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Abstract Intrinsically disordered transcription factor transactivation domains (TADs) function

through structural plasticity, adopting ordered conformations when bound to transcriptional co-

regulators. Many transcription factors contain a negative regulatory domain (NRD) that suppresses

recruitment of transcriptional machinery through autoregulation of the TAD. We report the solution

structure of an autoinhibited NRD-TAD complex within FoxM1, a critical activator of mitotic gene

expression. We observe that while both the FoxM1 NRD and TAD are primarily intrinsically

disordered domains, they associate and adopt a structured conformation. We identify how Plk1

and Cdk kinases cooperate to phosphorylate FoxM1, which releases the TAD into a disordered

conformation that then associates with the TAZ2 or KIX domains of the transcriptional co-activator

CBP. Our results support a mechanism of FoxM1 regulation in which the TAD undergoes switching

between disordered and different ordered structures.

DOI: https://doi.org/10.7554/eLife.46131.001

Introduction
The transactivation domains (TADs) of transcription factors are responsible for recruiting transcrip-

tional machinery to target promoters (Ptashne and Gann, 1997). TADs consist of structurally disor-

dered domains, which facilitate adaptable association with multiple protein partners and, in some

contexts, form interaction network hubs within liquid condensates (Cho et al., 2018; Chong et al.,

2018; Liu et al., 2006; Minezaki et al., 2006; Wright and Dyson, 2015). Considering their intrinsic

disorder, it is critical to understand how TAD accessibility is restricted to regulate transcription factor

activity. Accessibility can be modulated through cellular localization, co-factor binding, ligand bind-

ing, posttranslational modifications, protein stability, phase separation, or oligomerization

(Bah et al., 2015; Cho et al., 2018; Chong et al., 2018; Wright and Dyson, 2015). Many transcrip-

tion factors, including critical regulators of cell division, contain a negative regulatory domain (NRD)

that is thought to bind and inhibit the TAD (Kim et al., 1999; Park et al., 2008b; Ramsay and

Gonda, 2008; Shi et al., 1995; Spengler and Brattain, 2006; Wierstra and Alves, 2006a). Little is

understood about how the NRD blocks accessibility of the intrinsically disordered TAD and how

TAD release is achieved. Here we have identified the structural mechanisms underlying regulation of

the mammalian Forkhead box M1 transcription factor (FoxM1).

FoxM1 is critical for dividing cells, as it activates expression of genes that facilitate mitotic entry,

the mitotic program, and proper cell-cycle progression (Fu et al., 2008; Korver et al., 1997;

Korver et al., 1998; Laoukili et al., 2005; Wang et al., 2005; Wonsey and Follettie, 2005). FoxM1

expression is normally confined to dividing cells and is found most commonly in embryogenesis,
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hematopoiesis, and tissue repair (Korver et al., 1997; Ramakrishna et al., 2007; Ustiyan et al.,

2009). FoxM1 is essential for proper development; null mice exhibit an embryonic lethal phenotype

due to liver, blood, heart, and lung abnormalities resulting from proliferation defects

(Ramakrishna et al., 2007).

Aberrant expression and misregulation of FoxM1 are associated with multiple cancers and are

directly related to increased proliferation, metastasis, chemoresistance, and poor therapeutic prog-

nosis (Koo et al., 2012; Myatt and Lam, 2007; Raychaudhuri and Park, 2011). FoxM1 misregula-

tion at both the transcriptional and protein level has been observed in adenocarcinomas, breast

cancer, squamous cell carcinomas, leukemia, lymphoma, and many additional malignancies

(Kwok et al., 2010; Millour et al., 2010; Park et al., 2011; Raychaudhuri and Park, 2011;

Xu et al., 2013; Yang et al., 2013). Several studies have shown that FoxM1 activates tumor metasta-

sis, mediates drug resistance, and regulates pluripotency-associated genes responsible for maintain-

ing tumor cells in their undifferentiated state (Carr et al., 2010; Kwok et al., 2010; Millour et al.,

2010; Park et al., 2011; Raychaudhuri and Park, 2011; Wang et al., 2011; Weigelt et al., 2005;

Xie et al., 2010). Additionally, deletion of FoxM1 in cancer cells inhibits tumor development and

growth and leads to increased apoptosis (Kalinichenko et al., 2004; Wonsey and Follettie, 2005).

Chemical inhibition of FoxM1 has become an important therapeutic strategy that would benefit

from further definition of FoxM1 structure and the biochemical mechanisms that control activation

(Gormally et al., 2014; Radhakrishnan et al., 2006).

Structural characterization of transcription factors remains challenging as they are enriched in low

complexity or intrinsically disordered domains (Babu et al., 2011). Transcription factors may have

folded domains, such as a DNA binding domain (DBD), but these domains are typically modular and

interspersed among disordered sequences. FoxM1 contains four distinct functional domains

(Figure 1A): a negative regulatory domain (NRD), a DNA binding domain (DBD), a region containing

several cyclin-dependent kinase (Cdk) consensus sites (called here the Cdk site region or CSR) and a

TAD (Anders et al., 2011; Fu et al., 2008; Littler et al., 2010; Major et al., 2004; Park et al.,

2008b; Wierstra and Alves, 2006a; Wierstra and Alves, 2006b). The DBD is the only region with a

known well-ordered structure; it binds to promoter sequences of many cell-cycle regulated genes

(Littler et al., 2010). The NRD suppresses FoxM1 activity in transcription reporter assays, and it has

been proposed that the NRD binds and sequesters the TAD from its association with the co-activa-

tors CBP and p300 (Laoukili et al., 2008a; Major et al., 2004; Park et al., 2008b; Wierstra and

Alves, 2006a). Phosphorylation by either Cdks or polo-like kinase 1 (Plk1) inhibits repressive activity

of the NRD in these assays (Anders et al., 2011; Fu et al., 2008; Laoukili et al., 2008a;

Major et al., 2004; Park et al., 2008b), but it is not clear how this activation step occurs.

Here we determine the structural mechanisms underlying FoxM1 repression and activation, pro-

viding a picture for how transcription factor autoregulation occurs. Using solution NMR together

with biophysical and cellular assays, we determine a structural model for the autoinhibited conforma-

tion, identify the key Cdk and Plk1 phosphorylation events that disrupt the NRD-TAD association,

and characterize TAD association with the KIX and TAZ2 domains of the transcriptional co-activator

protein CBP. Remarkably, we find that the key phosphorylation-induced activation step is marked by

a transition from structural order to disorder, which results in accessibility of the TAD for co-activator

binding.

