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Abstract: To evaluate the effects of phenol formaldehyde (PF) resin modification on wood cell walls,
Masson pine (Pinus massoniana Lamb.) wood was impregnated with PF resin at the concentrations of
15%, 20%, 25%, and 30%, respectively. The penetration degree of PF resin into wood tracheids was
quantitatively determined using confocal laser scanning microscopy (CLSM). The micromechanical
properties of the control and PF-modified wood cell walls were then analyzed by the method of
quasi-static nanoindentation and dynamic modulus mapping techniques. Results indicated that
PF resin with low molecular weight can penetrate deeply into the wood tissues and even into
the cell walls. However, the penetration degree decreased accompanying with the increase of
penetration depth in wood. Both the quasi-static and dynamic mechanics of wood cell walls increased
significantly after modification by the PF resin at the concentration less than 20%. The cell-wall
mechanics maintained stable and even decreased as the resin concentration was increased above 20%,
resulting from the increasing bulking effects such as the decreased crystallinity degree of cellulose.
Furthermore, the mechanics of cell walls in the inner layer was lower than that in the outer layer of
PF-modified wood.

Keywords: phenol formaldehyde resin; wood modification; cell-wall mechanics; nanoindentation;
modulus mapping

1. Introduction

Phenol formaldehyde (PF) is one of the most common resins used in the wood industry,
such as in the manufacturing of oriented strandboard (OSB), plywood, and cross-laminated timber
(CLT), due to the advantages of low initial viscosity, water repellency, and excellent temperature
stability [1–3]. In addition, the water-soluble PF has been widely applied as a modifier for improving
the properties of wood, such as its strength, dimensional stability, and biological durability [4–8].
The impregnation of PF oligomers into wood also provides persistent protection against biological
and weathering for in-service wood due to the higher resistance leachability of thermosetting PF
adhesive. PF impregnation has been regarded as one feasible technique for wood modification because
it is less toxic to the environment [9–11]. This technique is also facing some problems during its
industrial application, such as the low modification efficiency accompanying with the high dosage of
PF adhesive. In the past decades, most work has been paid on the contributions of the PF filling in
the wood cell lumen on the modification efficiency while ignoring the contributions of PF penetration
in wood cell wall.
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A good cell wall penetration plays an important role on wood modification effects. Thus, more
researchers have focused on investigating the penetration phenomena of PF resin into wood for
clarifying the modification mechanisms. The penetration phenomena at the nanometer, micrometer,
or larger scale through wood cell lumens, interconnecting pits of the wood cells, and the nanovoids
with cell walls has been observed by optical microscopy, electron microscopy, and X-ray fluorescence
microscopy in the last few decades [12–14]. In particular, the nano-penetration of PF resin in wood
cell walls has been intensively analyzed because it can provide the opportunity for cross-linking
reactions between PF resins and the functional groups in wood polymers. In the previous work, both
the chemical and mechanical properties of wood cell walls penetrated by PF resin during the wood
gluing were characterized by AFM-based infrared spectroscopy (AFM-IR), which further confirmed
that the physical filling and the possible chemical reactions are increasingly considered as the major
contributions to the improved wood properties such as bending strength and hardness [15,16]. It is
well-known that the depth and capacity of penetration was prone to be influenced by the compatibility
between the chemical and physical characteristics of the wood and resin and by the process
used [12]. However, only limited attempts have been made to analyze the chemical, physical,
and mechanical properties of the wood cell wall after PF resin modification by vacuum-pressure
impregnation. In particular, for PF-modified wood, it is still unclear whether the penetration degree
affects the properties of wood cell wall. To this purpose, methods with adequate spatial resolution
are necessary.

Nanoindentation (NI) is an effective method for measuring the mechanical properties of various
materials at the micro-level, which has been widely introduced on plant cell walls and polymer
films [17–20]. However, conventional NI cannot adequately characterize the viscoelastic behavior
of wood cell walls, especially after thermosetting PF resin impregnation. The modified wood is
usually used as a structural material which is often exposed to the oscillation stress in practical use.
Thus, the capacity of storing and dissipating energy of wood is quite closely related to the in-service
performance [21]. Dynamic modulus mapping technique is an alternative approach to acquire
the continuous contact stiffness with finer spatial granularity through scanning probe [22,23]. A modulus
mapping was generated to provide dynamic mechanical properties, including the storage modulus (Er′)
and loss modulus (Er”). Recently, this method has been successfully applied for analyzing the dynamic
mechanical properties of wood cell walls. The results indicated that the modulus mapping may be
an ideal method for biocomposite [24,25].

