the relationships among genes
within gene sets, the SPIA.37 Table 3 shows the number of
modules found as differentially activated in the different cancers
by the different methods. Metabolizer outperforms both the
sensitivity and specificity of GSEA and SPIA. GSEA founds between
5 and 14 modules, depending on the cancer, with averages
ranging from 2 to 7 false positive (FP) modules (about 50% of false
discovery). SPIA increases the specificity at the exchange of
reducing the sensitivity, with a very low detection rate.
Metabolizer increases by almost one order of magnitude both
sensitivity and specificity (Table 3).
Additional Table 2 contains the modules detected as differen-

tially active by these three methods. In general, the results found
by the methods were consistent across them, taking into account
their different sensitivities. As expected, modules controlling the
biosynthesis of nucleotide precursors45 and Acetyl-CoA46,47 were
found across cancers by GSEA and Metabolizer. However, several
well-known metabolic activities associated to cancer development
and progression, such as increased production of L-Proline48 and
succinate,49 or related to metastasis, such as fumarate,50 4-
aminobutanoate (GABA biosynthesis)51 or N-acylsphingosine
(Ceramide biosynthesis),52 were found only by the more sensitive
Metabolizer method.
Since CBM analysis is based on a different type of pathway

(Recon 2), the comparison cannot be carried out in the previous
benchmarking framework that uses metabolic modules defined
within KEGG pathways. Instead, we carried out a comparison of
classification performances using a previously proposed

Table 2. AUC values obtained for tumor types in Table 1, with the corresponding AUC values obtained when artificial classes are obtained by
randomizing sample labels

BRCA BRCA random LIHC LIHC random KIRC KIRC random PRAD PRAD random

Mean 1.000 0.495 1.000 0.525 0.999 0.477 0.998 0.491

Standard deviation 0.000 0.190 0.000 0.251 0.002 0.216 0.006 0.208

Median 1.000 0.5025 1.000 0.533 1.000 0.464 1.000 0.469

Median absolute deviation 0.000 0.205 0.000 0.312 0.000 0.243 0.000 0.228

Table 3. Number of modules found as differentially activated in the cancers listed in Table 1 by the different methods GSEA, SPIA, and Metabolizer

Method BRCA LIHC KIRC PRAD

Found FP Found FP Found FP Found FP

GSEA 8 3.5/1.8 5 2.8/6.0 14 7.4/3.4 5 2.7/2.3

SPIA 2 0.07/0.05 1 0.3/0.1 2 0.1/0.07 1 1.1/0.1

Metabolizer 81 0.008/0.06 77 0.04/0.04 77 0.03/0.03 73 0.05/0.05

The number of false positives (FP) was calculated by comparing 1000 times two artificial sample sets by random sampling of normal tissues maintaining the
proportions of the real comparison. That is 102 vs. 11 for BRCA, 41 vs. 7 in LIHC, 63 vs. 9 in KIRC and 46 vs. 6 in PRAD. The same procedure was repeated using
cancer samples. In this case the proportions were 995 vs. 102 in BRCA, 253 vs. 41 in LIHC, 463 vs. 63 in KIRC and 333 vs. 46 in PRAD. The second column for
each cancer type shows the average number of FPs obtained with normal samples/the same figure obtained from cancer samples
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benchmarking framework based on the use of reaction activities
estimated by CBM as features for classification.42 Given that cancer
vs. normal tissue was a quite naive classificatory problem for
which both CBM and Metabolizer resulted in almost 100%
classification accuracy, we used a more challenging classification
problem: BRCA subtype prediction. Classification performances
were carried out using a RF predictor with five-fold cross
validation. Since BRCA subtypes have been defined using the
expression of 50 genes with the PAM50 classifier,43 the classifica-
tion obtained using the expression of all genes is expected to
provide an upper limit of classification performance. Figure 2
shows how module activities obtained with Metabolizer outper-
form CBM-based reaction activities in classifying all the BRCA
subtypes.