Results

The FoxM1 NRD directly associates with the TAD
The FoxM1 NRD inhibits transcription factor transactivation activity early in the cell cycle. Transcrip-

tion reporter assays suggest that the NRD negatively regulates the TAD through a sequestration

mechanism (Park et al., 2008b; Wierstra and Alves, 2006a). To confirm a direct interdomain associ-

ation and to define more precisely the NRD and TAD domain boundaries, we purified recombinant

protein constructs of various lengths and assayed their association in trans using isothermal titration

calorimetry (ITC) (Figure 1). We first used an NRD-containing construct that includes the entire

N-terminus of FoxM1 up until near the start of the DBD (residues 1–203 in human isoform FoxM1b)

and a long C-terminal construct (residues 526–748) including the Cdk-site rich region (CSR) and

putative TAD. We observe binding between these protein fragments and measured an affinity of
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Kd = 2 ± 1 mM (Figure 1B and C). Using sequence conservation we designed a minimal NRD (1-114)

and minimal TAD (696-748) and found that they associate with comparable affinity (Kd = 3 ± 2 mM).

When we attempted to shorten the constructs further, we found loss of affinity (Figure 1C), so we

conclude that these fragments contain the approximate sequences necessary and sufficient for inter-

domain association.

NMR structure of the NRD-TAD interface
We combined NMR with Rosetta structural modeling to understand how the FoxM1 NRD binds the

TAD in the autoinhibited conformation (Nerli and Sgourakis, 2019). NMR studies of TAD-coactiva-

tor complexes have primarily utilized an approach in which the two domains are purified separately

with isotope labeling of only one protein (De Guzman et al., 2006; Radhakrishnan et al., 1997;

Zor et al., 2004). We found that spectra of the human NRD-TAD complex assembled from indepen-

dently purified domains were generally of poor quality. We alternatively purified a protein construct

for structural studies in which the minimal NRD and TAD were fused by a short cleavable linker (1-

Figure 1. Direct association between the FoxM1 NRD and TAD. (A) Domain boundaries for the negative regulatory domain (NRD), DNA binding

domain (DBD), Cdk-site region (CSR), and transactivation domain (TAD). Numbering for human FoxM1 isoform b is used. Conserved consensus Cdk (+)

phosphorylation sites and the Plk1 phosphorylation sites (*) identified here are indicated. (B) Isothermal titration calorimetry (ITC) data indicate

association between purified TAD and NRD-containing constructs. (C) ITC affinity measurements for the indicated purified protein constructs. From

these data, we define the NRD and TAD boundaries in panel A. All values from the ITC data fitting are listed in Supplementary file 1.

DOI: https://doi.org/10.7554/eLife.46131.002
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117/694-748). This fusion protein does not bind additional TAD in trans (Figure 1C), which suggests

that the TAD and NRD are associated within the fusion.

We observed optimal NMR spectra using the protein sequence from zebrafish, deleting an inter-

nal loop in the NRD (residues 21–41 in the zebrafish sequence, Figure 2A), cleaving the fusion linker,

and uniformly deuterating the nonexchangeable hydrogen positions (Figure 2—figure supplement

1 and Figure 2—figure supplement 2). We assigned 64% of the backbone HN, NH, Ca, and Cb

chemical shifts in this construct using triple-resonance backbone correlation spectra with TROSY

readout. Using TALOS-N (Shen and Bax, 2015; Shen et al., 2009), we calculated the secondary

structure index (SSI) and estimated backbone order parameter (RCI-S2, 0 is total disorder and 1 is

fully rigid) for the assigned regions of both domains (Figure 2B and C). We find significant structural

order within a set of residues including sequences from both the NRD and TAD. Importantly, within

this ordered region, the backbone chemical shifts for 71 out of 75 non-proline residues were

assigned. Notably, the SSI analysis suggests that a stretch of residues in the TAD adopts a b-hairpin

conformation, which contrasts the helical TAD structures typically observed in complexes with co-

activator domains (De Guzman et al., 2006; Goto et al., 2002; Krois et al., 2016;

Radhakrishnan et al., 1997; Wang et al., 2013; Zor et al., 2004).

To build a model of the core NRD-TAD structure, we prepared perdeuterated protein samples

with isoleucine, leucine, and valine (ILV) methyl sidechain 13C/1H labels. We performed a combina-

tion of isotopomer-selective TOCSY experiments and several NOESY experiments to assign and vali-

date the resonances of ILV methyls and to generate a set of NOE-based distance restraints for

structure calculations (see Materials and methods) (Otten et al., 2010). We then combined the

chemical shifts, NOE restraints, and RDCs to generate a set of structures using customized RASREC-

Rosetta calculations, as described in Materials and methods (Supplementary file 2). We included

only the core, structured sequences of each domain in the calculation (Figure 2A and C). Sequences

outside the core region are likely disordered, as suggested by no observable NOEs and low order

parameters for assigned residues in the flanking regions. The structural ensemble of the NRD-TAD

complex, which consists of ten top scoring models based on Rosetta energy function and good over-

all fit to the experimental data, showed high convergence with heavy atom root mean square dis-

placements of 0.48 Å for core residues (Figure 2D). The observed backbone conformation in these

calculated models match TALOS-N chemical shift predictions of secondary structure (Figure 2B) and

fits experimental RDC data well (Figure 2—figure supplement 3). The core structured elements in

the NRD and TAD correlate well with the sequences of highest conservation in those domains, and

nearly all the residues that are key for forming the interface are conserved (Figure 2A).

The NRD-TAD structure consists of a five-stranded pleated b-sheet and a single a-helix. Three of

the beta strands (b1-b3) are from sequences in the NRD, and two additional strands are from

sequences in the TAD (b4-b5) (Figure 2E and F). The amphipathic helix is an insertion between the

parallel b2 and b3 strands in the NRD. One face of the helix packs against the b-sheet to form the

hydrophobic core of the structure. Sidechains from b�strands in both the NRD (I64, V76, I78, F106,

and L108, human sequence numbering) and TAD (L709 and L716) form an extended, buried inter-

face through highly specific, experimentally confirmed interactions with helix residues (I84, I87, I88,

and L91) (Figure 3A). The fact that both the NRD and TAD contribute essential residues to the

hydrophobic core suggests the requirement of an association for forming the observed structure of

both domains. We explore this idea further below.

