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Background: Several bone morphological parameters, including the anterior acromion morphology, the
lateral acromial angle, the coracohumeral interval, the glenoid inclination, the acromion index (AI), and
the shoulder critical angle (CSA), have been proposed to impact the development of rotator cuff tears and
glenohumeral osteoarthritis. This study aimed to develop a deep learning tool to automate the
measurement of CSA and AI on anteroposterior shoulder radiographs.
Methods: We used MURA Dataset v1.1, which is a large publicly available musculoskeletal radiograph
dataset from the Stanford University School of Medicine. All normal shoulder anteroposterior radio-
graphs were extracted and annotated by an experienced orthopedic surgeon. The annotated images were
divided into train (1004), validation (174), and test (93) sets. We use pytorch_segmentation_models for
U-Net implementation and PyTorch framework for training the model. The test set was used for final
evaluation of the model.
Results: The mean absolute error for CSA and AI between human-performed and machine-performed
measurements on the test set with 93 images was 1.68� (95% CI 1.406�-1.979�) and 0.03 (95% CI 0.02 -
0.03), respectively.
Conclusions: A deep learning model can precisely and accurately measure CSA and AI in shoulder
anteroposterior radiographs. A tool of this nature makes large-scale research projects feasible and holds
promise as a clinical application if integrated with a radiology software program.

© 2022 Mayo Foundation for Medical Education and Research. https://www.mayoclinic.org/copyright/
. Published by Elsevier Inc. on behalf of American Shoulder & Elbow Surgeons. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Several morphological parameters, such as the anterior acro-
mion morphology, the lateral acromial angle, the coracohumeral
interval, the glenoid inclination, the acromion index (AI), and the
shoulder critical angle (CSA), have been associated by some authors
with the development of rotator cuff tears and glenohumeral
osteoarthritis.2,3,5,7,10,12

Nyffeler et al12 hypothesized that a larger lateral extension of
the acromion predisposes the supraspinatus tendon to degenera-
tion due to the increased amount of ascending force of the deltoid
muscle, with subsequent impingement of the supraspinatus tendon
under the acromion. The AI introduced by Nyffeler et al12 is the
ratio between (1) the distance from the glenoid to the lateral edge
of the acromion and (2) the distance from the glenoid to the lateral
d for this study.
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edge of the greater tuberosity. Ames et al reported higher associ-
ation between a larger acromial index and increased rate of rotator
cuff tendon tear, and it is also related tomore disability by the Quick
Disabilities of the Arm, Shoulder and Hand Outcome Measure and
poorer physical health as measured by the Short Form-12 Physical
Component Summary score. Similarly, the CSAddefined as the
angle between the face of the glenoid fossa and a line connecting
the glenoid face to the most inferolateral point of the acromion
measured on anteroposterior (AP) shoulder radiographsdwas
introduced byMoor et al10; smaller and larger CSAswere associated
with shoulder osteoarthritis and rotator cuff tears, respectively. In
their study, the mean CSA was 33� in healthy shoulders, 28� in
patients with osteoarthritis, and 38� in patients with rotator cuff
tears.10

The use of deep learning algorithms for musculoskeletal imag-
ing has increased in recent years.8,15,16 To our knowledge, no study
has investigated the use of a deep learning model for the prediction
of AI or CSA in shoulder radiographs. This study aimed to develop a
deep learning tool to automate the measurement of AI and CSA on
ayoclinic.org/copyright/. Published by Elsevier Inc. on behalf of American Shoulder
/creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1 Shoulder AP images collection process. AP, anteroposterior.
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AP shoulder radiographs. Our hypothesis was that a convolutional
neural network could accurately identify CSA and AI on AP shoulder
radiographs. Herein, we introduce a fully automated tool based on a
U-Net-like14 model with EfficientnetB318 as its encoder to auto-
matically measure CSA and AI.

Materials and methods

Dataset

In this study, we used the MURA Dataset v1.1, which is a large,
publicly available set of musculoskeletal radiographs from the
Stanford University School of Medicine (Stanford, CA, USA).13 This
dataset contains x-ray images of the shoulder, humerus, elbow,
forearm, wrist, and hand, labeled as either normal or abnormal. For
the purposes of this study, we only used shoulder images labelled as
normal. Images were divided into 3 sets for either training, valida-
tion, or testing, with no overlap of radiographs between the sets.