In this study, the in situ quasi-static and dynamic mechanical properties of wood tracheid cell
wall modified by phenol formaldehyde resin was investigated using nanoindentation and dynamic
modulus mapping technique. In particular, the local variation in micromechanics of PF-modified cell
walls at different PF concentrations was analyzed to increase the understanding of wood chemical
modification mechanism.

2. Materials and Methods

2.1. Materials

The wood species chosen was Masson pine (Pinus massoniana Lamb.), which is one of the most
widely distributed tree species in the subtropical regions of China. The 40-year-old wood was collected
from a plantation located in Fujian Province, China. Phenol formaldehyde (PF) resin (Dynea Co., Ltd.,
Zhaoqing, China) with the solid contents of 48% and the viscosity of 150 mPa·s at 25 ◦C were used for
wood modification.

2.2. Modification Process

Sapwood blocks with the dimensions of 20 × 20 × 100 mm (tangential × radial × longitudinal)
were cut from the tree trunk at same height and around 18th to 24th growth ring (the average
width of the ring is about 3 mm). Wood blocks were conditioned at 65 ± 3% relative humidity (RH)
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and 20 ± 2 ◦C until they reached the moisture content (MC) of ≈ 11%. The average density of wood
blocks after conditioning was 0.49 g·cm-3. PF resin was diluted by distilled water into new resin
concentrations of 15%, 20%, 25%, and 30% for separate treatment, respectively. As shown in Figure 1,
15 replicate oven-dried samples in each treatment group were soaked in resin solution at a chamber
under the vacuum of 0.09 MPa for 30 min and at the pressure of 0.8 MPa for 2 h. The modified wood
samples were air-dried at room temperature and were then cured at 130 ◦C for 2 h in an oven.

Figure 1. Schematic diagram of wood impregnation and sample preparation.

2.3. MALDI-TOF Analysis

AB-5800 MALDI-TOF instrument (AB SCIEX, Framingham, MA USA) was used to analysis
the molecular weight distribution of PF resin. The irradiation source was a pulsed nitrogen laser
with a wavelength of 337 nm. The duration of a single laser pulse was 3 ns. The measurements were
conducted under the following conditions: Polarity-positive, flight path-linear and 25 kV acceleration
voltage. Before curing, PF resin samples were dissolved in acetone (5 mg/mL). The sample solutions
were mixed in the matrix of 2, 5-dihydroxy benzoic acid (DHB). For the enhancement of ion formation,
0.1 M NaCl was added to the matrix. About 1 µL of the resulting solution were placed on the MALDI
target. After evaporation of the solvent, the MALDI target was introduced into the spectrometer.

2.4. Confocal Laser Scanning Microscopy Analysis

The microscopic distribution of PF resin within the wood was examined using a LSM 710 inverted
confocal microscope (Carl Zeiss, Oberkochen, Germany) under the fluorescence mode at the excitation
laser wavelength of 488 nm and 550 nm for the identification of PF resin and wood components,
respectively, which had two emission wavelengths of 450–550 nm and 500–550 nm. The cross-sectional
slices with the thickness of 20 µm were prepared from the outer and inner layers of wood samples
(Figure 1) and then mounted by Glycerol for acquiring images at 40 magnifications. In order to evaluate
the penetration degree of PF resin in wood samples, the area measurement and calculation of PF resin
area penetrated within wood tracheids at different resin concentrations was carried out with the aid of
image processing software ZEN (Carl Zeiss, Oberkochen, Germany) and Equation (1):

Relative penetration degree (%) =
total area o f PF resin penetrated in tracheids

total area o f wood section
(1)
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2.5. XRD Measurement

The control and modified wood flour were prepared for XRD analysis. The crystalline structures
were analyzed by Uitima IV X-ray diffractometer (Rigaku Inc., Tokyo, Japan) using CuKα radiation
with a scanning speed of 4◦·min−1 at diffractograms range of 4–50◦ (2θ). The relative crystallinity
degree (CrI) was estimated based on the method proposed by Segal et al. (1959) [26]:

CrI(%) = 100 ×
(I002 − Iam)

I002
(2)

where I002 and Iam represent the intensity of the 200 crystalline peak and diffraction of the amorphous
part, respectively.

2.6. FTIR Measurement

The chemical functional groups of the control and modified wood samples were analyzed using
a VERTEX 80V FTIR spectrometer (Bruker Corporation, Karlsruhe, Germany). Wood samples was first
ground and screened into flour (40 and 60 mesh). All spectra were collected in the range 1800–800 cm−1

with a resolution of 4 cm−1.