The structured region of the TAD consists of a 12 amino acid sequence that adopts a b-hairpin

conformation and binds the NRD by extending the b-sheet. The NRD-TAD interface therefore con-

sists of interstrand backbone hydrogen bonds between NRD b3 and TAD b4 and several van der

Waals contacts between sidechains in those b�strands and the NRD helix (Figures 2F and 3A). The

backbone hydrogen-bonding network is supported by unambiguously assigned interstrand amide-

amide NOE cross-peaks (Figure 2F), and, likewise, the sidechain interactions are supported by

methyl-methyl NOEs (Figure 3A). Sidechain contacts at the interface are observed between I88,

L91, F106, I107, and L108 in the NRD and L703, V708, L709, and L716 in the TAD (Figure 3A). Inter-

estingly, even when interacting with the NRD,~20% of the TAD is structurally well defined, while the

majority of the TAD remains intrinsically disordered. We propose that this small, structurally plastic

region of the TAD is key for the regulation of FoxM1 activity.

Marceau et al. eLife 2019;8:e46131. DOI: https://doi.org/10.7554/eLife.46131 4 of 25

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.46131


MKTSPRRPLILKRRRLPLPVQNAPSETSEEE----PKRSPAQQESNQAEASKEVAESNSC-----KFPAGIKIINHPTMPNTQVVAIPNNANIHSIITALTAKGKESGSSGPNKFILISCGGAPTQPHuman

MRTSPRRPLILKRRKLSLPHQDATPCPGASEQSKADQETPGQNEGGDTLGQSLASNPPSCPEDIPGFPSGVRIMGHPTMPDAQLVIIPSQSNVQSIIQALTARGKEQG--GPNKYIIISSESAIQTQ

MRTSPRRPLILKRRRLPLPVQNAPSETSEEE----AKRSPAQPEPAPAQASQEVAESSSC-----KFPAGIKIINHPTTPNTQVVAIPSNADIQSIITALTAKGKESGSSGPNRFILISSGGPSSHPMouse

MRTSPRRPLILKRRKLTLLQKEVSSTSGRDENSGHDEKTPKQEHSQNDQNDSQCRDKIDCGLQI--FSAGIKIMNHPTMPNTQVVAIPTNADIQSIIEALTAKGKECGNNGPNKFILISSGGTSHSAChicken

MRESPRRPIILKRRKLPFLKSESDLGCDEAD------GTRCKTTSTQ--------------STARSFPDGIRVMDHPTMPDTQVVVIPKSADLQSVISVLTAKGKECGPQGRNKFILLS-GDTSLEEZebrafish

748

ELQVGASANRSLLEGLVLDTVDDSLSKILLDISFSGMEEGNGLEVDGVWSQFLPEFK

757LQIPSLSANRSLTEGLVLDTMNDSLSKILLDISFPGLEEDPLGPDNINWSQFIP---  

795LPASGFTENRSLVEGLILDTMNDSLSKILLDISFPGLEDENLGTD-ISWSQLIPELK

760

LLQVG-AANRSLTEGFVLDTMNDSLSKILVDISFSGLEDEDLGMGNISWSQFIPELK 623

Frog

118

118

125

158

106

696

708

744

708

568

1

1

1

1

1

Human

Mouse

Chicken

Zebrafish

Frog

^^

11 21 31 41 51 61 71 81
91

101 111

701 711 721 731 741

11 21 31 41 51 61 71 81 91 101

581 591 601 611

1 2 31

4 5

90¡

63

66

73

78

84

98

110

105

707

710

717

714

4 5

NRD
TAD

TAD

NRD

TAD

NRD

1

2

3
1

A

B

N

C

N

C
C

D

4

5

63

66

78

73
105

110

707

710

714

717

E F

**

**

**

** *

TAD

NRD

PQVSGLAANRSLTEGLVLDTMNDSLSKILLDISFPGLDEDPLGPDNINWSQFIPELQ

1.0

0.0

0.5

-0.5

-1.0

S
S

I

Residue Number

NRD TAD

Residue Number

0.00

0.25

0.50

0.75

1.00

2
S-I

C
R

61 81 101 700 720

61 81 101 700 720

621571

Figure 2. Solution structure of an NRD-TAD complex. (A) Sequence alignment of FoxM1 orthologs from Homo sapiens (human), Mus musculus

(mouse), Gallus gallus (chicken), Xenopus laevis (frog), and Danio rerio (zebrafish). Conserved residues in at least four of the five sequences are colored.

Secondary structure assignments are determined from dictionary of protein secondary structure (DSSP) analysis of the final NMR ensemble (Kabsch and

Sander, 1983). Dashed lines indicate residues that are present in the NMR construct but are not included in the structure calculations and are

significantly disordered according to the backbone chemical shifts. The asterisks (*) mark residues for which interdomain (NRD-TAD) NOEs have been

unambiguously assigned. The carets (^) mark poorly conserved sequence insertions not shown in the frog sequence. Plk1 phosphorylation sites in the

TAD are boxed. (B) Secondary Structure Index (SSI) derived from TALOS-N analysis of backbone chemical shifts corresponding to residues in the NRD

(cyan) and TAD (pink) domains. Positive SSI values are consistent with b-strand and negative values are consistent with a helical structure. Amino acid

numbering corresponding to the human sequence is used. (C) Estimated backbone order parameters (Random Coil Index RCI-S2) derived from the

chemical shifts are shown for residues in the NRD and TAD (Berjanskii and Wishart, 2005). Lower RCI-S2 values indicate flexibility, higher RCI-S2 values

indicate rigidity. (D) Overlay of ten final Rosetta models guided by the chemical shift, NOE, and RDC data. (E) Topology diagram of the NRD and TAD

domains. (F) Structure of the five-stranded b-sheet. Unambiguously assigned interstrand amide proton-proton NOEs are shown as lines.