Image collection

The MURA Dataset v1.1 categorizes radiographs by patient
identification, study number, region, and normal vs. abnormal.
Since this dataset is large, we developed a deep learning model to
classify the images. To do so, we labeled 195 images (110 training,
85 validation) as AP, axillary, or Y views, which are the most
common views used for evaluation of the shoulder joint. Next, we
trained a convolutional neural network with 18 layers (ResNet186)
on this small subset of images. This simple model fully converged
and reached an F1 score of 1.0 for all the 3 views on those 85
validation images. Then, we used this model to quickly classify all
the normal shoulder images (4211 images from the dataset’s
training set and 285 images from the dataset’s validation set) into
the same 3 classes, which resulted in 2173 AP images, 1067 axillary
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images, and 971 Y images from the training set and 146 AP, 77
axillary, and 62 Y images from the validation set.

Image annotation

Next, an experienced orthopedic surgeon annotated 4 land-
marks (inferior border of the glenoid, superior border of the gle-
noid, lateral border of the acromion, and the most lateral part of the
proximal humerus) in the normal AP shoulder images using a
publicly available image annotation tool (https://www.robots.ox.ac.
uk/~vgg/software/via/via-1.0.6.html). These landmark annotations
were used as ground truth for training the main deep learning
model. During this process, we excluded 995 images out of 2173
images in dataset’s train subset and 53 out of 146 images in data
set’s validation subset manually and before starting to train any of
themodels for themain task of point prediction. These images were
excluded due to 1 or more than 1 of the following reasons: (1)
Image was not an AP or a true AP image; (2) there was a shoulder
prosthesis; (3) the image brightness and quality were impaired.

As such, in the end, we used the remaining 93 images from the
dataset’s validation set as our final test set, and we divided the
remaining 1178 images from the dataset’s training set for our own
training (1004 images) and validation (174 images). We used our
own validation set for hyperparameter optimization, and the re-
sults are reported only on the final unseen test set (Fig. 1).

Deep learning model and training strategy

Since predicting the exact coordinates of the target pixels may
be suboptimal due to large variances in pixel scale, we use heatmap
regression to predict the most probable pixels for each landmark.
Therefore, when reading the images, we created 4 corresponding
heatmaps for each landmark by replacing the landmark’s corre-
sponding pixel in a 2D grid by a Gaussian distributionwith standard

https://www.robots.ox.ac.uk/%7Evgg/software/via/via-1.0.6.html
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Figure 2 Illustration of data annotation to model training.

M.M. Shariatnia, T. Ramazanian, J. Sanchez-Sotelo et al. JSES Reviews, Reports, and Techniques 2 (2022) 297e301
deviation of 12. We resized each image to the size 512 * 512,
augmented it using data augmentation techniques (see Appendix 1
for more details), and then fed it to a U-Net-like14 model with
EfficientnetB318 as its encoder. We used the pytorch_segmenta-
tion_models library (https://github.com/qubvel/segmentation_
models.pytorch) for U-Net implementation and the PyTorch
framework (https://pytorch.org) for training the model. This model
predicts a 4-channel output tensor with height and width equal to
those of the image (a tensor of shape 4 * 512 * 512). Each channel is
the model’s prediction for each landmark heatmap. We then
computed the loss between model’s predictions and the actual
heatmaps using the weighted mean squared error (MSE) loss
function (see Appendix 1 for more details). Figure 2 provides a
summary visualization of data annotation and model training.

After finding the optimal hyperparameters of our model
regarding its performance on the validation set (see Appendix 1 for
more details), we used cross-validation and trained 5 models on 5
folds of our training and validation set images to best use all the
available data. At inference time on the final test set, we first took
the average of all the models’ predictions to obtain 4 heatmaps per
images, and then we obtained the coordinates of each landmark by
obtaining the argmax of the corresponding heatmap over the 2
dimensions and then calculated the AI and CSA in a rule-based
manner using linear algebra libraries in Python. The 95% confi-
dence intervals (CIs) were calculated with bootstrapping because
the distribution of errors was not normal (our code is available at:
https://github.com/moein-shariatnia/MSK).
Table I
CSA and AI predicted by deep learning model.