2.7. Quasi-Static Nanoindentation

Smaller wood samples were cut from the outer and inner layers in modified wood blocks and their
transections were polished by ultra-microtome (Leica EM UC7, Wetzlar, Germany) for nanoindentation
(NI). As shown in Figure 2, the mechanics of the secondary cell wall of control and modified wood
tracheids were tested by Hysitron TriboIndenter system (Hysitron Inc., Minneapolis, MN, USA)
in a quasi-static loading model: Loading, holding at the peak load of 400 µN, and unloading for 5 s,
respectively. The locations for NI were selected by scanning probe micrographs taken with the indenter
tip (Figure 2b). Before indenting, the specimens were conditioned at ambient temperature of 21 ◦C
and relative humidity of 55% for 36 h. About 30 indents placed in the valid positions (without apparent
defects, edge of cell wall, etc.) were analyzed. The reduced elastic modulus (Er) and hardness (H) were
calculated from the load-depth curves according to Oliver and Pharr’s method (1992) [27]:

H =
Pmax

A
(3)

where Pmax is the peak load, and A is the projected contact area of the tips at peak load.

Er =

√
π

2β
S
√

A
(4)

where Er is the combined elastic modulus; S is initial unloading stiffness; and β is a correction factor
correlated to indenter geometry (β = 1.034).

2.8. Dynamic Modulus Mapping

Dynamic modulus mapping was operated on the same Triboindenter equipped with
a nano-DMA model transducer. A small sinusoidal force of 6 µN at a frequency of 200 Hz was
superimposed on top of a constant quasi-static force of 12 µN during the raster scanning imaging
process. In this experiment, raster scanning was performed over a 15 × 15µm2 region covering
both the PF resin filled in cell lumen and wood cell wall. As the tip scanned across the sample
surface, the amplitude of displacement was maintained at 0–1.5 nm and the phase of the resulting
transducer displacement signal was measured by a lock-in amplifier. The phase information was
used to determine the local indentation modulus of the sample at each pixel of the imaging process.
A modulus map containing the dynamic modulus information was collected at a pixel resolution of
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256 × 256. The storage and loss modulus values were computed on the basis of the measured stiffness
at each pixel according to the method of Asif et al. [28,29].

Figure 2. Wood sample preparation for nanoindentation test: (a) Microscope images showing the test
location; (b) Scanning probe microscopy (SPM) image showing the positioning of indents; (c) Typical
indentation load-depth curves of cell walls.

3. Result and Discussions

3.1. Molecular Weight of PF Resin

Figure 3 shows the MALDI-TOF spectra of PF resin before curing. The spectra showed clearly
repetitive patterns of peaks that allow the identification of specific oligomer series present in the PF
resin. The peaks in the spectra represented PF compounds + Na+ because NaCl was used as an ionizing
agent in this experiment. For instance, the peak at 313 Da was calculated as 290 Da (molar mass MW
of PF dimers) + 23 Da (MW of Na+). The major peak-to-peak mass increments observed were 106 Da
and 136 Da corresponded to repeating units A and B in theory as shown in Figure 3. The PF resin used
in this study was mainly composed of oligomers up to 2–4 phenolic nuclei, which were mainly bonded
by methylene bridges [30]. As described in the MALDI-TOF spectra, the molecular weight of most
oligomers in the uncured PF resin was less than 500 Da. The low molecular weight may be beneficial
for the penetration of PF resin into the wood and even into cell walls [15].

Figure 3. The MALDI-TOF spectra of phenol formaldehyde (PF) resin.

3.2. Penetration of PF Resin in Wood

Figure 4 shows the penetration of PF resin with different concentrations in different layers of
wood. The green light spot in the CLSM microphotographs clearly shows that the PF resin has trapped
in the lumens of many tracheids, indicating that the PF resin has penetrated deeply into the wood
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tissues under the action of exterior pressure. It can be observed from Figure 4 that more and more PF
resin penetrated into wood samples with the increasing resin concentration. However, the penetration
area of PF resin in both outer and inner layers increased slowly when the concentration was above 20%.
This finding was in agreement with the previous study that the PF resin with higher concentration
could decrease the permeability of resin in wood and the weight percent gain increased slowly when
the concentration was above 20% [31]. As expected, the resin penetration area of outer layer was larger
than that of inner layer. During the impregnation process, the chemicals contacted with the outer layer
primarily, entered the interior of the wood through the wood tracheids, and then circulated through
pits in axial and transverse direction [32,33]. The increased viscosity of the resin solution resulted from
the water loss during this period may retard the penetration in the inner layer of wood.