Figure 2 continued on next page
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Disruption of the NRD-TAD interaction activates FoxM1
To probe the structural role of the NRD-TAD interface in repressing FoxM1 transactivation, we first

tested the effects of mutations in the NRD and TAD on the interdomain association using the ITC

assay with human FoxM1 domains (Figure 3B). For these experiments, we used the TAD (696-748)

and a longer NRD (1-203), which were the most stable constructs containing each domain in solution

and the simplest to purify. We expressed and purified NRD constructs (residues 1–203) containing

mutations in each of the three b-strands. These mutations, which replace hydrophobic sidechains for

alanine, were made to residues on either the face of the b-sheet that interacts with the helix (proxi-

mal) or the face pointing away from the helix (distal). We find that mutations on the b-sheet face that

is proximal to the helix all inhibit binding with the TAD, with mutations on the two strands closest to

the TAD (V76A/I78A in b2 and F106A/L108A in b3) having the greatest effects. We find that muta-

tions to the hydrophobic face of the NRD helix (I88A and L91A) also disrupt TAD binding. In con-

trast, mutations to the distal side of the NRD b-sheet only result in a modest decrease in affinity

(I65A or V75A) or no change in affinity (I107A/I109A). We also substituted alanines for sidechains in

the TAD near the NRD interface. We found that three mutations have strong effects on binding

(V708A, L709A, L716A), while mutation at one sidechain that points toward the distal side of the

sheet (M712A) has a modest effect.

We next tested the effects of mutations to the NRD-TAD interface on FoxM1 activity in U2OS

osteosarcoma cells using a luciferase reporter assay (Figure 3C and Figure 3—figure supplement

1). We expressed WT and mutant FoxM1 together with a plasmid that contains six tandem Fork-

head-response elements (6DB) or the promoter of PLK1 (PLK1p), a FoxM1 target gene, upstream

from the luciferase gene. As previously described, luciferase activity increases upon expression of

WT FoxM1 compared to transfection of empty vector, which reflects the ability of FoxM1 to transac-

tivate luciferase expression from the promoters in the reporter plasmid (Anders et al., 2011;

Laoukili et al., 2005). We found that this activity is further increased upon expression of FoxM1 har-

boring mutations that destabilize the NRD-TAD interface. The cell reporter data generally correlate

well with our in vitro ITC binding data. For example, a b1 strand mutant (I62A/I64A), which only pro-

duces a modest loss of binding affinity, does not significantly change FoxM1 activity in the cell assay.

In contrast, mutations closer to the interface in NRD strands b2 and b3, the NRD helix, and the TAD

have strong effects. We conclude that the WT FoxM1 activity in this assay is mitigated by autore-

pression and that, by destabilizing the NRD-TAD structure and association, these mutations inhibit

autorepression and result in higher activity. One interesting exception to the observed correlation

between the biochemical and cellular assays is the L716A mutation. This mutation results in com-

plete loss of affinity but has a more modest activating effect in the luciferase assay compared to

other TAD mutations. We explore below an additional role for this residue in activation through

recruitment of CBP/p300 co-activator.

Phosphorylation of Cdk consensus sites in FoxM1 does not modulate
NRD-TAD affinity
In the current accepted model for FoxM1 activation, Cdk phosphorylation relieves NRD inhibition by

directly destabilizing the NRD-TAD association (Anders et al., 2011; Laoukili et al., 2008a;

Park et al., 2008b; Wierstra and Alves, 2006b). Deletion of the NRD in cells results in constitutively

active FoxM1 independent of Cdk activity, and adding back of the NRD in trans restores the autoin-

hibition. Previous work has highlighted the importance of specific Cdk sites; for example, alanine

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.46131.003

The following figure supplements are available for figure 2:

Figure supplement 1. Details of the zebrafish FoxM1 fusion construct used for NMR analysis.

DOI: https://doi.org/10.7554/eLife.46131.004

Figure supplement 2. Comparison of NMR data between the NRD-TAD fusion construct with the linker cleaved and uncleaved.

DOI: https://doi.org/10.7554/eLife.46131.005

Figure supplement 3. Correlation between the experimental and predicted RDC measurements of the NRD-TAD structural ensemble.

DOI: https://doi.org/10.7554/eLife.46131.006
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mutations of T585, T596, S623, and S678 result in decreased FoxM1 activation (Anders et al., 2011;

Fu et al., 2008; Lüscher-Firzlaff et al., 2006; Major et al., 2004). However, other results suggest a

cumulative effect of Cdk phosphorylation activity on FoxM1 activation (Anders et al., 2011;

Lüscher-Firzlaff et al., 2006; Wierstra and Alves, 2006b). We addressed with purified domains

whether phosphorylation of Cdk sites in human FoxM1 directly affects the inhibitory NRD-TAD asso-

ciation. For these assays, we phosphorylated Cdk consensus sites using Cdk2-Cyclin A (Cdk2-CycA)

as previously described (McGrath et al., 2017), we verified phosphorylation by electrospray mass

spectrometry (Figure 4—figure supplement 1), and we measured affinities using the ITC assay. We

first observed that phosphorylation of the NRD, which contains a single conserved consensus Cdk

site (S4), has minimal effect on the affinity of the NRD for the CSR-TAD (Figure 4A). While there are

NRD

1-203
TAD 

696-748 K
d 
µM

I107A/I109A WT 1.5 ± 0.4

WT no heat
no heat

I65A 8 ± 2

I62A/I64A WT 8.1 ± 0.8

9 ± 2

F106A/L108A
V76A/I78A

V75A

WT

WT

WT

WT V708A

WT L709A

WT M712A 7.7 ± 0.1 

WT L716A

no heat

no heat

no heat

E
V

W
T

I6
2A

 I6
4A

V
76

A
 I7

8A
I8

8A

I8
8A

 L
91

A
 T

92
A

 F
10

6A
 L

10
8A

V
70

8A

L70
9A

V
70

8A
 L

70
9A

L71
6A

0

40

80

120

re
la

ti
v
e
 l
u

m
in

e
s
c
e
n

c
e

6DB reporter

E
V

W
T

I6
2A

 I6
4A

V
76

A
 I7

8A
I8

8A

I8
8A

 L
91

A
 T

92
A

 F
10

6A
 L

10
8A

V
70

8A

L70
9A

V
70

8A
 L

70
9A

L71
6A

0

4

8

12

re
la

ti
v
e
 l
u

m
in

e
s
c
e
n

c
e

PLK1p reporter

WTWT 2.2 ± 0.4

**

**
**

*

**

**
**

**

*

** **
**

**

***

*

3 distal

3 proximal

1 proximal

2 proximal

2 distal

1 distal

mutation

location

4 proximal
4 distal

5 proximal
4- 5 loop

I88A no heatWT 1 helix
L91A no heatWT 1 helix

64

62

76

78

77

106

108

91

87 84 84

88
108

709

716
107

708

703

90¡

A

B C

91

Figure 3. Interactions stabilizing the NRD-TAD hydrophobic core and interface. (A) Hydrophobic sidechains forming the structural core of the NRD-