VALIDATION OF KO PREDICTIONS AND CASE USES
An example of automatic optimal KO
To illustrate the potential of the auto-KO option we have used this
tool to find KOs that would make a KIRC sample as similar as
possible to a normal kidney sample in terms of metabolism. We
used a balanced dataset composed of the 72 normal kidney
samples available and 72 KIRC samples randomly sampled among
all the available tumor patients and used the Auto-KO option.
Then, a class predictor is built that will be used to decide to what
extent the tumor sample, after the KO, could be identified as a
normal sample. Most of the KOs does not have an effect that
significantly revert the metabolic tumor status towards that of a
normal kidney in a way that increases the probability of being
recognized as normal by the predictor. However, in a few cases
the result of the KO changes the metabolic status of the tumor in a
way that is identified as normal in approximately a 25%. Table 4
lists the genes in which a KO produces changes in the metabolic
profile of the tumor cell that make it more similar to the metabolic
profile exhibited by a normal kidney cell.

Validation of optimal KO predictions
Some of the optimal KO predictions were known cancer-related
genes. For example, HSD17B12, is a known cancer antigen,53 EBP is
a long known cancer estrogen receptor54 or DHCR24 is a gene
whose over-expression is related to bad prognostic in several
cancers,55 which explain the potential predicted impact that their
KOs have in the cancer metabolic profile.
However, beyond the knowledge derived from the literature,

other experimental evidences, such as the recent release of a
large-scale map of cancer dependency,56 can be used to validate

predictions made on the simulated KOs that would potentially
reduce the cancer phenotype of cells and make them resemble
normal cells. The expectation is that inhibitions of optimal KO
genes should result in the reduction of the proliferative capability
of the corresponding cell lines that could be interpreted as a
reversion of cancer phenotype towards a normal cell (or at less, a
non-proliferative cell). In spite of the fact that cancer outcome is a
much more complex phenotype than the proliferation of a cell
line, when genes in Table 4 are inhibited in the cancer
dependency experiment56 a reduction in the proliferation was
observed for ten out of the eleven predicted optimal KOs
(HSD17B12, TECR, SC5D, EBP, DHCR24, LSS, NSDHL, CYP51A1,
HSD17B7, DHCR7) (see Fig. 3). Moreover, in some cases we were
able to detect an increase of patient survival in patients with low
expression of some of the optimal KO proteins in Table 4. Thus,
according to Protein Atlas,57 low expression of TECR protein is
significantly associated to better patient survival in urothelial
cancer (see https://www.proteinatlas.org/ENSG00000099797-
TECR/pathology/tissue/urothelial+cancer), and the same is
observed in DHCR24 in endometrial cancer (https://www.
proteinatlas.org/ENSG00000116133-DHCR24/pathology/tissue/
endometrial+cancer), LSS in urothelial cancer (https://www.
proteinatlas.org/ENSG00000160285-LSS/pathology/tissue/
urothelial+cancer), CYP51A1 in cervical cancer (https://www.
proteinatlas.org/ENSG00000001630-CYP51A1/pathology/tissue/
cervical+cancer), and HSD17B7 in renal cancer (https://www.
proteinatlas.org/ENSG00000132196-HSD17B7/pathology/tissue/
renal+cancer). However, Protein Atlas results that support
Metabolizer predictions must be taken with some caution given
that they implicitly make the assumption that lower cancer cell
survival would be equivalent to higher patient survival.

Experimental validation in a cancer model of gastric
adenocarcinoma of an optimal KO prediction in gastric cancer
patients
Finally, as an additional validation, we used the optimal KO option
of Metabolizer in a different cancer type, gastric cancer patients
(STAD). Table 5 shows the predictions. The gene causing the
strongest effect, DPYS, was found as essential in the catalog of
cancer dependencies.56 The second predicted gene, UPB1,
encodes an enzyme (β-ureidopropionase) that catalyzes the last
step in the pyrimidine degradation pathway, required for
epithelial-mesenchymal transition.58 Using a cancer model of
gastric adenocarcinoma (AGS cell line) we carried out a cell
proliferation experiment upon depletion of UPB1 gene expression.
The shRNAs targeting UPB1 were purchased from the MISSION
(Sigma Aldrich) library, catalog SHCLNG-NM_016327. Lentivirus
production and transduction was performed following standard
protocols and cell cultures were selected with puromycin for 72 h
prior cell seeding for evaluation of proliferation/viability by
methylthiazol tetrazolium (MTT)-based assays (Sigma-Aldrich).
The data corresponds to sextuplicates and was replicated in
different assays. UPB1 expression was detected with the Human
Protein Atlas HPA000728 antibody (Sigma-Aldrich) and gene
expression measured with primers 5′-TCGACCTAAACCTCTGCCAG-
3′ and 5′-TAAGCCTGCCACACTTGCTA-3′, using PPP1CA as control.
As anticipated by our prediction, three different short hairpin
shRNA sequences directed to UPB1 caused a significant decrease
in cell proliferation (see Fig. 4). This result constitutes an
independent validation that reinforces the prediction made by
the model proposed. Additionally, the inhibition of the rest of
genes caused a remarkable reduction in the proliferation in the
cancer dependency experiment, being in all the cases within the
10% most affected genes.56

All these different kind of observations strongly support the
validity of the predictions made.

