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Perspective

Introduction
Artificial intelligence (AI) in healthcare receives an increasing 
amount of attention, mainly as AI-based applications are con-
sidered to have the potential for making care better, more effi-
cient, and affordable, and hence, accessible. However, the 
quality of “AI for health” studies remains low, and reporting is 
often insufficient to fully comprehend and possibly replicate 
these studies (Liu et al. 2019; Nagendran et al. 2020; Wynants 
et al. 2020). Given the emergence of studies on AI in dentistry, 
action seems needed (Schwendicke et al. 2019).

CONSORT-AI
For randomized controlled trials (RCTs) and their protocols, 
reporting standards have been introduced and updated over the 
last 25 y. The CONSORT (Consolidated Standards of Reporting 
Trials) statement provides evidence-based recommendations 
for reporting of RCTs, while the SPIRIT (Standard Protocol 
Items: Recommendations for Interventional Trials) statement 
guides reporting of RCT protocols (Moher et al. 2010, 2015). 
Both have been adopted by the vast majority of journals as 
expected standards and adhering to CONSORT has been found 
to increase reporting quality (Plint et al. 2006). Since RCTs are 
widely used to inform decision-makers in health policy, regu-
lations, and clinical care, their comprehensive and systematic 
reporting is crucial, as only can then stakeholders gauge a tri-
al’s methodology, validity, and bias, or attempt replication.

For AI studies in healthcare, only a limited number of RCTs 
are available (Kelly et al. 2019). Notably, such RCTs have 
reported mixed results on the efficacy and applicability of AI, 
often in contrast to more optimistic retrospective studies 
assessing AI applications (for details, see references in Liu  
et al. (2020)). A rigorous and prospective evaluation of AI 

interventions should hence be expected—in the same way we 
expect other medical interventions to be evidence-based, with 
proven benefit and safety.

For reporting RCTs and RCT protocols involving AI, new 
extensions of the SPIRIT and CONSORT guidelines have been 
recently published (Liu et al. 2020; Rivera et al. 2020). The 
Journal of Dental Research (JDR) encourages authors to con-
sult these guidelines and employ them to comprehensively and 
transparently lay out the planned or concluded trial methodol-
ogy and findings, and urges reviewers to check any AI submis-
sions in the JDR against these guidelines.

Beyond Reporting of Randomized Trials
However, better reporting of RCTs is not sufficient; a range of 
aspects over the lifecycle of AI for health interventions should 
be considered (Fig. 1).

1. The majority of studies in AI in dentistry are not RCTs. 
They should nevertheless be conducted and reported at 
the highest standards. In the absence of existing stan-
dards, authors, reviewers, and readers of the JDR should 
consult other guidelines like the CLAIM (Checklist for 
Artificial Intelligence in Medical Imaging) (Mongan  
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et al. 2020) or the STARD (Standards for Reporting of 
Diagnostic Accuracy Studies) (Bossuyt et al. 2015) 
statements. We will soon see statements targeting other 
study types (like modelling studies) with a focus on AI 
(Collins and Moons 2019).

2. Better reporting does not mitigate poor design and con-
duct. One weakness encountered in AI for health 
research is the so-called “AI chasm” (Keane and Topol 
2018), with accuracies not necessarily relating to 
patients’ or health systems’ benefit. Researchers should 
aim to overcome this by reporting accuracy compre-
hensively, including sensitivity, specificity, true and 
false positive rates, positive and predictive values, and 
receiver-operating characteristics curves as well as met-
rics robust against imbalances, like the F1-score (Krois 
et al. 2019) or the area under the precision-recall curve 
(Saito and Rehmsmeier 2015). Notably, the appropriate 
set of model performance metrics depends on the for-
mulation of the machine learning task itself. For 
instance, in the field of computer vision object detec-
tion or segmentation models are more appropriately 
evaluated by the Intersection-over-the-Union (IoU) or 
mean average precision (mAP). In particular, for pixel 
level (segmentation) models the translation into tooth-
wise metrics should be attempted to ease interpretation 
by medical professionals (Cantu et al. 2020). Also, 
accuracies should be translated into tangible value 
(health benefit, costs); the long-term effects of AI 
should be explored, for example using model-based 
extrapolations (Schwendicke et al. 2020). The impact of 

AI on the clinical workflow, on decision-making as 
well as its acceptability, fidelity, and maintenance 
should be considered. Gauging the relationship between 
the user or receiver of AI (dentists, patients) and the AI 
intervention in a clinical environment is required (Kelly 
et al. 2019). Researchers may want to adopt the per-
spective on many AI applications as “complex inter-
ventions” rather than narrowly defined diagnostic or 
predictive tools, and consider validated and accepted 
frameworks accordingly (Moore et al. 2015).