TAD complex. Human amino acid numbering is indicated. Unambiguously assigned ILV methyl-methyl NOEs are shown as lines. (B) ITC measurements

of the NRD-TAD binding affinity using the indicated WT or mutant domains. Mutations were chosen on the side of the b-sheet that is either proximal or

distal to the a-helix. (C) Luciferase reporter assays of FoxM1 transactivation activity. Reporter plasmids containing the luciferase gene downstream of

either six repeats of a FoxM1 responsive element (6DB, left) or the PLK1 promoter sequence (PLK1p, right) were co-transfected with WT or mutant

FoxM1 into U2OS cells. EV is empty vector. Significant differences in the relative luminescence from WT are indicated with asterisks: *p<0.05, **p<0.01

(using two-tailed student’s t-test). For expression and cell cycle controls, see Figure 3—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.46131.007

The following figure supplement is available for figure 3:

Figure supplement 1. Data supporting luciferase transcription reporter assay.

DOI: https://doi.org/10.7554/eLife.46131.008
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Figure 4. Plk1 phosphorylation of Ser715 inhibits NRD-TAD association. (A) ITC binding affinities of NRD and TAD-containing FoxM1 fragments

following Cdk phosphorylation as indicated. (B) ITC binding affinity of NRD (1–203) for WT TAD (696-748) and TAD containing mutations at Plk1 sites.

Measurements were made with and without Plk1 phosphorylation. (C) Ser715 is near the interface in the NMR structure of the NRD-TAD complex.

Human amino acid numbering is used. (D) Luciferase reporter expression from the 6DB promoter as in Figure 3C. Only experiments in which significant

differences in the relative luminescence between expression of FoxM1 alone (control, black) or co-expression with Plk1 (purple) are indicated with

asterisks (*p<0.05, using two-tailed student’s t-test).

DOI: https://doi.org/10.7554/eLife.46131.009

The following figure supplements are available for figure 4:

Figure supplement 1. Electrospray mass spectrometry characterization of kinase reactions.

DOI: https://doi.org/10.7554/eLife.46131.010

Figure supplement 2. Phosphorylation dependent CSR association with the Plk1 polobox domain.

DOI: https://doi.org/10.7554/eLife.46131.011
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no consensus Cdk sites in the TAD, there are several sites in the Cdk site region (CSR) (Figure 1A).

To test if Cdk phosphorylation of this region directly affects the NRD-TAD association, we generated

protein constructs in which the CSR is included with the TAD or fused to the NRD. The CSR-TAD

construct (amino acids 526–748) binds the NRD with similar affinity whether or not it is first phos-

phorylated with Cdk2-CycA (Figure 4A). The NRD-CSR fusion protein (amino acids 1–114 + 526–

674) binds the TAD with similar affinity as the NRD alone and with similar affinity whether or not it is

first phosphorylated with Cdk2-CycA. These measurements are consistent with the lack of Cdk sites

near the NRD-TAD interface in our structural model. The observation here that phosphorylation of

Cdk consensus sites has no direct effect on the repressive NRD-TAD interaction suggests that Cdk

phosphorylation is not sufficient for activation of the FoxM1 transcription factor.

Plk1 phosphorylation of the TAD inhibits NRD association to activate
FoxM1-dependent gene expression
Plk1 activity has also been implicated in FoxM1 activation (Fu et al., 2008). The FoxM1 TAD contains

five potential serine Plk1 phosphorylation sites. We phosphorylated the FoxM1 TAD by incubating

with purified Plk1, and we confirmed quantitative phosphorylation of 4 sites (Ser702, Ser715,

Ser724, and Ser741) with electrospray mass spectrometry (Figure 4—figure supplement 1). These

sites are all conserved (Figure 2A), and two of them (Ser715 and Ser724) were previously identified

as Plk1 sites in cells (Fu et al., 2008). We observed that the Plk1 phosphorylated-TAD no longer

binds the NRD by ITC (Figure 4B). Of the four Plk1 sites, Ser715 is the only site that appears near

the structured NRD-TAD interface (Figure 4C). Using TAD constructs with serine to alanine muta-

tions, which cannot be phosphorylated, we tested the importance of specifically phosphorylating

Ser715 on the NRD-TAD affinity. When the three other Plk1 sites are mutated, the phosphorylated

TAD still lacks any detectable affinity for the NRD. In contrast, phosphorylation of a Ser715A con-

struct results in no change in affinity. We conclude that Ser715 phosphorylation by Plk1 is necessary

and sufficient for inhibiting the NRD-TAD association. These results are consistent with and explain

the previous report that an Ser715A/Ser724A mutation decreases FoxM1 activation of several

mitotic genes in U2OS cells (Fu et al., 2008). Ser715 is in strand b5 near the NRD-TAD interface;

however, the sidechain is exposed to solvent, and it is not certain that phosphorylation directly inhib-

its the association through electrostatic repulsion. We suggest that phosphorylation destabilizes the

b-hairpin conformation and/or stabilizes an alternative conformation of the TAD (Andrew et al.,

2002; Riemen and Waters, 2009).

We used the luciferase reporter assay to probe how Plk1 phosphorylation of Ser715 influences

autoinhibition in U2OS cells (Figure 4D). Similar to as previously described (Fu et al., 2008), we find

that expression of Plk1 along with WT FoxM1 increases the 6DB-reporter expression 2.5-fold. No

significant increase in reporter expression is observed if Plk1 is expressed with a FoxM1 S715A

mutant, which is consistent with our in vitro data demonstrating that S715 phosphorylation is neces-

sary for TAD-NRD inhibition. As above, we again observe that mutations to the NRD (I88A) or TAD

(V708A/L709A) result in increased expression of reporter relative to WT. However, we only observe

a slight 1.3-fold additional increase in reporter expression when Plk1 is co-expressed with FoxM1

I88A and no significant increase with FoxM1 V708A/L709A. We conclude that because the NRD-

TAD interface is already destabilized in these mutants, phosphorylation does not result in additional

activity. These results support our model that Plk1 phosphorylation of Ser715 activates FoxM1 by

dissociating the repressive NRD-TAD interface.

