A Study of an 8-Aminoquinoline-Directed C(sp ${ }^{2}$)-H Arylation Reaction on the Route to Chiral Cyclobutane Keto Acids from Myrtenal

Monireh Pourghasemi Lati,* Jonas Ståhle, Michael Meyer, and Oscar Verho*

Cite This: J. Org. Chem. 2021, 86, 8527-8537

Read Online

ACCESS \|	llll Metrics \& More	国 Article Recommendations	si Supporting Information

Abstract

This work outlines a synthetic route that can be used to access chiral cyclobutane keto acids with two stereocenters in five steps from the inexpensive terpene myrtenal. Furthermore, the developed route includes an 8 -aminoquinoline-directed $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation as one of its key steps, which allows a wide range of aryl and heteroaryl groups to be incorporated into the bicyclic myrtenal scaffold prior to the ozonolysis-based ringopening step that furnishes the target cyclobutane keto acids. This synthetic route is expected to find many applications connected to the synthesis of natural product-like compounds and small molecule libraries.

Fossil-based feedstocks have been instrumental for the development of our modern society, and today they constitute the primary carbon source for the organic chemicals utilized by the academic and industrial research spheres. ${ }^{1}$ Unfortunately, the use of fossil-based feedstocks is associated with many detrimental effects on our climate, and furthermore, they are a finite resource, which means that our society will soon need to transition to other renewable alternatives. As a result, research within the field of chemistry has during the past several decades focused extensively on the development of new synthetic processes that make use of green and renewable building blocks in place of fossil-based feedstocks. Here, biomass-derived feedstocks represent a promising and sustainable carbon source that is capable of meeting the future needs of our society. ${ }^{2}$ Of the many compounds available in the biomass pool, terpenes constitute a particularly well-utilized class of natural products ${ }^{3}$ that has been extensively used in the manufacturing of chemical reagents, ${ }^{4}$ fragrances, ${ }^{3 a, 5}$ fuels, ${ }^{6}$ pharmaceuticals ${ }^{32,7}$ and polymers. ${ }^{8}$

In parallel to research in sustainable chemistry, the field of $\mathrm{C}-\mathrm{H}$ functionalization has expanded rapidly over the past decade and provided many new opportunities for synthetic chemistry. ${ }^{9} \mathrm{C}-\mathrm{H}$ functionalization chemistry holds great potential to be used for the diversification and structural elaboration of biomass-derived synthetic precursors. ${ }^{10}$ For example, our group recently demonstrated that 8 -aminoquinoline ($8-\mathrm{AQ}$)-directed $\mathrm{C}-\mathrm{H}$ arylation chemistry can be used to access chiral cyclobutane derivatives with three contiguous stereocenters from the terpene verbenone. ${ }^{11}$ This study of ours was inspired by the work from the groups of Baran ${ }^{12}$ and Reismann ${ }^{13}$ on the 8 -AQ-directed $\mathrm{C}-\mathrm{H}$ functionalization of
cyclobutane derivatives, which in turn was an extension of the pioneering work of Daugulis and co-workers (Scheme 1a). ${ }^{14}$ However, it is important to point out here that the 8 -AQdirected $\mathrm{C}-\mathrm{H}$ functionalization methodology has also been applied to many other compound classes by several other research groups. ${ }^{15}$

As a part of our group's ongoing efforts to establish new synthetic pathways to structurally elaborate cyclobutane derivatives from biomass-derived precursors, we became interested in the terpene myrtenal as it presented an inexpensive starting point for accessing a novel series of chiral cyclobutane keto acids with two stereocenters. Unlike previous $\mathrm{C}-\mathrm{H}$ functionalization-based approaches to accessing complex cyclobutane derivatives that have involved either directed C H alkenylation or arylation directly on the cyclobutane scaffold (Scheme 1b), we sought to explore an alternative path based on 8-AQ-assisted vinylic $\mathrm{C}-\mathrm{H}$ arylation chemistry ${ }^{16}$ (Scheme 1c) followed by oxidative opening of the myrtenal scaffold. Our synthetic route that is outlined in Scheme 1d begins with the preparation of 8 -AQ amide 3 from myrtenal (1) via two simple transformations, i.e., aldehyde oxidation ${ }^{17}$ and installation of the $8-\mathrm{AQ}$ auxiliary. As will be demonstrated herein, $8-\mathrm{AQ}$ amide 3 represents an excellent substrate for

[^0]

Scheme 1. (a) Seminal Work of Daugulis and Co-workers on 8-AQ-Directed C-H Functionalization Chemistry, (b) Prior Art in 8-AQ-Directed $\mathrm{C}-\mathrm{H}$ Functionalization of Cyclobutanes, (c) Previous contributions to Vinylic C-H Arylation Using the 8-AQ-Directing Group, and (d) Our Work Outlining a Novel Synthetic Route to Chiral Cyclobutane Keto Acids That Proceeds via Vinylic $\mathbf{C}-\mathbf{H}$ Arylation and Oxidative Ring Opening of the Myrtenal Scaffold

b) Previous work related to the 8-AQ directed $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ functionalization of cyclobutanes

Baran 2012, Reismann 2016, Verho 2020
c) Earlier contributions to vinylic C-H arylation chemistry using the 8-AQ auxiliary

d) This work: An alternative way to chiral cyclobutane keto acids via 8-AQ directed C(sp ${ }^{2}$)-H arylation and oxidative ring opening of the myrtenal scaffold

Table 1. Optimization of the Pd-Catalyzed C-H Arylation of Substrate 3 with 4-Iodoanisole ${ }^{a}$

			$\begin{gathered} \mathrm{Pd}(\mathrm{OAc})_{2}(5- \\ \mathrm{AgOAc}(2-2 . \\ \text { additive }(0.2 \\ \hline \text { solvent, } 100 \end{gathered}$	Me		
entry	additive (equiv)	solvent	temp (${ }^{\circ} \mathrm{C}$)	time (h)	conversion (\%) ${ }^{\text {b }}$	yield (\%) ${ }^{\text {b }}$
1	none	toluene	110	16	>95	50
2	$(\mathrm{BnO})_{2} \mathrm{PO}_{2} \mathrm{H}$ (0.2)	toluene	110	16	37	12
3	PivOH (0.2)	toluene	110	16	79	44
4	NaOAc (0.2)	toluene	110	16	90	56
5	NaOAc (0.2)	toluene	100	24	82	61
6	NaOAc (1.0)	toluene	100	24	78	68
7	NaOAc (1.0)	HFIP	100	24	77	44
8	NaOAc (1.0)	MeCN	100	24	52	28
9	NaOAc (1.0)	DCE	100	24	81	75
10	NaOAc (1.0)	CPME	100	24	81	61
11	NaOAc (1.0)	2-MTHF	100	24	>95	63
12	NaOAc (1.0)	t-amyl-OH	100	24	>95	71
$13^{\text {c }}$	NaOAc (1.0)	DCE	100	24	>95	67
$14^{\text {d }}$	NaOAc (1.0)	DCE	100	24	>95	72
15^{e}	NaOAc (1.0)	DCE	100	24	>95	58
16^{f}	NaOAc (1.0)	t-amyl-OH	100	24	>95	73

[^1]

Figure 1. Scope of the Pd-catalyzed $\mathrm{C}-\mathrm{H}$ arylation of substrate 3. ${ }^{\text {a }}$ Reaction conditions: substrate 3 (0.15 mmol , $\mathrm{Q}=8$-quinolinyl), aryl iodide (3 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, $\mathrm{AgOAc}\left(2.0\right.$ equiv), and $\mathrm{NaOAc}\left(1\right.$ equiv) were suspended in $\mathrm{DCE}(0.3 \mathrm{~mL})$ and heated at $100{ }^{\circ} \mathrm{C}$ under an argon atmosphere for 24 h . All yields refer to isolated yields following silica gel chromatography. ${ }^{\text {b }}$ With a 48 h reaction time.
directed vinylic $\mathrm{C}-\mathrm{H}$ arylation chemistry, and this reaction step can be utilized as a point of diversification prior to the generation of the cyclobutane keto acid core. From the $\mathrm{C}-\mathrm{H}$ arylated compounds 4 , it is then possible to access the target keto acid derivatives simply by removing the 8 -AQ auxiliary and carrying out an oxidative ring opening by ozonolysis.

The central $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation reaction was optimized with 4-iodoanisole as the arylating agent, and the results from this study are summarized in Table 1. As our first attempt, we performed the reaction with 3 equiv of 4-iodoanisole, $5 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{OAc})_{2}$, and 2 equiv of AgOAc for 16 h at $110^{\circ} \mathrm{C}$, which encouragingly resulted in a 50% yield of desired product 4 a (entry 1). It is worth noting that the conversion was full under these reaction conditions, which indicated that the reaction suffered from considerable selectivity issues. In a first effort to improve this reaction, we investigated the effects of additives, as this has in previous $\mathrm{C}-\mathrm{H}$ functionalization studies been shown to have a strong influence on both reaction efficiency and selectivity. Dibenzyl phosphate $\left[(\mathrm{BnO})_{2} \mathrm{PO}_{2} \mathrm{H}, 0.2\right.$ equiv], ${ }^{11,15 g, h, 18}$ a commonly used additive for $\mathrm{C}-\mathrm{H}$ functionalizations, was found to have a significant negative effect on this reaction, resulting in an only 12% yield of $\mathbf{4 a}$ after 16 h at $110^{\circ} \mathrm{C}$ (entry 2). A low yield was also observed with 0.2 equiv of pivalic acid (PivOH , entry 3), which constitutes another popular additive for $\mathrm{C}-\mathrm{H}$ functionalization reactions. ${ }^{19}$ To our delight, a better result was obtained with NaOAc as the additive, which was in line with the findings from our previous study on the 8 -AQ-directed $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation of benzofuran derivatives. ${ }^{15 a}$ For example, when the reaction was carried out with 0.2 equiv of NaOAc at $110{ }^{\circ} \mathrm{C}$, product 4 a could be obtained in 56% yield with 90% conversion (entry 4). However, the best results with NaOAc were obtained when the reaction temperature was decreased to $100{ }^{\circ} \mathrm{C}$ and the reaction time increased to 24 h . Under these modified conditions, it was possible to achieve a higher yield of 61% with 82% conversion when using 0.2 equiv of NaOAc
(entry 5), which improved further to 68% yield and 78% conversion with 1.0 equiv of NaOAc (entry 6).