Figure 4. Typical confocal laser scanning microscopy (CLSM) microphotographs of the cured PF resin
trapped in the wood tracheids: (a–d) PF resin with the concentrations of 15%, 20%, 25%, and 30% in
the outer layer of wood, respectively. (e–h) PF resin with the concentrations of 15%, 20%, 25%, and 30%
in the inner layer of wood, respectively. Cured PF resins in the lumen of tracheids are showed in
green color.

In order to quantitatively assess the impregnation effectiveness, the penetration area of PF resin
(green color) was measured by image processing software and then the relative penetration degree
(RPG) was calculated according to Equation (1). As shown in Figure 5, in agreement with CLSM
microphotographs, the RPG initially increased obviously at a concentration ranged from 20% to 25%
and then remained stable with an increase in concentration. The RPG of the outer layer in wood treated
with 25% PF resin reached to the maximum of 22.4%, while the largest RPG of the inner layer was 5.2%
when the resin concentration was 20%.

3.3. Crystallinity Analysis

Figure 6 shows the X-ray diffractograms of the control and modified wood samples. As presented
in the diffractograms, three types of cellulose patterns were identified, with 110, 200, and 040 peaks
observed around 14.8◦, 22.2◦, and 34.5◦ 2θ angles, respectively [34]. The most significant diffraction
peak (200) was at 2θ = 22.163◦ for the control, whereas the diffraction peaks slightly shift to a low
angle after PF resin modification, which can be explained by macroscopic residual stress and lattice
distortion ascribed to uneven diffusion of chemicals inside wood [35]. The relative crystallinity (CrI),
defined as the percentage of cellulose crystallization area in the whole cellulose, was closely related to
the physical and mechanical properties of wood [36]. Thus, the relative crystallinity was then calculated
according to Equation (2). The CrI of wood was reduced with the addition of PF resin. When the sample
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was treated with 20% PF resin, the CrI was 47.72%, which was 6.38% lower than that of the control.
This result can be attributed to the fact that the chemical reactions between -OH groups mainly existed
in the amorphous region of the wood and PF resin may increase the mass of the amorphous region.
Meanwhile, the crystallization region was stable [33].

Figure 5. The relative penetration degree (RPG) of PF resin in the wood tracheid lumens.

Figure 6. XRD analysis of the control and PF-modified wood: (a) XRD spectra and (b) the degree
of crystallinity.

3.4. FTIR Spectrum Analysis

FTIR was applied to examine possible interactions between the wood cell-wall materials and PF
adhesive. Figure 7 displays the typical raw spectra for the oven-dried wood samples after eight weeks.
For the control wood, the prominent band at 1045, 1269, and 1736 cm−1 arise from the C-O stretching
vibration and the C = O stretching vibration in acetyl groups in cellulose and hemicellulose, respectively.
The characteristic bands at 1609, 1464, and 1269 cm−1 originate from the C = C stretching vibration
in the aromatic ring of the phenol, C-O stretching vibration, and the C-H methylene bridge in PF
adhesive, respectively [37]. As shown in Figure 7, the increased intensity at 1609, 1464, and 1269 cm−1,
which can be attributed to the penetration of PF resin. Moreover, a relatively broader band between 1150
and 1000 cm−1 appeared in the spectra of modified wood, corresponding to the asymmetric stretching
vibration of C-O-C aliphatic ether, which confirmed the chemical reactions of the -OH groups of
wood and PF adhesive [16,38]. The O–H stretching of hydroxyls around 3414 cm−1 of the wood
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modified by 20% PF resin becomes a little narrower compared to the control, which may be attributed
to the interactions between PF resin and wood [39]. However, the band of O–H stretching becomes
broader with the increase of PF concentrations, which may be ascribed to the increase in the amount of
self-curing PF resin.

Figure 7. FTIR spectra of the control and PF modified wood.

3.5. Quasi-Static Mechanics of Wood Cell Wall

Figure 8 displays the elastic modulus (Er) and hardness (H) of the control and modified wood
cell walls in outer and inner layers. As compared to the control, both the Er and H values increased
significantly after modification by the PF resin with the concentration less than 20%. For example,
the Er and H values of the wood cell walls modified with 20% PF resin increased by about 17.7%
and 35.5%, which further confirmed that some PF molecules has penetrated into the cell wall.
The cross-linking between -OH groups of wood polymer with and resins may reinforce the cell wall [14].
The mechanics of inner layer of modified wood were lower than that of outer layer and were stable
when the resin concentration was above 20%, resulting from the lower penetration degree of PF resin
with higher concentration into wood cell wall. However, the cell-wall mechanics of outer layer in
the wood modified by PF resin with the concentration above 20% decreased with the increasing resin
concentration, which can be attributed to the increasing bulking effects after deposition of lots of resin
in the cell walls. For instance, the decreased crystallinity index of cellulose may have also contributed
to this effect. In addition, the results in our previous work confirmed that the increased mechanics of
wood cell walls induced by PF penetration also positively affect the physical and mechanical properties
of wood on the macro-scale. The antiswelling efficiency (ASE) and antishrinking efficiency (ASE’)
of the wood treated with 20% PF resin reached 54% and 50%, and the hardness of the transverse
section and the compressive strength parallel to the grain of the wood increased by about 34% and 11%,
respectively, compared to the control. [31].