Our results show that Plk1 phosphorylation and not Cdk directly inhibits the NRD-TAD associa-

tion, yet strong evidence points to Cdk phosphorylation as an important step in the activation of

FoxM1 during the cell cycle (Anders et al., 2011; Fu et al., 2008; Laoukili et al., 2008a; Lüscher-

Firzlaff et al., 2006; Major et al., 2004; Park et al., 2008b; Wierstra and Alves, 2006a;

Wierstra and Alves, 2006b). In the CSR of FoxM1, there are two Cdk sites that when phosphory-

lated create canonical binding sites for the Plk1 polobox domain. These sites have been shown to

recruit Plk1 to FoxM1 in co-immunoprecipitation experiments (Fu et al., 2008). We also found using

purified proteins that Cdk phosphorylation of the CSR induces Plk1 association (Figure 4—figure

supplement 2), confirming that the Plk1-FoxM1 association is direct and phosphorylation depen-

dent. These results suggest that Cdk phosphorylation primes the polobox binding sites and enhan-

ces Plk1 binding and phosphorylation of the TAD. We propose that phosphorylation of the TAD by
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Plk1 ultimately inhibits the autorepressive NRD-TAD interaction, freeing the TAD to bind to co-acti-

vator CBP.

The dissociated FoxM1 NRD and TAD domains are largely unstructured
To probe the structures of the NRD and TAD once they are dissociated, we acquired circular dichro-

ism (CD) spectra on isolated human NRD (residues 1–114) and TAD (694-748) domains and com-

pared them to the human homolog of the NRD-TAD fusion construct used for NMR (1-117/694-748;

D25–50) (Figure 5A and Figure 5—figure supplement 1A). We used the minimal NRD construct for

CD analysis, because NMR data suggest the region between 115–203 is disordered (Figure 5—fig-

ure supplement 2). Consistent with the NMR model, the spectrum of the fusion reflects the
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Figure 5. The dissociated NRD and TAD domains are intrinsically disordered. (A, B) CD spectra of the indicated purified proteins. (C) 2D 1H-15N HSQC

spectra of the zebrafish FoxM1 TAD (corresponding to residues 696–748 in the human protein) either unphosphorylated (pink) or phosphorylated

(green) recorded at 25˚C at 800 MHz. Sequence specific assignments (examples shown for three Plk1-phosphorylated serines) were made using

backbone triple resonance correlation spectra. (D) RCI-S2 order parameter plot of assigned residues in the free TAD and Plk1-phosphorylated TAD.

DOI: https://doi.org/10.7554/eLife.46131.012

The following figure supplements are available for figure 5:

Figure supplement 1. Additional circular dichroism measurements reporting the structural order of the associated NRD-TAD complex and disorder of

the isolated TAD and NRD domains.

DOI: https://doi.org/10.7554/eLife.46131.013

Figure supplement 2. Additional data supporting the conclusion that the isolated NRD is highly disordered.

DOI: https://doi.org/10.7554/eLife.46131.014
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presence of structure. In contrast, the TAD and NRD spectra indicate relatively greater disorder,

although they do reflect some secondary structure content. Because we could not efficiently phos-

phorylate the fusion in vitro with Plk1, we mimicked the dissociative effect of phosphorylation by

introducing the V76A/I78A mutation. Like phosphorylation, this interface mutation inhibits NRD-TAD

association in the ITC assay (Figure 3B). The CD spectrum of the V76A/I78A fusion protein also

reflects significant disorder (Figure 5B), which supports the conclusion that NRD-TAD binding and

structure formation are interdependent. This interdependence is further supported by the observa-

tion that the structural core of the NRD-TAD complex is formed by hydrophobic residues from both

domains. Notably, introduction of the same destabilizing V76/I78A mutation in the NRD alone has

modest effects on the CD spectrum (Figure 5—figure supplement 1B), which is consistent with the

conclusion that the WT NRD alone is already considerably disordered.

To further probe the structure of the TAD alone and the effects of Plk1 phosphorylation, we col-

lected NMR data and assigned the backbone amide chemical shifts for the zebrafish FoxM1 TAD

(residues 571–623, which corresponds to human 696–748), using both unphosphorylated and Plk1-

phosphorylated samples (Figure 5C). 47 out of 50 of the non-Pro residues in the TAD and phosphor-

ylated TAD were assigned. Using TALOS-N as above, we calculated the RCI-S2 order parameter for

residues in both the phosphorylated and unphosphorylated TAD (Figure 5D). The data support the

conclusion that both the phosphorylated and unphosphorylated isolated TAD are primarily unstruc-

tured. These results in comparison with the NMR data for the NRD-TAD complex (Figure 2B–2D)

suggest that the b-hairpin structure of the TAD is adopted upon binding to the NRD.

The CD spectra of the NRD and the dissociated mutant NRD-TAD fusion also reflect significant

structural disorder (Figure 5A and B). Despite varying sample conditions and using orthologous

sequences from several organisms, NMR HSQC spectra of the isolated NRD were of poor quality,

likely reflecting a tendency to aggregate, but are also consistent with significant disorder within the

domain (Figure 5—figure supplement 2A and B). In further support of the conclusion that the NRD

is poorly structured when not in complex with the TAD, we found that the NRD alone elutes through

a size exclusion column as expected for a protein lacking a globular structure (Figure 5—figure sup-

plement 2C). The observations that the NRD and TAD appear unstructured when alone suggest that

the repressive NRD-TAD association drives the domains to fold into the inhibitory conformation, and

conversely that activation of FoxM1 is marked by an order-to-disorder structural transition.