After having evaluated different additives, we continued the optimization study with a solvent screen. Here, we found that the use of HFIP and MeCN resulted in significantly lower yields of product $4 \mathbf{a}(44 \%$ and 28%, entries 7 and 8 , respectively). Markedly better results were obtained with DCE that gave a 75% yield of $\mathbf{4 a}$ with 81% conversion (entry 9). However, it should be pointed out that DCE is subject to regulatory controls in the European Union, and its use in commercial processes is expected to become limited worldwide soon. ${ }^{20}$ Gratifyingly, this $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation reaction also works well in a set of more process-friendly solvents (entries 10-12), such as cyclopentyl methyl ether (CPME), 2methyltetrahydrofuran (2-MTHF), and tert-amyl alcohol (t -amyl-OH). Of these three solvents, t-amyl-OH gave the best results (71% yield with $>99 \%$ conversion, entry 12). In attempts to further improve this $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation reaction, we increased the loadings of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and AgOAc , as well as the reaction concentration, but unfortunately, neither of these alterations had any beneficial effect on the yield of 4a.

On the basis of the results from the optimization study with 4-iodoanisole, we decided to use the following reaction conditions for the survey of aryl iodide scope: 3 equiv of aryl iodide, $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 2$ equiv of AgOAc , and 1 equiv of NaOAc in DCE for 16 h at $100^{\circ} \mathrm{C}$. Here, it should be pointed out that we opted to continue with DCE based on the higher selectivity and yield of the $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation reaction in this solvent. However, if one wishes to perform this reaction on a larger scale, tert-amyl alcohol will serve excellently as a more process-friendly replacement for DCE. As shown by entry 16 , it was possible to obtain product 4 a in a yield of 73%, when carrying out the $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation on a 2.5 mmol scale in tert-amyl alcohol.

As can be seen from the substrate scope study summarized in Figure 1, it was possible to introduce a wide range of aryl groups into compound 3 using the optimized reaction

Scheme 2. Proof-of-Concept Synthesis of a Cyclobutane Keto Acid Derivative from Myrtenal

conditions. This $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation was found to work most efficiently with aryl iodides carrying electron-donating groups, as exemplified by the reactions giving products $\mathbf{4 a}-\mathbf{c}$. Compared to product $4 \mathbf{a}$ that was isolated in 74% yield [cf. 75% yield vs the internal standard (Table 1, entry 9)], products $\mathbf{4 b}$ and $\mathbf{4 c}$ were acquired in comparable yields (73% and 67%, respectively). Similar performance was also observed with iodobenzene as the arylating agent; however, due to coelution issues between substrate $\mathbf{3}$ and product $4 d$ that complicated the column chromatography purification procedure, we were able to isolate $\mathbf{4 d}$ in only 61% yield. Product $\mathbf{4 e}$, which originated from the arylation with 2-iodonaphthalene, could on the contrary be obtained in a significantly higher yield (76\%).

Satisfying results were also observed when meta- and parahalogenated aryl iodides were used, and in these cases, products $\mathbf{4 f} \mathbf{- j}$ could be obtained in $49-71 \%$ yield. However, in the reactions to form the chlorinated products $\mathbf{4 g}$ and 4 h , it proved necessary to increase the reaction time to 48 h to push the reaction toward full conversion, simply because we were unable to separate starting material $\mathbf{3}$ from products $\mathbf{4 g}$ and $\mathbf{4 h}$ using column chromatography. ${ }^{21}$

Unfortunately, moving the substituent to the ortho position of the aryl iodide was found to be detrimental, as exemplified by the reactions of $\mathbf{4 k}$ and $\mathbf{4 1}$. In addition, the use of aryl iodides carrying strong electron-withdrawing substituents, such as nitro, keto and ester groups, was also found to have a noticeable negative impact on the reaction efficiency. However, in all of these cases, products $4 \mathrm{~m}-4 \mathrm{p}$ could still be obtained in synthetically useful yields ($40-55 \%$). On the contrary, good performance was observed with an aryl iodide carrying a Bocprotected amino group, as exemplified by the reaction giving product 4 q in 66% yield.

To our delight, it also proved possible to install different heteroaromatic motifs into substrate 3 . For example, when 2,3-dihydro-5-iodo-benzofuran, 2 -iodothiophene, and 2 -chloro-5iodopyridine were used as the heteroarylating agents, the corresponding products $\mathbf{4 r} \mathbf{- 4 t}$ were obtained in good yields ($60-66 \%$). The reaction with ethyl-6-iodo-4-oxo-4H-chro-mene-2-carboxylate, on the contrary, proved to be less efficient but still afforded product $4 \mathbf{u}$ in a synthetically useful yield of 40%.

After having completed our survey of the aryl iodide scope of the $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation, we moved on to our next goal, which was to establish a synthetic pathway from myrtenal to the envisioned chiral cyclobutane keto acid derivatives. Aiming
to provide a proof of this concept, we sought to develop a synthetic route to cyclobutane keto acid 6, utilizing the $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation product $4 \mathbf{a}$ as a model intermediate (Scheme 2). As mentioned previously, substrate 3 can be obtained from myrtenal in two simple and high-yielding synthetic steps. First, myrtenal (1) was oxidized to the corresponding carboxylic acid 2 in 80% yield using a previously reported $\mathrm{NaClO}_{2}-\mathrm{H}_{2} \mathrm{O}_{2}$-based protocol. ${ }^{17}$ Then, the 8 -AQ auxiliary was installed onto 2 in 81% yield using a two-step sequence that proceeded via the intermediate acid chloride. As highlighted above, the $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation can be carried out efficiently on a 2.5 mmol scale with tert-amyl alcohol as the solvent to provide compound $4 \mathbf{a}$ in 74% yield.

From product 4 a , the next step was to remove the $8-\mathrm{AQ}$ auxiliary, which could be accomplished in 88% yield using NaOH in EtOH. Finally, to access cyclobutane keto acid derivative 6, we used an ozonolysis-based approach to open the bicyclic monoterpenoid scaffold of compound 5 over the $\mathrm{C}=\mathrm{C}$ bond. This allowed us to obtain cyclobutane keto acid 6 with two stereocenters in 77% yield after just an extraction workup.

In summary, a concise synthetic route that allows access to cyclobutane keto acids with two stereocenters from the inexpensive terpene myrtenal from has been presented. As a proof of concept, we demonstrated the synthesis of cyclobutane keto acid 6 that was achieved in an overall yield of 32% over five steps. However, it should be pointed out that this synthetic route holds great potential to be used for the preparation of a wide range of such cyclobutane keto acid derivatives, as the $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ arylation step allows for the introduction of considerable diversity. As we show herein, it was possible to introduce a wide range of aryl and heteroaryl substituents into this myrtenal-derived core, to give a variety $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$-arylated products in good to high yields.

Given the many interesting biological activities displayed by cyclobutane derivatives, ${ }^{22}$ we foresee that our developed route will find applications related to the synthesis of small molecule libraries as well as novel natural product-like compounds. ${ }^{23}$

EXPERIMENTAL SECTION

General Experimental Information. All reagents and solvents were purchased and used as received from commercial vendors or synthesized according to cited procedures. With regard to the $1 R$ -(-)-myrtenal (1) that was used in this work, it was obtained from Merck (98\%, article no. 218243). Oxygen and/or moisture sensitive reactions were carried out in oven- or flame-dried glassware under a
nitrogen atmosphere using appropriately dried solvents. Yields refer to chromatographically isolated compounds, unless otherwise stated. Room temperature in the laboratory was $21-23{ }^{\circ} \mathrm{C}$. Flash chromatography was performed using $15-45 \mu \mathrm{~m}$ silica gel cartridges ($60 \AA$ mesh) on a Teledyne Isco Combiflash Rf. SiliaSep SiO_{2} cartridges used for these purifications were provided from SiliCycle. Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel $60-\mathrm{F}$ plates and visualized by UV light (254 nm) or suitable TLC stain. Chemical shifts are reported in parts per million relative to the NMR solvent peaks. Nuclear magnetic resonance spectra were recorded on a Bruker Advance spectrometer $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and ${ }^{19}$ F NMR). Deuterated solvents for NMR analyses was obtained from Sigma-Aldrich. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift, multiplicity (br, broad; s, singlet; d, doublet; t , triplet; m , multiplet), integration, and coupling constants. High-resolution mass spectroscopy (HRMS) was performed on a Bruker microTOF/ ESI mass spectrometer.

General Method A: Optimization of the Pd-Catalyzed C-H Arylation of Substrate 4a (Table 1).

A small capped vial equipped with a stirring bar was charged with substrate 3 ($0.15 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(5-10 \mathrm{~mol}$ $\%$), $\mathrm{AgOAc}(0.3-0.375 \mathrm{mmol}, 2.0-2.5$ equiv), 4 -iodoanisole ($0.45 \mathrm{mmol}, 3.0$ equiv), and an additive ($0.03-0.15 \mathrm{mmol}$, $0.2-1.0$ equiv). All of the solids were then suspended in dry solvent, and the reaction vessel was evacuated and refilled with N_{2} before being placed in a preheated oil bath (at the given temperature) for the time given in Table 1. After completion of the reaction, the crude mixture was allowed to cool to rt. It was then diluted with EtOAc and filtered through a pad of Celite, and the filtrate was concentrated in vacuo. The crude reaction mixture was then redissolved in $\mathrm{CDCl}_{3}(3 \mathrm{~mL})$, and $1,3,5-$ trimethoxybenzene (0.15 mmol) was added as an internal standard to allow for yield determinations by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

General Method B: Scope of the Pd-Catalyzed C-H Arylation of Substrate 4a (Figure 1).