3. Any kind of results should be explored for their gener-
alizability; the “transportability” of AI to different 
populations (disease manifestations, prevalence) or 
data sources (e.g., electronic health records, radio-
graphic machinery) should be demonstrated before 
considering translation into clinical studies or even 
care. Validation on external data that represent the 
breadth of potential target populations is required, ide-
ally demonstrating temporal, spectral, and geographic 
transportability (König et al. 2007).

4. Model bias may have a vast range of sources, for 
example representation, data-snooping, measurement, 
label, spectrum, evaluation, or deployment bias. A 
range of methods and risk of bias tools for assessing 
diagnostic accuracy and prediction studies like 
QUADAS-2 (Whiting et al. 2011) and PROBAST 
(Wolff et al. 2019) can be employed to gauge bias. Bias 
can further be detected via stratification, subgroup and 
clustering analyses, or regression analyses, and associ-
ated methods (Adebayo 2016; Badgeley et al. 2019). 

Figure. The lifecycle of artificial intelligence (AI) applications usually begins with an assessment of requirements, followed by development, testing, 
deployment of the AI, to monitoring in clinical care and reassessment. Different aspects along this lifecycle, acting as barriers to adoption of AI 
applications, have been identified (Ammanath et al. 2020); confidence into AI, market uncertainties, ethical concerns. These are located along the 
lifecycle (indicated via green, yellow, and red dotted lines). The Consolidated Standards of Reporting Trials (CONSORT)-AI extension items (purple 
dotted lines, e.g., items 1a,b; 2a; 4a,b; 5; 19) cover mainly the development and test steps, specifically when reporting a randomized controlled trial 
(purple semicircle).
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Moreover, methods to compare the similarity of the 
training dataset and real-world data (thereby determin-
ing representativeness) are available (Campagner et al. 
2020). For dealing with detected bias, researchers may 
employ re-, under- and over-sampling techniques. 
Open-source toolkits may be employed to detect and 
mitigate bias (Bellamy et al. 2019). It is conceivable 
that in the future AI-based systems for healthcare will 
be audited by authoritative bodies for bias, interpret-
ability, robustness, and possible failure modes, among 
others (Oala et al. 2020). Providing scripts, code, and 
datasets (open research) for reproducing the results 
should be considered wherever possible under data 
protection and intellectual property considerations. 
However, the complexity of AI studies and the interde-
pendencies of code, data, and the computational envi-
ronment may impede a reanalysis thereof. Hence, it is 
more likely that the usage of platforms for benchmark-
ing, including the assessment of bias and trustworthi-
ness of AI models will be considered a mandatory, 
alternative model validation step.

5. Given that many AI applications involve highly com-
plex prediction models which are hard to interpret, 
researchers should aim to include elements of explain-
ability (XAI) and transparency into their studies 
(Lapuschkin et al. 2019). XAI enables to detect and 
counteract bias, allows liability and accountability and 
supports fairness, generalizability, and transportability.

6. Lastly, clearly communicating the different impacts of 
AI onto clinical care allows all stakeholders to make 
informed decision towards the adoption of AI. Model 
fact labels (comparable to food labeling) are examples 
supporting such communication (Sendak et al. 2020).

Standards like the recently published CONSORT-AI exten-
sions will improve reporting of AI studies in dentistry, and the 
Journal of Dental Research encourages authors, reviewers, 
and readers to adhere to these standards. A range of further 
aspects along the AI lifecycle, laid out above, should be con-
sidered when conceiving, conducting, reporting, or evaluating 
studies on AI in dentistry.
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