Table 4. Probabilities of KIRC metabolic profiles being identified as
normal cell metabolic profile after the KO of the gene

Gene symbol Entrez ID p(normal)
after KO

p(normal)
before KO

Change in
probability

HSD17B12 51144 0.348 0.092 0.256

TECR 9524 0.348 0.092 0.256

SC5D 6309 0.328 0.092 0.236

EBP 10682 0.328 0.092 0.236

DHCR24 1718 0.328 0.092 0.236

LSS 4047 0.328 0.092 0.236

TM7SF2 7108 0.328 0.092 0.236

NSDHL 50814 0.328 0.092 0.236

CYP51A1 1595 0.328 0.092 0.236

HSD17B7 51478 0.328 0.092 0.236

DHCR7 1717 0.328 0.092 0.236
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Module activities associated to patient survival
In order to know whether the modeled activity of metabolic
modules account for a phenotype as complex as cancer

prognostic, we have used gene expression data along with
survival data corresponding to two different cancers, kidney renal
clear cell carcinoma (KIRC) and liver hepatocellular carcinoma

Fig. 3 Essentiality (Demeter score) of genes predicted as optimal KOs with respect to the background distribution of essentiality values.
Values below 0 indicate lower proliferation. From left to right and top to bottom: HSD17B12 and SC5D in cell line G401 (KIDNEY); TECR in cell
line TUHR4TKB (KIDNEY) (this gene shows the same results in KMRC1 cell line of KIDNEY, data not shown); SC5D and EBP in SLR25 cell line
(KIDNEY) (SC5D shows the same result in G401 cell line of SOFT_TISSUE, data not shown); DHCR24 in cell line HK2 (KIDNEY); LSS in cell line
SLR23 (KIDNEY); NSDHL, DHCR7, and TECR in 769P cell line (KIDNEY); CYP51A1 in cell line SKRC20 (KIDNEY) (also less proliferative in SLR20
KIDNEY cell line, data not shown); HSD17B7 in cell line CAKI2 (KIDNEY); DHCR7 and EBP in cell line SLR26 (KIDNEY)

Fig. 4 Relative cell proliferation of line AGS (stomach gastric
adenocarcinoma) upon UPB1 expression depletion by three different
MISSION shRNAs or transduced with control vector pLKO.1. The
asterisk indicates significant differences (Mann–Whitney test p-
values < 0.01). The percentage of reduction of cell proliferation is
also shown. The prediction of UPB1 essentiality made by Metabolizer
was confirmed by a relatively more sensitive behavior

Table 5. Probabilities of STAD metabolic profiles being identified as
normal cell metabolic profile after the KO of the gene

Gene symbol Entrez ID p(normal)
after KO

p(normal)
before KO

Change in
probability

DPYS 1807 0.468 0.33 0.138

UPB1 51733 0.468 0.33 0.138

GART 2618 0.416 0.33 0.086

ATIC 471 0.416 0.33 0.086

PAICS 10606 0.416 0.33 0.086

SLC27A5 10998 0.392 0.33 0.062

BAAT 570 0.392 0.33 0.062

HSD17B12 51144 0.368 0.33 0.038

TECR 9524 0.368 0.33 0.038

ALDH5A1 7915 0.354 0.33 0.024

ABAT 18 0.354 0.33 0.024
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(LIHC). These cancers were selected because they have a balanced
number of patients alive and deceased, which allows estimations
of Kaplan–Meier (K–M) survival curves.59 Survival data were
obtained from the cBIOportal (http://www.cbioportal.org/).
The value of the activity estimated for each module in each

individual was used to assess its relationship with individual
patient survival using K–M curves.59 Calculations were carried out
using the function survdiff from the survival R package,60 which
tests for significant differences when two groups of patients are
compared. Then, for each module, survival analysis comparing
patients with high module activity to patients with low module
activity was carried out. The high module activity and low module
activity groups were defined by patients within the 20% upper
and lower percentiles of module activity, respectively. The results
were adjusted for multiple testing effects using the FDR method.28