3
$\mathrm{Pd}(\mathrm{OAC})_{2}(5-10 \mathrm{~mol} \%)$ AgOAc (2 equiv) $\xrightarrow[\text { NaOAc (1.0 equiv.) }]{\text { DCE, } 100^{\circ} \mathrm{C}, 24 \mathrm{~h}}$

A small capped vial equipped with a stirring bar was charged with substrate $3(43.9 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv $), \mathrm{Pd}(\mathrm{OAc})_{2}(1.68$ or 3.36 $\mathrm{mg}, 5$ or $10 \mathrm{~mol} \%), \mathrm{AgOAc}(50.1 \mathrm{mg}, 0.3 \mathrm{mmol}, 2.0$ equiv), aryl halide ($0.45 \mathrm{mmol}, 3.0$ equiv), and $\mathrm{NaOAc}(12.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0$ equiv). All of the solids were then suspended in dry solvent, and the reaction vessel was evacuated and refilled with N_{2} before being placed in a preheated oil bath (at the given temperature) for the time given in Table 1. After completion of the reaction, the crude mixture was allowed to cool to rt. It was then diluted with EtOAc and filtered through a pad of Celite, and the filtrate was concentrated in vacuo. All products were purified by column chromatography (EtOAc/pentane gradients), and their yield and characterization data are presented below.
(1R,5R)-3-(4-Methoxyphenyl)-6,6-dimethyl-N-(quinolin-8-yl)-bicyclo[3.1.1]hept-2-ene-2-carboxamide (4a).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 0% to $10 \% \mathrm{EtOAc}$ in pentane) in 44.2 mg (74%) as a yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.58(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{dd}, 1 \mathrm{H}, J=7.65,1.30 \mathrm{~Hz}), 8.44(\mathrm{dd}$, $1 \mathrm{H}, J=4.21 \mathrm{~Hz}, 1.69 \mathrm{~Hz}), 8.06(\mathrm{dd}, 1 \mathrm{H}, J=8.28,1.69 \mathrm{~Hz}), 7.52-$ $7.48(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{dd}, 1 \mathrm{H}, J=8.28,1.30 \mathrm{~Hz}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}), 6.78-6.76(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.72 \mathrm{~Hz}), 2.84(\mathrm{dd}$, $1 \mathrm{H}, J=18.3,2.97 \mathrm{~Hz}), 2.71(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.63 \mathrm{~Hz}), 2.63-2.58$ $(\mathrm{m}, 1 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.06 \mathrm{~Hz}), 1.44(\mathrm{~s}, 3 \mathrm{H})$, 1.08 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 168.1, 159.6, 147.3, 140.0, 138.5, 138.2, 136.5, 134.8, 132.2, 129.1, 127.9, 127.6, 121.24, 121.16, 116.6, 114.1, 55.3, 44.1, 40.8, 38.5, 38.4, 31.8, 26.0, $21.4\left(700 \mathrm{MHz}\right.$ was necessary to resolve all ${ }^{13} \mathrm{C}$ resonances, but we have also provided the corresponding $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a}$ in the Supporting Information); HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ 421.1886, found 421.1883.
(1R,5R)-3-(4-Methylphenyl)-6,6-dimethyl-N-(quinolin-8-yl)-bicyclo[3.1.1]hept-2-ene-2-carboxamide (4b).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 0% to $10 \% \mathrm{EtOAc}$ in pentane) in $41.9 \mathrm{mg}(73 \%)$ as a yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{dd}, 1 \mathrm{H}, J=7.66,1.31 \mathrm{~Hz}), 8.42$ (dd, $1 \mathrm{H}, J=4.21,1.69 \mathrm{~Hz}$), $8.06(\mathrm{dd}, 1 \mathrm{H}, J=8.27,1.69 \mathrm{~Hz}), 7.51-7.47$ $(\mathrm{m}, 1 \mathrm{H}), 7.42(\mathrm{dd}, 1 \mathrm{H}, J=8.28,1.31 \mathrm{~Hz}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.06-$ $7.03(\mathrm{~m}, 2 \mathrm{H}) 3.03(\mathrm{t}, 1 \mathrm{H}, J=5.71 \mathrm{~Hz}), 2.85(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.95$ $\mathrm{Hz}), 2.72(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.62 \mathrm{~Hz}), 2.64-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.27$ $(\mathrm{m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, 1 \mathrm{H}, J=9.07 \mathrm{~Hz}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.09$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.7,147.2,140.2$, 138.8, 138.4, 137.5, 136.8, 135.9, 134.8, 129.3, 129.1, 127.7, 127.3, 121.1, 120.9, 116.1, 44.0, 40.6, 38.34, 38.27, 31.7, 25.8, 21.2, 21.1; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{ONa}$ 405.1937, found 405.1937.
(1R,5R)-3-(3,5-Dimethylphenyl)-6,6-dimethyl-N-(quinolin-8-yl)-bicyclo[3.1.1]hept-2-ene-2-carboxamide (4c).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 0% to $10 \% \mathrm{EtOAc}$ in pentane) in $39.9 \mathrm{mg}(67 \%)$ as a yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.48(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{dd}, 1 \mathrm{H}, J=7.65,1.30 \mathrm{~Hz}), 8.40(\mathrm{dd}$, $1 \mathrm{H}, J=4.21,1.70 \mathrm{~Hz}), 8.03(\mathrm{dd}, 1 \mathrm{H}, J=6.60,1.70 \mathrm{~Hz}), 7.48-7.44$ $(\mathrm{m}, 1 \mathrm{H}), 7.39(\mathrm{dd}, 1 \mathrm{H}, J=8.26,1.30 \mathrm{~Hz}), 7.31(\mathrm{dd}, 1 \mathrm{H}, J=8.26$, $4.21), 6.99(\mathrm{~s}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.01(\mathrm{t}, 1 \mathrm{H}, J=5.69 \mathrm{~Hz}), 2.81(\mathrm{dd}$,
$1 \mathrm{H}, J=18.4,2.92 \mathrm{~Hz}), 2.77(\mathrm{dd}, 1 \mathrm{H}, J=18.4,2.63 \mathrm{~Hz}), 2.61-2.56$ $(\mathrm{m}, 1 \mathrm{H}), 2.29-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H}), 1.44(\mathrm{~d}, 1 \mathrm{H}, J=9.06 \mathrm{~Hz})$, 1.42 (s, 3H), 1.07 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.7, 147.3, 140.2, 139.6, 139.2, 138.4, 137.9, 135.8, 134.9, 129.3, 127.7, 127.3, 125.5, 121.1, 120.9, 116.0, 43.8, 40.6, 38.6, 38.2, 31.7, 21.21, 21.16; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{ONa}$ 419.2094, found 419.2091.
(1R,5R)-6,6-Dimethyl-3-phenyl-N-(quinolin-8-yl)bicyclo[3.1.1]-hept-2-ene-2-carboxamide (4d).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 0% to $5 \% \mathrm{EtOAc}$ in pentane) in 33.7 $\mathrm{mg}(61 \%)$ as a yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $298 \mathrm{~K}) \delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 8.75-8.73(\mathrm{~m}, 1 \mathrm{H}), 8.40(\mathrm{dd}, 1 \mathrm{H}, J=4.20$, 1.69 Hz), 8.01 (dd, $1 \mathrm{H}, J=8.03,1.47 \mathrm{~Hz}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.41-$ $7.37(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{dd}, 1 \mathrm{H}, J=8.26,4.20 \mathrm{~Hz}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H})$, $7.11(\mathrm{tt}, 1 \mathrm{H}, J=7.42,1.29 \mathrm{~Hz}), 3.02(\mathrm{t}, 1 \mathrm{H}, J=5.73 \mathrm{~Hz}), 2.84(\mathrm{dd}$, $1 \mathrm{H}, J=18.4,2.97 \mathrm{~Hz}), 2.71(\mathrm{dd}, 1 \mathrm{H}, J=18.4,2.62 \mathrm{~Hz}), 2.62-2.57$ $(\mathrm{m}, 1 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~d}, 1 \mathrm{H}, J=9.09 \mathrm{~Hz}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,147.4$, 140.6, 139.7, 138.6, 138.4, 135.9, 134.7, 128.4, 127.8, 127.68, 127.65, 127.3, 121.2, 121.0, 116.0, 44.0, 40.6, 38.34, 38.26, 31.6, 25.8, 21.2; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{ONa}$ 391.1781, found 391.1779.
(1R,5R)-6,6-Dimethyl-3-(naphthalen-2-yl)-N-(quinolin-8-yl)-bicyclo[3.1.1]hept-2-ene-2-carboxamide (4e).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 5% to $10 \% \mathrm{EtOAc}$ in pentane) in $47.7 \mathrm{mg}(76 \%)$ as a white amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{dd}, 1 \mathrm{H}, J=7.73,1.25 \mathrm{~Hz}), 7.96(\mathrm{~d}, 1 \mathrm{H}$, $J=1.13 \mathrm{~Hz}), 7.88-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{dd}, 1 \mathrm{H}, J=7.99,0.59 \mathrm{~Hz})$, $7.57(\mathrm{~d}, 1 \mathrm{H}, J=8.54 \mathrm{~Hz}), 7.49-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H})$, 7.36 (dd, $1 \mathrm{H}, J=4.23,1.66 \mathrm{~Hz}), 7.31(\mathrm{dd}, 1 \mathrm{H}, J=8.25,1.25 \mathrm{~Hz})$, $6.98(\mathrm{dd}, 1 \mathrm{H}, J=8.25,4.23 \mathrm{~Hz}), 3.13(\mathrm{t}, 1 \mathrm{H}, J=5.71 \mathrm{~Hz}), 2.97(\mathrm{dd}$, $1 \mathrm{H}, J=18.5,2.89 \mathrm{~Hz}$), $2.82(\mathrm{dd}, 1 \mathrm{H}, J=18.5,2.63 \mathrm{~Hz}), 2.67-2.62$ $(\mathrm{m}, 1 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~d}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 1.46(\mathrm{~s}, 3 \mathrm{H})$, $1.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 167.1, 147.0, $140.9,139.2,138.2,137.4,135.5,134.6,133.7,133.1,128.3,128.0$, 127.6, 127.4, 127.1 126.6, 126.4, 126.1, 125.8, 120.94, 120.90, 116.0, 43.7, 40.7, 39.0, 38.2, 31.7, 25.9, 21.3; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{ONa} 441.1937$, found 441.1941.
(1R,5R)-3-(4-Fluorophenyl)-6,6-dimethyl-N-(quinolin-8-yl)-bicyclo[3.1.1]hept-2-ene-2-carboxamide (4f).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column
chromatography (gradient from 0% to 10% EtOAc in pentane) in $41.2 \mathrm{mg}(71 \%)$ as a yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.51(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{dd}, 1 \mathrm{H}, J=7.59,1.30 \mathrm{~Hz}), 8.45(\mathrm{dd}$, $1 \mathrm{H}, J=4.22,1.66 \mathrm{~Hz}), 8.05(\mathrm{dd}, 1 \mathrm{H}, J=8.28,1.66 \mathrm{~Hz}), 7.50-7.46$ $(\mathrm{m}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=$ $5.70 \mathrm{~Hz}), 2.82(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.94 \mathrm{~Hz}), 2.68(\mathrm{dd}, 1 \mathrm{H}, J=18.3$, $2.64 \mathrm{~Hz}), 2.62-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.12 \mathrm{~Hz}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.3,162.6(\mathrm{~d}, J=246 \mathrm{~Hz}), 147.4,141.0,138.2,137.4$, 136.1, $135.7(\mathrm{~d}, J=3.67 \mathrm{~Hz}), 134.5,129.5(\mathrm{~d}, J=8.07 \mathrm{~Hz}), 127.8$, 127.3, 121.3, 121.2, 116.2, $115.4(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 44.0,40.6,38.34$, 38.29, 31.6, 25.8, 21.2; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OFNa}$ 409.1687, found 409.1685 .
(1R,5R)-3-(4-Chlorophenyl)-6,6-dimethyl- N-(quinolin-8-yl)-bicyclo[3.1.1]hept-2-ene-2-carboxamide (4g).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ for 48 h , and the product was isolated after column chromatography (gradient from 0% to 5% EtOAc in pentane) in 41.1 $\mathrm{mg}(68 \%)$ as a yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{dd}, 1 \mathrm{H}, J=7.55,1.37 \mathrm{~Hz}), 8.46(\mathrm{dd}, 1 \mathrm{H}, J=$ $4.23,1.69 \mathrm{~Hz}), 8.05(\mathrm{~d}, 1 \mathrm{H} \mathrm{d}, J=8.29,1.69 \mathrm{~Hz}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H})$, $7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{t}, 1 \mathrm{H}, J=5.69 \mathrm{~Hz})$, $2.80(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.93 \mathrm{~Hz}), 2.67(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.64 \mathrm{~Hz})$, $2.62-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~d}, 1 \mathrm{H}, J=9.14 \mathrm{~Hz})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.1, 147.6, 141.3, 138.3, 138.2, 137.3, 136.1, 134.5, 133.7, 129.2, 128.7, 127.7, 127.3, 121.33, 121.27, 116.2, 44.0, 40.6, 38.3, 38.2, 31.6, 25.8, 21.2; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OClNa}$ 425.1391, found 425.1401 .
(1R,5R)-3-(3-Chlorophenyl)-6,6-dimethyl-N-(quinolin-8-yl)-bicyclo[3.1.1]hept-2-ene-2-carboxamide (4h).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ for 48 h , and the product was isolated after column chromatography (gradient from 0% to $5 \% \mathrm{EtOAc}$ in pentane) in 42.0 $\mathrm{mg}(69 \%)$ as a white amorphous solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.47(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, 1 \mathrm{H}, J=8.71 \mathrm{~Hz}), 8.51(\mathrm{dd}, 1 \mathrm{H}, J=4.15,1.39$ $\mathrm{Hz}), 8.03(\mathrm{dd}, 1 \mathrm{H}, J=8.23,1.24 \mathrm{~Hz}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}$, $1 \mathrm{H}, J=8.25 \mathrm{~Hz}), 7.33(\mathrm{dd}, 1 \mathrm{H}, J=8.23,4.15 \mathrm{~Hz}), 7.21-7.18(\mathrm{~m}$, $1 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{t}, 1 \mathrm{H}, J=5.65$ $\mathrm{Hz}), 2.80(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.71 \mathrm{~Hz}), 2.68(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.41$ $\mathrm{Hz}), 2.63-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~d}, 1 \mathrm{H}, J=9.34$ $\mathrm{Hz}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} 5 \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 167.0,147.8,141.9,141.7,138.4,137.2,135.9,134.50,134.47$, 129.8, 127.8, 127.7 (two overlapping C), 127.3, 126.4, 121.4, 121.2, 116.0, 44.0, 40.6, 38.3 (two overlapping C), 31.6, 25.9, 21.2; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OClNa} 425.1391$, found 425.1374.
(1R,5R)-3-(4-Bromophenyl)-6,6-dimethyl-N-(quinolin-8-yl)-bicyclo[3.1.1]hept-2-ene-2-carboxamide (4i).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 5% to 10% EtOAc in pentane) in 45.0 mg (67%) as a white amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.48(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{dd}, 1 \mathrm{H}, J=7.50,1.43 \mathrm{~Hz}), 8.46(\mathrm{dd}$, $1 \mathrm{H}, J=4.22,1.70 \mathrm{~Hz}$), $8.05(\mathrm{dd}, 1 \mathrm{H}, J=8.26,1.70 \mathrm{~Hz}), 7.50-7.45$ $(\mathrm{m}, 1 \mathrm{H}), 7.42(\mathrm{dd}, 1 \mathrm{H}, J=8.26,1.48 \mathrm{~Hz}), 7.36-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.27-$ $7.25\left(\mathrm{~m}, 2 \mathrm{H}+\mathrm{CDCl}_{3}\right.$ peak), $3.02(\mathrm{t}, 1 \mathrm{H}, J=5.70 \mathrm{~Hz}), 2.81(\mathrm{dd}, 1 \mathrm{H}, J$ $=18.6,2.95 \mathrm{~Hz}), 2.68(\mathrm{dd}, 1 \mathrm{H}, J=18.6,2.67 \mathrm{~Hz}), 2.62-2.57(\mathrm{~m}$, $1 \mathrm{H}), 2.31-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1,147.7,141.3,138.6$, 138.3, 137.3, 135.9, 134.5, 131.6, 129.5, 127.7, 127.2, 121.9, 121.34, 121.25, 116.1, 44.0, 40.5, 38.2, 38.1, 31.5, 25.8, 21.2; HRMS (ESI) m/ $z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OBr}^{79} \mathrm{Na}$ and $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OBr}^{81} \mathrm{Na}$ 469.0886 and 471.0867, found 469.0890 and 471.0863.
(1R,5R)-3-(4-lodophenyl)-6,6-dimethyl-N-(quinolin-8-yl)bicyclo-[3.1.1]hept-2-ene-2-carboxamide (4j).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 0% to 10% EtOAc in pentane) in 36.3 mg (49%) as a yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{dd}, 1 \mathrm{H}, J=7.51,1.19 \mathrm{~Hz}), 8.48(\mathrm{dd}$, $1 \mathrm{H}, J=4.21,1.63 \mathrm{~Hz}$), 8.07 (dd, $1 \mathrm{H}, J=8.27,1.63 \mathrm{~Hz}$), $7.57-7.52$ $(\mathrm{m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{dd}, 1 \mathrm{H}, J=8.27,4.21 \mathrm{~Hz}), 7.15-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{t}, 1 \mathrm{H}, J=5.67 \mathrm{~Hz}), 2.80(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.3,2.95$ $\mathrm{Hz}), 2.67(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.61 \mathrm{~Hz}), 2.62-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.27$ $(\mathrm{m}, 1 \mathrm{H}), 1.44(\mathrm{~d}, 1 \mathrm{H}, J=9.29 \mathrm{~Hz}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.7,147.7,141.3,139.2$, 138.2, 137.5, 137.4, 136.1, 134.4, 129.8, 127.8, 127.3, 121.4, 121.3, 116.3, 93.5, 44.0, 40.5, 38.2, 38.0, 31.5, 25.8, 21.2; HRMS (ESI) m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OINa}$ 517.0747, found 517.0739.
(1R,5R)-3-(2-Fluorophenyl)-6,6-dimethyl-N-(quinolin-8-yl)-bicyclo[3.1.1]hept-2-ene-2-carboxamide (4k).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 5% to $10 \% \mathrm{EtOAc}$ in pentane) in 7.5 $\mathrm{mg}(13 \%)$ as a yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{dd}, 1 \mathrm{H}, J=7.56,1.30 \mathrm{~Hz}), 8.48(\mathrm{dd}, 1 \mathrm{H}, J=$ $4.19,1.63 \mathrm{~Hz}$), $8.03(\mathrm{dd}, 1 \mathrm{H}, J=8.26,1.63 \mathrm{~Hz}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H})$, $7.39(\mathrm{dd}, 1 \mathrm{H}, J=8.26,1.37 \mathrm{~Hz}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}$, $1 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{t}, 1 \mathrm{H}, J=5.72 \mathrm{~Hz}), 2.83(\mathrm{dd}, 1 \mathrm{H}, J=$ $18.4,3.04 \mathrm{~Hz}$), 2.69 (dd, $1 \mathrm{H}, J=18.4,2.61 \mathrm{~Hz}), 2.63-2.59(\mathrm{~m}, 1 \mathrm{H})$, $2.30-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, 1 \mathrm{H}, J=9.11 \mathrm{~Hz}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6,159.9(\mathrm{~d}, J=246$