3.6. Dynamical Mechanics of Wood Cell Wall

Figure 9a presents the contact force image of the modified wood cell wall, computed from the measured
displacement and mechanical quantity transducer correlated with the position during scanning.
The corresponding modulus maps were obtained from DMA mode measurements. Both the storage
modulus and loss modulus were recorded as a map in Figure 9b,c. As displayed in the map, quantitative
variations in modulus values were shown in different colors. It can be observed from the scale bar that
there is a large variation on the storage modulus among PF resin filled in the lumen, cell wall, and middle
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lamella. In contrast, the variation on the loss modulus is much smaller and the values were also smaller
than storage modulus.

Figure 8. Mechanical properties for the control and PF-modified wood cell walls. (a) Reduced elastic
modulus and (b) hardness.

Figure 9. Modulus mapping of PF-modified wood tracheids: (a) Contact force image; (b) Storage
modulus image; (c) Loss modulus image.

After modulus mapping, 256 lines of data were available with 256 data points in each line.
These points in one line can be transferred to modulus data for analyzing the variations in different
materials with high resolution. As show in Figure 9b,c, one line across the PF resin filled in the lumen,
cell wall, and cell middle lamella (CML) was chosen to obtain the modulus data and plot the profile of
storage modulus and loss modulus. As shown in Figure 10, the cell walls exhibited greater modulus
than the CML and the PF resin filled in cell lumen. It is also interesting that the modulus across
the thickness of the cell walls clearly illustrated the gradient distribution across the S1 to S3 layers.
The modulus of S2 layer was obviously higher than that of S1 and S3 layers, which was in accordance
with the general view that the S2 made the major contribution to the wood mechanics due to its small
microfibril angle and higher cellulose content [40,41]. In addition, it is evident that the storage modulus
was comparable to the reduced elastic modulus obtained by means of quasi-static nanoindentation,
indicating that the nano-DMA testing is preferable for studying wood materials.

Based on the method of modulus mapping, the teen replicate area of the control and modified
wood sample was scanned by nano-DMA. The average storage modulus (E′) and loss modulus (E”)
of secondary cell wall (S2) from the outer and inner layers were calculated and presented in Figure 11.
The initial E′ and E” values of the secondary cell walls of the control were 21.99 GPa and 4.22 GPa,
respectively. After modification, the E′ gradually increased first and then remained stable or even
decreased with an increase in resin concentration, reaching the maximum of 28.71 GPa and 26.85 GPa
with a concentration of 20% and 15% for the outer and inner layer, respectively. The higher E′ of
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cell wall may be due to the inhibitions of the main chain movements after being penetrated by PF
monomers [42,43]. Except for the physical filling of PF monomers in the nanovoids within the cell
walls, the interconnected networks formed within the microfibrils by chemical reaction are another
influence factor [44]. The loss modulus (E”) of both the control and modified wood cell walls was much
smaller than the storage modulus (E′). Moreover, there was no obvious change in the loss modulus
(E”) of wood after modification.

Figure 10. Profiles of storage modulus and loss modulus of PF-modified wood tracheids.

Figure 11. Dynamic mechanical properties of wood tracheids: (a) Storage modulus and (b) loss modulus.

4. Conclusions

The molecular weight of most oligomers in the uncured PF resin was less than 500 Da, which was
beneficial for the penetration of PF resin into the wood and even into the cell walls. The physical
filling of PF monomers in the nanovoids within wood cell walls and the interconnected networks
formed by chemical reaction made a positive contribution on the mechanical properties of wood.
Both the quasi-static and dynamic mechanics, including the elastic modulus (Er), hardness (H),
and storage modulus (E”) of cell walls, were improved obviously after modification by PF resin at a low
concentration. However, as the resin concentration was above 20%, the cell-wall mechanics became
stable and even slightly decreased due to the increasing bulking effects. Furthermore, the cell walls in
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the outer layer of modified wood exhibited greater modulus than that of the inner layer ascribed to
the higher penetration degree of PF resin.
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