Target variable Mean absolute error Root mean squared error

CSA 1.6848-CI 95% (1.406, 1.979) 2.2018-CI 95% (1.846, 2.548)
AI 0.0275-CI 95% (0.023, 0.033) 0.0368-CI 95% (0.030, 0.043)

CSA, shoulder critical angle; AI, acromion index; CI, confidence interval.
Results

For the CSA, the average difference between human-performed
and machine-performed measurements on the test set with 93
images was 1.68� (95% CI 1.41�, 1.98�) when determined using the
mean absolute error and 2.20� (95% CI 1.85�, 2.55�) when deter-
mined using the root MSE. For the AI, the average difference be-
tween human-performed and machine-performed measurements
on the test set with 93 images was 0.028 (95% CI 0.02, 0.03) when
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determined using the mean absolute error and 0.037 (95% CI 0.03,
0.04) when determined using the root MSE (Table I).

To demonstrate the model's performance and compare it to
ground truth labels, Figure 3A provides an illustration of the
regions predicted by our model for landmark location. After
choosing the pixel with the maximum probability, comparisons
with ground truth points can be completed. Thenwe plot the angle
and the lines needed to compute the AI ratio in Figure 3B and C,
respectively. Calculating the angle in degree and the ratio is done
using rule-based functions by leveraging linear algebra.
Discussion

Osteoarthritis of the glenohumeral joint and rotator cuff tears
are common pathologies of the shoulder joint.9,11 Although there
are several factors that play a role in the etiology of these pathol-
ogies, individual morphology of the scapula is one of the factors
that have been identified as possibly associated with rotator cuff
tears and glenohumeral osteoarthritis. The CSA has been reported
by some investigators to correlate with both rotator cuff tendon
tears and glenohumeral joint osteoarthritis.

In this study, we developed a fully automated tool to measure
the CSA and AI on AP radiographs of the shoulder using a deep
learning model. The mean absolute error of our model for CSA
measurements was less than 2�. Since the mean CSA reported for
normal, rotator cuff tear and glenohumeral osteoarthritis reported
by Moor et al10 had differences of 5� or more, it would be safe to
assume that a model with a measurement error less than 2� is a
reliable tool with acceptable error level to measure CSA in shoulder

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
https://pytorch.org
https://github.com/moein-shariatnia/MSK
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Figure 3 (A) An example of model performance in comparison to the ground truth labels in prediction of landmarks. (B) prediction of CSA by the model. (C) Prediction of AI by the
model. CSA, shoulder critical angle; AI, acromion index.
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AP images. While the mean absolute error of our model in
predicting AI was about 0.03, differences among normal shoulders,
shoulders with rotator cuff tears, and glenohumeral osteoarthritis
reported by Nyffeler et al12 were more than 0.1. Therefore, the
level of error of our model for AI measurement can be
considered acceptable regarding the prediction power of the model
in distinguishing different types of pathology in shoulder AP
images.

Since all the images were annotated by a single orthopedic
surgeon, we cannot report on interobserver reproducibility for
human-based CSA and AI measurements. However, we showed an
acceptable level of errors in CSA and AI measurements when the
model was compared to measurements by an experienced ortho-
pedic surgeon. Previous studies have investigated the reliability of
manual CSA and AI measurements. Cherchi et al4 reported 96.7%
and 95.5% intraobserver and interobserver reproducibility for CSA,
respectively. While we could not find exact difference in angles
between observers in their manuscript, the interobserver and
intraobserver differences for CSA represented in their Bland-
Altman plots were about 1� and 2�, respectively. In a study by
Spiegl et al,17 the CSA values measured on radiographs had inter-
observer and intraobserver agreement of 86.9% and 90.9%,
respectively. Moor et al10 found interclass correlation coefficients of
98% for both CSA and AI. Therefore, our model could be considered
an automated algorithm that can accurately and precisely measure
these valuable indexes in an AP shoulder image.

There are several potential limitations of this study. First, all
images from the MURA dataset were annotated by only 1 ortho-
pedic surgeon and used as ground truth for developing and vali-
dation of the deep learning model. Second, the MURA dataset is a
deidentified dataset with no demographic information available.
This made it impossible to divide the dataset based on age or
gender and examine variation of CSA and AI by demographic fac-
tors. Third, although we used shoulder images of the MURA dataset
that were labeled as normal shoulder AP images, some of the im-
ages were not true AP view. Theoretically, the projected CSA could
vary according to the position of the scapula, but it did not affect
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our measurement model because we did not use it to classify
images based on different shoulder pathologies.

Conclusion

We developed a deep learning model that can precisely and
accurately measure CSA and AI in shoulder AP images. A tool of this
nature makes large-scale research projects feasible and holds prom-
ise as a clinical application if integrated with a radiology software
program.
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