Hz), 147.4, 142.9, 138.3, 136.0, 134.5, 133.4, 130.3, 130.2, 129.3 (d, J $=8.07 \mathrm{~Hz}), 127.7,127.4,127.3(\mathrm{~d}, J=16.1 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=3.65$ $\mathrm{Hz}), 121.1(\mathrm{~d}, J=16.1 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 115.7,43.8,40.6$, 38.2, $38.0(\mathrm{~d}, J=1.47 \mathrm{~Hz}$), 31.6, 25.9, 21.1; HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+$ $\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OFNa}$ 409.1687, found 409.1682.
(1R,5R)-3-(4-Nitrophenyl)-6,6-dimethyl-N-(quinolin-8-yl)bicyclo-[3.1.1]hept-2-ene-2-carboxamide (4m).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 0% to $10 \% \mathrm{EtOAc}$ in pentane) in $26.0 \mathrm{mg}(42 \%)$ as a yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.44(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{dd}, 1 \mathrm{H}, J=7.41,1.41 \mathrm{~Hz}), 8.40(\mathrm{dd}$, $1 \mathrm{H}, J=4.25,1.68 \mathrm{~Hz}), 8.08-8.04(\mathrm{~m}, 3 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H})$, $7.50-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{dd}, 1 \mathrm{H}, J=8.27,4.25 \mathrm{~Hz}), 3.00(\mathrm{t}, J=5.66$ $\mathrm{Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.3,2.92 \mathrm{~Hz}), 2.72(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.3,2.64$ $\mathrm{Hz}), 2.67-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.23$ $\mathrm{Hz}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 166.7, 147.6, 147.3, 146.7, 143.6, 138.2, 136.3, 135.9, 134.1, 128.7, 127.8, 127.4, 123.8, 121.7, 121.5, 116.4, 44.4, 40.5, 38.4, 37.6, 31.5, 25.8, 21.3; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}$ 436.1632, found 436.1623.
(1R,5R)-3-(3-Nitrophenyl)-6,6-dimethyl-N-(quinolin-8-yl)bicyclo-[3.1.1]hept-2-ene-2-carboxamide (4n).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 0% to $10 \% \mathrm{EtOAc}$ in pentane) in $25.0 \mathrm{mg}(40 \%)$ as a white amorphous solid: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, 1 \mathrm{H}, J=7.44 \mathrm{~Hz}), 8.33(\mathrm{dd}, 1 \mathrm{H}, J=$ $4.20,1.38 \mathrm{~Hz}), 8.31-8.29(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{dd}, 1 \mathrm{H}, J=8.24,1.38 \mathrm{~Hz})$, $7.92(\mathrm{~d}, 1 \mathrm{H}, J=8.55 \mathrm{~Hz}), 7.62(\mathrm{~d}, 1 \mathrm{H}, J=7.64 \mathrm{~Hz}), 7.44-7.41(\mathrm{~m}$, $1 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{dd}, 1 \mathrm{H}, J=8.24,4.20 \mathrm{~Hz}) 7.24-7.21$ $(\mathrm{m}, 1 \mathrm{H}), 2.97(\mathrm{t}, 1 \mathrm{H}, J=5.60 \mathrm{~Hz}), 2.83(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.76 \mathrm{~Hz})$, $2.71(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.40 \mathrm{~Hz}), 2.63-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.29(\mathrm{~m}$, $1 \mathrm{H}), 1.47(\mathrm{~d}, 1 \mathrm{H}, J=9.25 \mathrm{~Hz}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,148.4,147.8,143.3,141.6,138.2$, 136.2, 135.8, 134.4, 134.1, 129.5, 127.8, 127.3, 122.52, 122.49, 121.6, 121.5, 116.2, 44.3, 40.5, 38.4, 37.9, 31.6, 25.8, 21.3; HRMS (ESI) m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}$ 436.1632, found 436.1642.
(1R,5R)-3-(4-Acetylphenyl)-6,6-dimethyl-N-(quinolin-8-yl)-bicyclo[3.1.1]hept-2-ene-2-carboxamide (40).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 10% to 30% EtOAc in pentane) in $24.6 \mathrm{mg}(40 \%)$ as a yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{dd}, 1 \mathrm{H}, J=7.60,1.21 \mathrm{~Hz}), 8.35(\mathrm{dd}$, $1 \mathrm{H}, J=4.22,1.67 \mathrm{~Hz}), 8.02(\mathrm{dd}, 1 \mathrm{H}, J=8.28,1.67 \mathrm{~Hz}), 7.80-7.77$
$(\mathrm{m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{dd}, 1 \mathrm{H}, J=8.27,1.36 \mathrm{~Hz}), 7.27$ $(\mathrm{dd}, 1 \mathrm{H}, J=8.28,4.22 \mathrm{~Hz}), 3.00(\mathrm{t}, 1 \mathrm{H}, J=5.67 \mathrm{~Hz}), 2.85(\mathrm{dd}, 1 \mathrm{H}, J$ $=18.3,2.97 \mathrm{~Hz}), 2.71(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.63 \mathrm{~Hz}), 2.65-2.59(\mathrm{~m}$, $1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.17 \mathrm{~Hz})$, 1.43 (s, 3H), $1.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 197.6, 167.1, 147.5, 144.7, 142.3, 138.3, 137.2, 136.3, 136.0, 134.4, 128.5, 128.0, 127.7, 127.3, 121.33, 121.26, 116.2, 44.2, 40.5, 38.3, 37.7, 31.5, 26.5, 25.8, 21.2; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na} 433.1886$, found 433.1883 .