FoxM1 TAD binds the KIX and TAZ2 domains of CBP only when
released from the NRD
The requirement of Cdk phosphorylation for FoxM1 activity has been linked to FoxM1 recruitment

of the co-activator acetyltransferase proteins CBP and p300 (Major et al., 2004). These co-activators

share high sequence homology and contain several protein-protein interaction domains that associ-

ate with transcription factor TADs (Wang et al., 2013). We tested three common TAD interaction

domains in CBP and found that purified TAZ2 and KIX domains bind the FoxM1 TAD, while TAZ1

does not (Figure 6A). We further studied the properties of FoxM1 binding to TAZ2. We could not

detect binding of the NRD-TAD fusion protein to the TAZ2 domain using ITC, and we observed

weak association to an NRD-TAD complex using NMR (Figure 6—figure supplement 1). The fusion

protein containing the I88A interface mutation did bind in the ITC assay, albeit with slightly weaker

affinity than the TAD alone (Figure 6B). These results support the model that the NRD inhibits

FoxM1 activity by sequestering the TAD from interacting with transcriptional co-activators. Phos-

phorylation of the CSR-TAD by either Cdk or Plk1 does not affect the affinity with TAZ2 (Figure 6C).

We conclude that TAD phosphorylation does not modulate its affinity for CBP by changing direct

binding interactions. Instead our results indicate that phosphorylation shifts the NRD-TAD binding

equilibrium toward TAD release from the NRD so that the TAD is accessible.

The structures of several TAD sequences bound to CBP or p300 KIX and TAZ2 have been deter-

mined, and it is found that the intrinsically disordered TADs invariably adopt helical conformations

when associated with co-activator (De Guzman et al., 2006; Goto et al., 2002; Krois et al., 2016;

Radhakrishnan et al., 1997; Wang et al., 2013; Zor et al., 2004). Binding typically entails contacts

from hydrophobic residues along the face of one or more short amphipathic helices in the TAD.

Motifs such as FXXFF or FFXXF (F is a bulky hydrophobic residue and X is any residue) are com-

monly observed in the TAD interacting sequences. Two sequences in the FoxM1 TAD contain such a

motif and appear amenable to forming amphipathic helices (Figure 6—figure supplement 2). We
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Figure 6. Direct binding of NRD-released TAD to CBP/p300. (A) Raw ITC data and the calculated affinities of FoxM1 TAD (696-748) binding to the KIX,

TAZ1, and TAZ2 domains of CBP. (B) Affinities of WT and I88A NRD-TAD fusion for TAZ2. (C and D) ITC affinities of the indicated FoxM1 construct for

TAZ2. Where indicated, the purified CSR-TAD domain was phosphorylated with Plk1 or Cdk2-CycA prior to the affinity measurement. All values from

the ITC data fitting are listed in Supplementary file 1.

Figure 6 continued on next page
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find that both of these sequences are required for TAZ2 binding (Figure 6D). Notably, the predicted

binding sequence around 713–726 overlaps with the sequence that forms the b-hairpin in binding

the NRD in the repressed conformation. We tested a L716A TAD mutant and found no detectable

binding to TAZ2 (Figure 6D). The importance of L716 for CBP association explains how NRD binding

inhibits CBP association and likely explains why the L716A mutation did not result in similar

increased FoxM1 activity in the luciferase assay as other mutations in the TAD (Figure 3C). The

mutation disrupts both NRD inhibition and activation through CBP recruitment.

Overall, our results support a new structural model of FoxM1 regulation (Figure 7). In its autoin-

hibited conformation, the NRD binds the TAD via a structured interface and stabilizes a b-hairpin

conformation that is incompatible with co-activator binding. Cdk phosphorylation of the CSR domain

induces Plk1 docking to FoxM1 and subsequent phosphorylation of Ser715. Phosphorylation desta-

bilizes the TAD b-hairpin, which releases from the NRD, and both the NRD and TAD become disor-

dered. The TAD is free to adopt the helical conformation that is likely necessary for recruiting co-

activator CBP through association with either the KIX or TAZ2 domain.

Discussion
Eukaryotic transcription factors almost invariably contain large regions of intrinsic structural disorder,

which facilitate protein-protein interactions for gene activation, posttranslational modifications for

regulation, and control over nuclear localization (Minezaki et al., 2006; Wright and Dyson, 2015).

Whereas structural disorder is required for function, it follows that the induction of structure could

be used to negatively regulate transcription factor activity by restricting accessibility, particularly of

the transactivation domain. Indeed, our results show that the NRD of FoxM1 is able to bind the TAD

and induce a structured conformation that is incompatible with its binding to co-activator protein.

Interestingly, the repressed TAD has a b-hairpin structure, while the CBP bound state likely contains

a-helical structures and involves a TAD sequence near the Ser715 phosphorylation site that overlaps

with the NRD-binding sequence. Thus, FoxM1 regulation entails secondary structure switching of

the TAD between strand, coil, and helical structures.

We find that Ser715 phosphorylation destabilizes the NRD-TAD association and that the dissoci-

ated TAD is intrinsically disordered and capable of binding CBP. Phosphorylation has been observed

to control structural transitions as a means to regulate other intrinsically disordered proteins. For

example, both the transcription factor Ets-1 and the translation regulator 4E-BP2 undergo disorder-

to-order transitions upon phosphorylation, while the nucleophosmin protein dissociates from a struc-

tured pentamer to a disordered monomer upon phosphorylation (Bah et al., 2015; Mitrea et al.,

2014; Pufall et al., 2005). FoxM1 demonstrates a new example in which the order-to-disorder tran-

sition occurs coincident with modulation of an intramolecular association between domains. This

plasticity of disordered domains and the ability to regulate the plasticity through posttranslational

modifications explains why intrinsically disordered proteins are so well suited to regulate biological

function.

Unexpectedly, our data indicate that in the active FoxM1 conformation, in which phosphorylation

inhibits the repressive NRD-TAD association, the NRD is largely disordered as well as the TAD. We

propose that this additional disorder may be important to increase conformational flexibility within

the context of chromatin, to promote regulation of FoxM1 stability, or to contribute to the formation

of low complexity domain condensates as recently described (Cho et al., 2018; Chong et al., 2018;

Laoukili et al., 2008b; Liu et al., 2006; Minezaki et al., 2006; Park et al., 2008a; Wang et al.,

2017; Wright and Dyson, 2015). While several transcription factor NRDs have been characterized

(Kim et al., 1999; Park et al., 2008b; Ramsay and Gonda, 2008; Shi et al., 1995; Spengler and

Figure 6 continued

DOI: https://doi.org/10.7554/eLife.46131.015

The following figure supplements are available for figure 6:

Figure supplement 1. NMR data indicating weak association between CBP TAZ2 and the cleaved NRD-TAD fusion.