Table 6 shows the modules whose activity was found to be
significantly associated to patient survival in some of the cancers.
Despite a comprehensive description of the results is beyond the
scope of this manuscript, it is worth mentioning how the
production of nucleotides and precursors (GTP, UMP, and CDP)
shows a recurrent significant activation in both cancers. Genes in
the corresponding modules are targeted by well-known antic-
ancer clinical drugs, such as Gemcitabine, which is approved for
the treatment of at least four advanced cancer types, and
Mercaptopurine (DB00441 and DB01033 entries in DrugBank),
respectively. The mechanism of action of these drugs is based on
the inhibition of DNA synthesis that leads to cell death by
specifically inhibiting the production process of GTP, CDP and
their precursor metabolites. Also, Fatty acid biosynthesis, Inositol
phosphate metabolism and Beta-Oxidation modules are highly
correlated with patient survival. Actually, activation of de novo
fatty acids synthesis, is exclusive of cancer cells and has an
essential role in supporting conversion of nutrients into metabolic

components for membrane biosynthesis, energy storage and
generation of signaling molecules.61 In fact, several preclinical and
clinical studies have been addressed to test the effect of inhibiting
fatty acid synthase (FASN) in different cancer types. It is also
known the use of serine by many cancers62 which explains the
significant association to survival found for the serine biosynthesis
module. Figure 5 shows the Kaplan–Meier survival plots for the
guanine ribonucleotide biosynthesis, the beta-oxidation and the
leucine degradation modules, corresponding to the main meta-
bolic processes of nucleotides, amino acids and lipids, in KIRC and
LIHC tumors.
The rest of modules are related to the production of

metabolites involved in cell proliferation or other processes
connected to cancer origin or progression.

CONCLUSIONS
The associations found between metabolic module activities and
patient survival confirms that metabolic modules can be
realistically modeled within the proposed framework21 implemen-
ted in the Metabolizer software. Moreover, metabolic module
activities obtained under the proposed modeling method out-
perform other methods used to infer metabolic activity, such as
GSEA,8 SPIA37, or CBM38 (as implemented in IMAT tool39). And,
furthermore, we have validated most of the predictions made by
the method in an independent dataset. These results show that
metabolic modules can be considered a relevant type of
functional module in cancer and probably also in other diseases
related to metabolism. The program Metabolizer allows research-
ers to easily estimate module metabolic activities from gene
expression measurements and use them for different purposes.
Thus, the comparison between two conditions can throw light on
the subjacent molecular mechanisms that make them different. In

Fig. 5 Kaplan–Meier survival plots for the Guanine ribonucleotide biosynthesis module (left), the Beta-oxidation module (center) and the
Leucine degradation module (right) in KIRC (upper row) and LIHC (lower row) tumors
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this way, disease mechanisms or drug mechanisms of action can
easily be interpreted within the context of metabolism. Such
comparisons can also be used to derive multigenic predictors with
a mechanistic meaning, that have demonstrated to be useful to
predict complex traits.4

Diagnostic strategies are rapidly changing in cancer and other
diseases because of the availability of increasingly affordable
genomic analysis.63 Therapies that specifically target genetic
alterations are probing to be safer and more effective than
traditional chemotherapies when used in the adequate patient
population.64 Perhaps, one of the most relevant aspects of
modeling is that models allow predicting the effect of simulated
gene expression profiles over the activity of metabolic modules,
opening the door to anticipate the effect of intervention on genes.
In this respect, Metabolizer constitutes an extremely useful tool for
finding putative actionable targets for a specific condition.65 This
is very relevant in the context of personalized medicine and can
help in finding individualized therapeutic interventions for
patients.66 In fact, recent reports indicate that genes involved in
metabolic pathways show a remarkable heterogeneity across
different cancer patients.67 This suggests that personalized
therapies might likely be successful providing the context of the
interventions can be properly explored and understood with a
tool such as Metabolizer. For example, synthetic lethality, defined
as genetic mutations or gene expression alterations with little or
null individual effect on cell viability but that results in cell death
when combined, offers a promising range of potential therapeutic
interventions68 that can only be properly exploited in a framework
such as the one provided by Metabolizer.
Therefore, Metabolizer can be considered an innovative tool

that enables the use of standard measurements of gene
expression in the context of the complexity of the metabolic
network, with a direct application in clinic as well as in research in
animal models.
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