Methyl 3-[(1R,5R)-6,6-Dimethyl-2-(quinolin-8-ylcarbamoyl)-bicyclo[3.1.1]hept-2-en-3-yl]benzoate (4p).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 5% to $30 \% \mathrm{EtOAc}$ in pentane) in $35.0 \mathrm{mg}(55 \%)$ as a white amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.44(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{dd}, 1 \mathrm{H}, J=7.60,1.24 \mathrm{~Hz}), 8.32(\mathrm{dd}$, $1 \mathrm{H}, J=4.21,1.68 \mathrm{~Hz}), 8.11(\mathrm{t}, 1 \mathrm{H}, J=1.63 \mathrm{~Hz}), 8.01(\mathrm{dd}, 1 \mathrm{H}, J=$ $8.28,1.63 \mathrm{~Hz}), 7.79(\mathrm{dt}, 1 \mathrm{H}, J=7.80,1.28 \mathrm{~Hz}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{dd}, 1 \mathrm{H}, J=8.26,1.34 \mathrm{~Hz}), 7.27(\mathrm{dd}, 1 \mathrm{H}, J$ $=8.28,4.21 \mathrm{~Hz}), 7.21(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.72,0.40 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.02$ $(\mathrm{t}, 1 \mathrm{H}, J=5.68 \mathrm{~Hz}), 2.85(\mathrm{dd}, 1 \mathrm{H}, J=18.4,2.94 \mathrm{~Hz}), 2.73(\mathrm{dd}, 1 \mathrm{H}, J$ $=18.4,2.61 \mathrm{~Hz}), 2.64-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~d}$, $1 \mathrm{H}, J=9.15 \mathrm{~Hz}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.1,167.0,147.6,141.7,140.1,138.3,137.5,135.9$, 134.5, 132.7, 130.4, 128.9, 128.7 (two overlapping C), 127.7, 127.3, 121.3, 121.2, 116.0, 52.2, 44.1, 40.6, 38.31, 38.29, 31.6, 25.9, 21.3; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$ 449.1836, found 449.1851 .
tert-Butyl \{4-[(1R,5R)-6,6-Dimethyl-2-(quinolin-8-ylcarbamoyl)-bicyclo[3.1.1]hept-2-en-3-yl]phenyl\}carbamate (4q).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 5% to $30 \% \mathrm{EtOAc}$ in pentane) in $47.9 \mathrm{mg}(66 \%)$ as a white amorphous solid: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~d}, 1 \mathrm{H}, J=7.52 \mathrm{~Hz}), 8.47(\mathrm{~d}, 1 \mathrm{H}, J=$ $4.10 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J=8.33 \mathrm{~Hz}), 7.49-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, 1 \mathrm{H}$, $J=7.90 \mathrm{~Hz}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{dd}, 1 \mathrm{H}, J=8.33,4.10 \mathrm{~Hz})$, $7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{t}, 1 \mathrm{H}, J=5.62 \mathrm{~Hz}), 2.82(\mathrm{dd}$, $1 \mathrm{H}, J=18.3,2.72 \mathrm{~Hz}$), $2.68(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.35 \mathrm{~Hz}), 2.60-2.55$ $(\mathrm{m}, 1 \mathrm{H}), 2.29-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~d}, 1 \mathrm{H}, J=9.10 \mathrm{~Hz})$, $1.41(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $167.7,152.5,147.7,140.4,138.5,138.2,138.1,135.8,134.8,134.3$, $128.5,127.7,127.3,121.2,121.0,118.4,116.0,80.6,44.0,40.7,38.4$, 38.2, 31.7, 28.3, 25.9, 21.3; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Na}$ 506.2414, found 506.2391.
(1R,5R)-3-(2,3-Dihydrobenzofuran-5-yl)-6,6-dimethyl- N-(quino-lin-8-yl)bicyclo[3.1.1]hept-2-ene-2-carboxamide (4r).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 5\% to 30% EtOAc in pentane) in $42.0 \mathrm{mg}(68 \%)$ as a white amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.56(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{dd}, 1 \mathrm{H}, J=7.66,1.21 \mathrm{~Hz}), 8.43(\mathrm{dd}$, $1 \mathrm{H}, J=4.29,1.62 \mathrm{~Hz}$), $8.04(\mathrm{dd}, 1 \mathrm{H}, J=8.28,1.62 \mathrm{~Hz}), 7.49-7.46$ $(\mathrm{m}, 1 \mathrm{H}), 7.40(\mathrm{dd}, 1 \mathrm{H}, J=8.26,1.31 \mathrm{~Hz}), 7.32(\mathrm{dd}, 1 \mathrm{H}, J=8.28,4.20$ $\mathrm{Hz}), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=8.12 \mathrm{~Hz}), 4.37-4.24(\mathrm{~m}$, $2 \mathrm{H}), 3.02(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.72 \mathrm{~Hz}), 2.94-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.68(\mathrm{dd}, 1 \mathrm{H}, J=$ $18.3,2.61 \mathrm{~Hz}), 2.60-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.41$ (overlapping s and d, 4 H), $1.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 167.9,160.1,147.5,139.7,139.0,138.4,135.8,134.9,131.9$, 127.7, 127.5, 127.32, 127.31, 124.7, 121.2, 120.9, 116.0, 109.2, 71.2, 43.9, 40.7, 38.6, 38.3, 31.7, 29.7, 29.4, 25.8, 21.2; HRMS (ESI) m / z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ 433.1886, found 433.1903.
(1R,5R)-6,6-Dimethyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)bicyclo-[3.1.1]hept-2-ene-2-carboxamide (4s).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 0% to 10% EtOAc in pentane) in 36.0 mg (64\%) as an olive-colored amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, 1 \mathrm{H}, J=7.60,1.32 \mathrm{~Hz}), 8.59$ $(\mathrm{dd}, 1 \mathrm{H}, J=4.22,1.68 \mathrm{~Hz}), 8.10(\mathrm{dd}, 1 \mathrm{H}, J=8.27,1.68 \mathrm{~Hz}), 7.55-$ $7.51(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{dd}, 1 \mathrm{H}, J=8.29,1.39 \mathrm{~Hz}), 7.37(\mathrm{dd}, 1 \mathrm{H}, J=8.27$, $4.22 \mathrm{~Hz}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.81(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.85(\mathrm{~m}$, $2 \mathrm{H}), 2.77(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.8,2.69 \mathrm{~Hz}), 2.62-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.28$ $(\mathrm{m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, 1 \mathrm{H}, J=9.11 \mathrm{~Hz}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0,147.8,141.1,140.8$, 138.3, 136.2, 134.7, 128.7, 127.9, 127.4, 127.1, 125.9, 125.3, 121.4 (2C), ${ }^{24} 116.5,45.0,40.6,39.1,37.8,31.7,25.8,21.4$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OSNa}$ 397.1345, found 397.1339.
(1R,5R)-3-(6-Chloropyridin-3-yl)-6,6-dimethyl-N-(quinolin-8-yl)-bicyclo[3.1.1]hept-2-ene-2-carboxamide (4t).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 5% to 10% EtOAc in pentane) in $36.4 \mathrm{mg}(60 \%)$ as a white amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 8.67(\mathrm{dd}, 1 \mathrm{H}, J=7.28,1.68 \mathrm{~Hz}), 8.52(\mathrm{dd}$, $1 \mathrm{H}, J=4.23,1.68 \mathrm{~Hz}), 8.45(\mathrm{dd}, 1 \mathrm{H}, J=2.49,0.60 \mathrm{~Hz}), 8.08(\mathrm{dd}, 1 \mathrm{H}$, $J=8.29,1.68 \mathrm{~Hz}), 7.61(\mathrm{dd}, 1 \mathrm{H}, J=8.22,2.49 \mathrm{~Hz}), 7.50-7.43(\mathrm{~m}$, $2 \mathrm{H}), 7.37(\mathrm{dd}, 1 \mathrm{H}, J=8.29,4.23 \mathrm{~Hz}), 7.10(\mathrm{dd}, 1 \mathrm{H}, J=8.22,0.60$ $\mathrm{Hz}), 3.01(\mathrm{t}, 1 \mathrm{H}, J=5.67 \mathrm{~Hz}), 2.83(\mathrm{dd}, 1 \mathrm{H}, J=18.3,2.97 \mathrm{~Hz}), 2.68$ (dd, $1 \mathrm{H}, J=18.3,2.65 \mathrm{~Hz}), 2.64-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.32(\mathrm{~m}, 1 \mathrm{H})$, $1.46(\mathrm{~d}, 1 \mathrm{H}, J=9.23 \mathrm{~Hz}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,150.6,148.3,148.0,143.5,138.3,136.2$, $134.4,134.0,133.5,128.8,127.8,127.3,124.0,121.6,121.5,116.3$, 44.2, 40.5, 38.2, 37.8, 31.4, 25.7, 21.2; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{OClNa} 426.1344$, found 426.1340 .

Ethyl 6-[(1R,5R)-6,6-Dimethyl-2-(quinolin-8-ylcarbamoyl)-bicyclo[3.1.1]hept-2-en-3-yl]-4-oxo-4H-chromene-2-carboxylate (4u).

The reaction was performed according to general method B with 5 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$, and the product was isolated after column chromatography (gradient from 5% to $10 \% \mathrm{EtOAc}$ in pentane) in $30.5 \mathrm{mg}(40 \%)$ as a yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{dd}, 1 \mathrm{H}, J=7.54,0.99 \mathrm{~Hz}), 8.29(\mathrm{~d}, 1 \mathrm{H}$, $J=2.13 \mathrm{~Hz}), 8.26(\mathrm{dd}, 1 \mathrm{H}, J=4.21,1.64 \mathrm{~Hz}), 8.00(\mathrm{dd}, 1 \mathrm{H}, J=8.29$, $1.64 \mathrm{~Hz}), 7.70(\mathrm{dd}, 1 \mathrm{H}, J=8.70,2.26 \mathrm{~Hz}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.38$ $(\mathrm{dd}, 1 \mathrm{H}, J=8.26,1.30 \mathrm{~Hz}), 7.31(\mathrm{~d}, 1 \mathrm{H}, J=8.70 \mathrm{~Hz}), 7.22(\mathrm{dd}, 1 \mathrm{H}, J$ $=8.29,4.21 \mathrm{~Hz}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{q}, 2 \mathrm{H}, J=7.13 \mathrm{~Hz}), 2.98(\mathrm{t}, 1 \mathrm{H}$, $J=5.627 \mathrm{~Hz}), 2.87(\mathrm{dd}, 1 \mathrm{H}, J=18.4,2.91 \mathrm{~Hz}), 2.77(\mathrm{dd}, 1 \mathrm{H}, J=$ $18.4,2.58 \mathrm{~Hz}), 2.66-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~d}, 1 \mathrm{H}$, $J=9.19 \mathrm{~Hz}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, 3 \mathrm{H}, J=7.13 \mathrm{~Hz}), 1.10(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.3,167.0,160.4,155.5$, 152.1, 147.5, 142.8, 138.3, 138.0, 136.3, 136.0, 135.2, 134.2, 127.7, 127.3, 124.3, 124.0, 121.4, 121.3, 119.0, 116.1, 114.6, 63.0, 44.2, 40.5, 38.4, 38.0, 31.6, 25.8, 21.3, 14.1; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na} 531.1890$, found 531.1882.

Synthesis of (1R)-Myrtenic Acid (2).

A solution of $\mathrm{NaClO}_{2}\left(8.0 \mathrm{~g}, 70 \mathrm{mmol}, 1.4\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}(70 \mathrm{~mL})$ was added slowly over 2 h to a stirred mixture of myrtenal $(7.7 \mathrm{~g}, 50$ mmol, 1 equiv), $\mathrm{NaH}_{2} \mathrm{PO}_{4}\left(1.6 \mathrm{~g}, 13 \mathrm{mmol}, 0.26\right.$ equiv), $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$, 5.0 mL , $52 \mathrm{mmol}, 1.04$ equiv), and polyethylene glycol (PEG-400, 3.0 $\mathrm{g})$ in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ at $10^{\circ} \mathrm{C}$. The reaction mixture was stirred for 7 h , after which the reaction was quenched with $\mathrm{Na}_{2} \mathrm{SO}_{3}(0.5 \mathrm{~g})$. The resulting mixture was acidified to pH 3 with 10% aqueous HCl and extracted five times with diethyl ether. The organic layers were collected, combined, washed with saturated NaHSO_{3} and deionized $\mathrm{H}_{2} \mathrm{O}$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was then concentrated in vacuo to furnish compound 2 as a colorless viscous liquid ($6.65 \mathrm{~g}, 80 \%$ yield). No further purification of compound 2 was needed, and its characterization data were in accordance with those previously reported. ${ }^{16}$

Synthesis of 8-AQ Amide Substrate 3.

Oxalyl chloride ($0.9 \mathrm{~mL}, 10.5 \mathrm{mmol}, 2.1$ equiv) was added slowly to a stirred solution of $(1 R)$-myrtenic acid $(2,0.83 \mathrm{~g}, 5 \mathrm{mmol}, 1$ equiv) and catalytic amounts of DMF (2-3 drops) in DCM $(10 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was then allowed to reach rt and stirred for 5 h , after which it was concentrated in vacuo. The obtained crude acid chloride was dissolved in DCM (5 mL) and added to a solution of 8aminoquinoline ($0.72 \mathrm{~g}, 5 \mathrm{mmol}, 1$ equiv) and triethylamine (0.7 mL , $5 \mathrm{mmol}, 1$ equiv) in $\mathrm{DCM}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The subsequent reaction mixture was allowed to reach rt and stirred overnight ($\sim 14 \mathrm{~h}$). The
reaction mixture was then washed in a separatory funnel with a saturated sodium bicarbonate solution $(2 \times 20 \mathrm{~mL})$, dried, and concentrated in vacuo. Purification by column chromatography (gradient from 0% to 10% EtOAc in pentane) afforded the desired products as a white amorphous solid ($1.18 \mathrm{~g}, 81 \%$ yield): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.29(\mathrm{~s}, 1 \mathrm{H}), 8.33-8.31(\mathrm{~m}, 2 \mathrm{H}), 8.14-8.12$ $(\mathrm{m}, 1 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 3 \mathrm{H}), 6.73-6.72(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{td}, 1 \mathrm{H}, J=$ $5.60,1.71 \mathrm{~Hz}), 2.58-2.45(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{~d}, 1 \mathrm{H}, J=9.10 \mathrm{~Hz}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 165.3,148.1,144.8,138.7,136.3,134.8,130.2,128.0,127.5$, 121.5, 121.2, 116.2, 41.8, 40.5, 37.9, 32.0, 31.5, 26.0, 21.1; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}$ 315.1468, found 315.1475 .

Larger Scale Synthesis of Compound 4a in tert-Amyl Alcohol.

A capped vial equipped with a stirring bar was charged with substrate 3 ($0.732 \mathrm{~g}, 2.5 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(28 \mathrm{mg}, 0.125 \mathrm{mmol}, 5$ $\mathrm{mol} \%)$, $\mathrm{AgOAc}(0.83 \mathrm{~g}, 5 \mathrm{mmol}, 2.0$ equiv), 4 -iodoanisole (1.76 g , $7.5 \mathrm{mmol}, 3.0$ equiv), and $\mathrm{NaOAc}(0.205 \mathrm{~g}, 2.5 \mathrm{mmol}, 1.0$ equiv). All of the solids were then suspended in tert-amyl alcohol $(5 \mathrm{~mL})$, and the reaction vessel was evacuated and refilled with N_{2} before being placed in a preheated oil bath at $100^{\circ} \mathrm{C}$ for the time given in Table 1. After completion of the reaction, the crude mixture was allowed to cool to rt. It was then diluted with EtOAc and filtered through a pad of Celite, and the filtrate was concentrated in vacuo. Purification by column chromatography (gradient from 0% to $10 \% \mathrm{EtOAc}$ in pentane) afforded the desired product $4 \mathbf{a}$ as a yellow amorphous solid (727 mg , 73% yield).

Synthesis of Carboxylic Acid 5 by Hydrolytic Cleavage of the 8-AQ-Directing Group.

Compound 4a ($39 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaOH}(60 \mathrm{mg}, 1.5$ mmol, 15.0 equiv) were mixed in $\mathrm{EtOH}(1.5 \mathrm{~mL})$ in a capped vial and heated at $80^{\circ} \mathrm{C}$ for 3 days. After each 24 h , additional $\mathrm{NaOH}(40 \mathrm{mg}$, $1.0 \mathrm{mmol}, 10.0$ equiv) was added to the reaction mixture. When the reaction had reached completion, the mixture was transferred to a separation funnel where it was diluted with 1 M aqueous $\mathrm{NaOH}(10$ $\mathrm{mL})$ and washed with DCM $(2 \times 10 \mathrm{~mL})$. The aqueous layer was then acidified to pH 1 by the use of concentrated HCl . The acidic aqueous layer was extracted with $\mathrm{CHCl}_{3} / \mathrm{i}-\mathrm{PrOH}(3: 1$ ratio, 3×15 mL), and the organic layers were subsequently combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo, to furnish the pure transacid as a brown solid ($24.0 \mathrm{mg}, 88 \%$ yield). ($1 R, 5 R$)-3-(4-Methoxyphenyl)-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carboxylic acid (5): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{t}, 1 \mathrm{H}, J=5.74 \mathrm{~Hz}), 2.69(\mathrm{dd}, 1 \mathrm{H}, J=19.0,2.91$ $\mathrm{Hz}), 2.59(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=19.0,2.60 \mathrm{~Hz}), 2.53-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.17$ $(\mathrm{m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, 1 \mathrm{H}, J=9.15 \mathrm{~Hz}), 0.93(\mathrm{~s}, 3 \mathrm{H})$ (proton of COOH not visible); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.6, 159.2, 147.7, 133.8, 132.9, 128.3, 113.6, 55.2, 43.2, 40.3, 39.8, 38.1, 31.4, 25.7, 21.0; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na} 295.1305$, found 295.1297 .

Synthesis of Cyclobutane Keto Acid 6 by Ozonolysis.

Compound 5 ($27 \mathrm{mg}, 0.1 \mathrm{mmol}$, 1 equiv) was dissolved in dry DCM $(1 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. First, a stream of ozone was passed through the reaction solution for 5 min (until the characteristic blue color appeared), and then it was replaced by a stream of oxygen that was maintained until decolorization of the reaction solution occurred. Next, dimethyl sulfide (0.1 mL) was added, and the reaction mixture was then allowed to reach rt and stirred for 3 h . Once the reaction had reached completion, the reaction mixture was diluted with DCM (10 $\mathrm{mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic layer was then filtered, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. No further purification of the product was performed, and it was obtained as a yellow foamy solid (26 mg , purity of $\geq 90 \%, 77-83 \%$): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.90(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $3.75-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.13-$ $2.09(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~m}, 3 \mathrm{H})$ (proton of COOH not visible); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.8, 195.3, 163.6, $160.1,130.3,129.9,113.8,55.5,49.0,46.5,39.0,38.2,30.2,22.5,18.2$; HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}$ 327.1203, found 327.1201.

ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.1c00774.

Raw NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

Oscar Verho - Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden; Department of Medicinal Chemistry, Uppsala Biomedical Centre, Uppsala University, SE-751 23 Uppsala, Sweden; © orcid.org/0000-0002-3153-748X; Email: oscar.verho@ilk.uu.se
Monireh Pourghasemi Lati - Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE10691 Stockholm, Sweden; Email: monireh.lati@su.se

Authors

Jonas Ståhle - Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
Michael Meyer - Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.joc.1c00774

Notes

The authors declare no competing financial interest.

- ACKNOWLEDGMENTS

O.V. gratefully acknowledges the Wenner-Gren Foundations, the Olle Engkvist Foundation, and the Magnus Bergvall foundation for financially supporting this research. Furthermore, M.P.L. acknowledges the Wenner-Gren Foundation for funding her stay in the Verho group.

- REFERENCES

(1) Levi, P. G.; Cullen, J. M. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products. Environ. Sci. Technol. 2018, 52, 1725-1734.
(2) (a) Wu, L.; Moteki, T.; Gokhale, A. A.; Flaherty, D. W.; Toste, F. D. Production of Fuels and Chemicals from Biomass: Condensation

Reactions and Beyond. Chem. 2016, 1, 32-58. (b) Fiorentino, G.; Ripa, M.; Ulgiati, S. Chemicals from biomass: technological versus environmental feasibility. A review. Biofuels, Bioprod. Biorefin. 2017, 11, 195-214.
(3) (a) Brill, Z. G.; Condakes, M. L.; Ting, C. P.; Maimone, T. J. Navigating the Chiral Pool in the Total Synthesis of Complex Terpene Natural Products. Chem. Rev. 2017, 117, 11753-11795.
(b) Golets, M.; Ajaikumar, S.; Mikkola, J. - P. Catalytic Upgrading of Extractives to Chemicals: Monoterpenes to "EXICALS. Chem. Rev. 2015, 115, 3141-3169.
(4) Blaser, H. - U. The chiral pool as a source of enantioselective catalysts and auxiliaries. Chem. Rev. 1992, 92, 935-952.
(5) Gang, D. R. Evolution of flavors and scents. Annu. Rev. Plant Biol. 2005, 56, 301-325.
(6) (a) Mewalal, R.; Rai, D. K.; Kainer, D.; Chen, F.; Külheim, C.; Peter, G. F.; Tuskan, G. A. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels. Trends Biotechnol. 2017, 35, 227-240. (b) Wang, X.; Ort, D. R.; Yuan, J. S. Photosynthetic terpene hydrocarbon production for fuels and chemicals. Plant Biotechnol. J. 2015, 13, 137146.
(7) (a) Hegazy, M. E. F.; Mohamed, T. A.; Alhammady, M. A.; Shaheen, A. M.; Reda, E. H.; Elshamy, A. I.; Aziz, M.; Paré, P. W. Molecular Architecture and Biomedical Leads of Terpenes from Red Sea Marine Invertebrates. Mar. Drugs 2015, 13, 3154-3181. (b) Jansen, D. J.; Shenvi, R. A. Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery. Future Med. Chem. 2014, 6, 1127-1148.
(8) (a) Zhu, Y.; Romain, C.; Williams, C. K. Sustainable polymers from renewable resources. Nature 2016, 540, 354-362. (b) Winnacker, M.; Rieger, B. Recent progress in sustainable polymers obtained from cyclic terpenes: synthesis, properties, and application potential. ChemSusChem 2015, 8, 2455-2471. (c) Wilbon, P. A.; Chu, F.; Tang, C. Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromol. Rapid Commun. 2013, 34, 8-37.
(9) (a) Kaur, M.; van Humbeck, J. F. Recent trends in catalytic sp ${ }^{3}$ C-H functionalization of heterocycles. Org. Biomol. Chem. 2020, 18, 606-617. (b) Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Farooq Zia, M.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. A comprehensive overview of directing groups applied in metalcatalysed C-H functionalisation chemistry. Chem. Soc. Rev. 2018, 47, 6603-6743. (c) Davies, H. M. L.; Morton, D. Recent Advances in C-H Functionalization. J. Org. Chem. 2016, 81, 343-350. (d) Gutekunst, W. R.; Baran, P. S. C-H functionalization logic in total synthesis. Chem. Soc. Rev. 2011, 40, 1976-1991.
(10) (a) Sengupta, S.; Mehta, G. Macrocyclization via C-H functionalization: a new paradigm in macrocycle synthesis. Org. Biomol. Chem. 2020, 18, 1851-1876. (b) White, M. C.; Zhao, J. Aliphatic $\mathrm{C}-\mathrm{H}$ Oxidations for Late-Stage Functionalization. J. Am. Chem. Soc. 2018, 140, 13988-14009. (c) Karimov, R. R.; Hartwig, J. F. Transition-Metal-Catalyzed Selective Functionalization of $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ H Bonds in Natural Products. Angew. Chem., Int. Ed. 2018, 57, 42344241. (d) Subramanian, P.; Rudolf, G. C.; Kaliappan, K. P. Recent Trends in Copper-Catalyzed C-H Amination Routes to Biologically Important Nitrogen Scaffolds. Chem. - Asian J. 2016, 11, 168-192. (e) Lu, X.; Xiao, B.; Shang, R.; Liu, L. Synthesis of unnatural amino acids through palladium-catalyzed $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ functionalization. Chin. Chem. Lett. 2016, 27, 305-311. (f) Frihed, T. G.; Bols, M.; Pedersen, C. M. C-H Functionalization on Carbohydrates. Eur. J. Org. Chem. 2016, 2016, 2740-2756. (g) Farmer, M. E.; Laforteza, B. N.; Yu, J. Q. Unlocking nature's $\mathrm{C}-\mathrm{H}$ bonds. Bioorg. Med. Chem. 2014, 22, 4445-4452.
(11) Schmitz, A. J.; Ricke, A.; Oschmann, M.; Verho, O. Convenient Access to Chiral Cyclobutanes with Three Contiguous Stereocenters from Verbenone by Directed $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ arylation. Chem. - Eur. J. 2019, 25, 5154-5157.
(12) (a) Gutekunst, W. R.; Baran, P. S. Applications of C-H Functionalization Logic to Cyclobutane Synthesis. J. Org. Chem. 2014, 79, 2430-2452. (b) Gutekunst, W. R.; Gianatassio, R.; Baran, P. S.

Sequential $\mathrm{Csp}^{3}-\mathrm{H}$ Arylation and Olefination: Total Synthesis of the Proposed Structure of Pipercyclobutanamide A. Angew. Chem. 2012, 124, 7625-7628. These studies were in turn based on previous work with another directing group: (c) Frébault, F.; Maulide, N. Total Synthesis and Structural Revision of the Piperarborenines: When Photochemistry Meets C-H Activation. Angew. Chem., Int. Ed. 2012, 51, 2815-2817. (d) Gutekunst, W. R.; Baran, P. S. Total Synthesis and Structural Revision of the Piperarborenines via Sequential Cyclobutane C-H Arylation. J. Am. Chem. Soc. 2011, 133, 1907619079.
(13) (a) Beck, J. C.; Lacker, C. R.; Chapman, L. M.; Reisman, S. E. A modular approach to prepare enantioenriched cyclobutanes: synthesis of (+)-rumphellaone A. Chem. Sci. 2019, 10, 2315-2319. (b) Chapman, L. M.; Beck, J. C.; Lacker, C. R.; Wu, L.; Reisman, S. E. Evolution of a Strategy for the Enantioselective Total Synthesis of (+)-Psiguadial B. J. Org. Chem. 2018, 83, 6066-6085. (c) Chapman, L. M.; Beck, J. C.; Wu, L.; Reisman, S. E. Enantioselective Total Synthesis of (+)-Psiguadial B. J. Am. Chem. Soc. 2016, 138, 98039806.
(14) For seminal work on 8-AQ-directed $\mathrm{C}-\mathrm{H}$ functionalization chemistry, see: (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154-13155. (b) Shabashov, D.; Daugulis, O. Highly Regioselective Arylation of $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ Bonds Catalyzed by Palladium Acetate. J. Am. Chem. Soc. 2010, 132, 3965-3972. (c) Daugulis, O.; Roane, J.; Tran, L. D. Bidentate, Monoanionic Auxiliary-Directed Functionalization of Carbon-Hydrogen Bonds. Acc. Chem. Res. 2015, 48, 1053-1064.
(15) For some representative examples, see: (a) Oschmann, M.; Johansson Holm, L.; Pourghasemi Lati, M.; Verho, O. Synthesis of Elaborate Benzofuran-2-Carboxamide Derivatives through a Combination of 8 -Aminoquinoline Directed $\mathrm{C}-\mathrm{H}$ Arylation and Transamidation Chemistry. Molecules 2020, 25, 361. (b) Padmavathi, R.; Babu, S. A. Palladium-Catalyzed 8-Aminoquinoline-Aided $\mathrm{sp}^{2} \delta-\mathrm{C}-\mathrm{H}$ Intramolecular Amidation/Annulation: A Route to Tricyclic Quinolones. Asian J. Org. Chem. 2019, 8, 899-908. (c) Liu, M.; Yang, P.; Karunananda, M. K.; Wang, Y.; Liu, P.; Engle, K. M. C(alkenyl)-H Activation via Six-Membered Palladacycles: Catalytic 1,3-Diene Synthesis. J. Am. Chem. Soc. 2018, 140, 5805-5813. (d) Melillo, B.; Zoller, J.; Hua, B. K.; Verho, O.; Borghs, J. C.; Nelson, S. D., Jr.; Maetani, M.; Wawer, M. J.; Clemons, P. A.; Schreiber, S. L. Synergistic Effects of Stereochemistry and Appendages on the Performance Diversity of a Collection of Synthetic Compounds. J. Am. Chem. Soc. 2018, 140, 11784-11790. (e) Probst, N.; Grelier, G.; Dahaoui, S.; Alami, M.; Gandon, V.; Messaoudi, S. Palladium(II)Catalyzed Diastereoselective 2,3-Trans C $\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Arylation of Glycosides. ACS Catal. 2018, 8, 7781-7786. (f) Antermite, D.; Affron, D. P.; Bull, J. A. Regio- and Stereoselective PalladiumCatalyzed $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Arylation of Pyrrolidines and Piperidines with C(3) Directing Groups. Org. Lett. 2018, 20, 3948-3952. (g) Verho, O.; Maetani, M.; Melillo, B.; Zoller, J.; Schreiber, S. L. Stereospecific Palladium-Catalyzed C-H Arylation of Pyroglutamic Acid Derivatives at the C3 Position Enabled by 8 -Aminoquinoline as a Directing Group. Org. Lett. 2017, 19, 4424-4427. (h) Maetani, M.; Zoller, J.; Melillo, B.; Verho, O.; Kato, N.; Pu, J.; Comer, E.; Schreiber, S. L. Synthesis of a Bicyclic Azetidine with In Vivo Antimalarial Activity Enabled by Stereospecific, Directed $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Arylation. J. Am. Chem. Soc. 2017, 139, 11300-11306. (i) Liao, G.; Yin, X. - S.; Chen, K.; Zhang, Q.; Zhang, S. - Q.; Shi, B. - F. Stereoselective alkoxycarbonylation of unactivated $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bonds with alkyl chloroformates via $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ catalysis. Nat. Commun. 2016, 7, 12901. (j) Dey, A.; Pimparkar, S.; Deb, A.; Guin, S.; Maiti, D. Chelation-Assisted Palladium-Catalyzed γ-Arylation of Aliphatic Carboxylic Acid Derivatives. Adv. Synth. Catal. 2017, 359, 13011307.
(16) (a) Cheng, X.; Chen, Z.; Gao, Y.; Xue, F.; Jiang, C. Aminoquinoline-assisted vinylic $\mathrm{C}-\mathrm{H}$ arylation of unsubstituted acrylamide for the selective synthesis of Z olefins. Org. Biomol. Chem. 2016, 14, 3298-3306. (b) Hu, L.; Gui, Q.; Chen, X.; Tan, Z.; Zhu, G. Cobalt-promoted selective arylation of benzamides and
acrylamides with arylboronic acids. Org. Biomol. Chem. 2016, 14, 11070-11075. (c) Parella, R.; Babu, S. A. Pd(OAc) $)_{2}$-Catalyzed, AgOAc-Promoted Z Selective Directed β-Arylation of Acrylamide Systems and Stereoselective Construction of Z-Cinnamamide Scaffolds. J. Org. Chem. 2015, 80, 12379-12396. (d) Shang, R.; Ilies, L.; Asako, S.; Nakamura, E. Iron-Catalyzed C $\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ Bond Functionalization with Organoboron Compounds. J. Am. Chem. Soc. 2014, 136, 14349-14352.
(17) Lin, G.; Duan, W.; Liu, H.; Ma, Y.; Lei, F. Synthesis and Bioactivity of N -(4-(N^{\prime}-Substituted Sulfamoyl)Phenyl)Myrtenamides Containing a Heterocycle. Chem. Nat. Compd. 2018, 54, 56-62.
(18) Zhang, S. - Y.; He, G.; Nack, W. A.; Zhao, Y.; Li, Q.; Chen, G. Palladium-Catalyzed Picolinamide-Directed Alkylation of Unactivated C(sp3)-H Bonds with Alkyl Iodides. J. Am. Chem. Soc. 2013, 135, 2124-2127.
(19) Hamilton, G. S.; Ladd, C. L. Pivalic Acid. e-EROS Encyclopedia of Reagents for Organic Synthesis; Wiley \& Sons: Chichester, U.K., 2015; pp 1-9.
(20) Sherwood, J. European Restrictions on 1,2-Dichloroethane: CH Activation Research and Development Should Be Liberated and not Limited. Angew. Chem., Int. Ed. 2018, 57, 14286-14290.
(21) Despite achieving full conversion for these two reactions, products 4 g and $\mathbf{4 h}$ could be isolated in only 68% and 69% yields, respectively, due to considerable byproduct formation caused by the increased reaction times.
(22) (a) Dembitsky, V. M. Naturally occurring bioactive Cyclo-butane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine 2014, 21, 1559-1581. (b) Dembitsky, V. M. Bioactive cyclobutane-containing alkaloids. J. Nat. Med. 2007, 62, 133.
(23) (a) Gerry, C. J.; Schreiber, S. L. Chemical probes and drug leads from advances in synthetic planning and methodology. Nat. Rev. Drug Discovery 2018, 17, 333-352. (b) Kikuchi, H.; Oshima, Y. Developments toward the Production of Diverse Natural-ProductLike Compounds: Diversity-Oriented Synthesis and DiversityEnhanced Extracts. Heterocycles 2018, 96, 1509-1527. (c) Zhang, H. Syntheses of Bioactive Natural Products and Natural-Product-Like Compounds Based on Their Key Structural Units. Synlett 2014, 25, 1953-1970.
(24) The aromatic region of $4 \boldsymbol{s}$ processed with an exponential linebroadening window function of 3 Hz revealed that two peaks were overlapping at 121.4 ppm . Using an exponential line-broadening window function of 0.3 Hz clearly resolves them (see the raw NMR spectrum in the Supporting Information).

[^0]: Received: April 2, 2021
 Published: May 27, 2021

[^1]: ${ }^{a}$ Reagents and conditions: substrate 3 ($0.15 \mathrm{mmol}, \mathrm{Q}=8$-quinolinyl), 4-iodoanisole (3 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($5 \mathrm{~mol} \%$), AgOAc (2.0 equiv), and the additive(s) were dissolved in solvent $(0.5 \mathrm{M})$ and heated at the given temperature under an inert atmosphere. ${ }^{b}$ Conversions and yields were determined by ${ }^{1} \mathrm{H}$ NMR against $1,3,5$-trimethoxybenzene as the internal standard. ${ }^{c}$ With 2.5 equiv of AgOAc. ${ }^{d} \mathrm{With} 10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} .{ }^{e} \mathrm{The}$ reaction concentration was $1 \mathrm{M} .{ }^{f}$ Reaction performed on a 2.5 mmol scale.