DOI: https://doi.org/10.7554/eLife.46131.016

Figure supplement 2. Predicted short amphipathic helices in the TAD.

DOI: https://doi.org/10.7554/eLife.46131.017
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Brattain, 2006; Wierstra and Alves, 2006a), the idea that NRDs may appear in regions of intrinsic

disorder should motivate the identification of additional ‘hidden’ NRDs that adopt structure only

upon interaction with their target.

Like many cell division regulatory proteins, FoxM1 undergoes cell-cycle dependent multisite

phosphorylation. While multiple Cdk and Plk1 phosphorylation events have been implicated in

FoxM1 activation, our results demonstrate that phosphorylation of one specific Plk1 site (Ser715) is

directly responsible for freeing the TAD from sequestration by the NRD. This result clarifies an indi-

rect role for Cdk in driving FoxM1 activity through priming the CSR for Plk1 docking and further

phosphorylation of the TAD (Fu et al., 2008). The idea that different phosphorylation events have

specific and distinct roles is in contrast to several proposed models for multisite phosphorylation in

the cell cycle, in which a threshold aggregate of redundant phosphorylation events drives a change

in protein activity (Harvey et al., 2005; Kim and Ferrell, 2007; Nash et al., 2001). Our observation

of specificity in the effects of FoxM1 phosphorylation more resembles what has been proposed for

the retinoblastoma protein, in which specific phosphorylation events drive distinct structural changes

or protein-protein interactions (Rubin, 2013).

The structural picture revealed here of FoxM1 repression provides novel mechanistic insights into

transcription factor regulation and may motivate novel cancer therapeutics. It has been concluded

that FoxM1 inhibition would significantly impact our treatment of several cancers that express high

levels of the protein (Koo et al., 2012; Myatt and Lam, 2007; Raychaudhuri and Park, 2011). How-

ever, consistent with the challenges of targeting transcription factors with chemotherapeutics, only

few reports have described potential candidate molecules (Gormally et al., 2014;

Radhakrishnan et al., 2006). The identification of a structured, repressed conformation suggests

the possibility of developing molecules that bind and stabilize the repressive NRD-TAD association

or target FoxM1 for degradation.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Cell line
(human)

U2OS other RRID:CVCL_0042 Paul Kaufman
(UMass Medical School)

Antibody anti-FoxM1, rabbit
polyclonal

Bethyl cat #: A301-533A-M (1:2000)

Antibody anti-actin, mouse
monoclonal

Sigma cat #: A1978 (1:100,000)

Antibody anti-Flag, mouse
monoclonal

Sigma cat #: F1804 (1:500)

Recombinant
DNA reagent

PGEX 4 T-3 Addgene Engineered to contain
TEV protease site.

Recombinant
DNA reagent

pFastBac HTB Addgene

Recombinant
DNA reagent

pET-14B Addgene Engineered to contain
TEV protease site

Recombinant
DNA reagent

pRcCMV myc-Plk1 Addgene;
PMID: 7962193

Erich Nigg

Recombinant
DNA reagent

pGL3-6DB PMID: 22094256 Peter Sicinski
(Dana Farber Cancer Institute)

Recombinant
DNA reagent

pGL3-PLK1 PMID: 22094256 Peter Sicinski
(Dana Farber Cancer Institute)

Recombinant
DNA reagent

pCDNA3-FOXM1C PMID: 22094256 Peter Sicinski
(Dana Farber Cancer Institute)

Recombinant
DNA reagent

pCDNA3-FOXM1C-I62A I64A this paper mutation cloned
into pCDNA3-FOXM1C

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers Additional information

Recombinant
DNA reagent

pCDNA3-FOXM1C-V76A I78A this paper mutation cloned
into pCDNA3-FOXM1C

Recombinant
DNA reagent

pCDNA3-FOXM1C-I88A this paper mutation cloned into
pCDNA3-FOXM1C

Recombinant
DNA reagent

pCDNA3-FOXM1C
-I88A L91A T92A

this paper mutation cloned into
pCDNA3-FOXM1C

Recombinant
DNA reagent

pCDNA3-FOXM1C
-F106A L108A

this paper mutation cloned into
pCDNA3-FOXM1C

Recombinant
DNA reagent

pCDNA3-FOXM1C-V723A this paper mutation cloned into
pCDNA3-FOXM1C

Recombinant
DNA reagent

pCDNA3-FOXM1C-L724A this paper mutation cloned into
pCDNA3-FOXM1C

Recombinant
DNA reagent

pCDNA3-FOXM1C
-V723A L724A

this paper mutation cloned into
pCDNA3-FOXM1C

Recombinant
DNA reagent

pCDNA3-FOXM1C-L731A this paper mutation cloned into
pCDNA3-FOXM1C

Recombinant
DNA reagent

pCDNA3-FOXM1C-S730A this paper mutation cloned into
pCDNA3-FOXM1C

Recombinant
DNA reagent

pCDNA3 Invitrogen

Recombinant
DNA reagent

pCMV-Renilla this paper Renilla luciferase cloned
into CMV promoter
expression vector

Software,
algorithm

RASREC-Rosetta
for structure
calculations

https://csrosetta.
chemistry.ucsc.edu

Protein expression
The human FoxM1 constructs (1–114, 1–203, 1–332, 80–114, 1-117/694-748 fusion, 1-117/694-748

fusion D25–50, 1-114/526-674 fusion, 573–635, 526–748, and 696–748) were expressed in and puri-

fied from E. coli as N-terminal GST fusion proteins with TEV cleavage sites. Cells were induced in

mid-log phase with 1 mM IPTG, and cells were grown for 3–4 hr at 25˚C. All proteins were purified

from lysates with glutathione sepharose affinity chromatography. Fusion and C-terminal (TAD) con-

structs were further purified with Q-sepharose and then cleaved with TEV protease. Proteins were

buffer exchanged into 25 mM Tris, 1 M NaCl, 5 mM DTT (pH 8.0) and then passed over glutathione

sepharose resin to remove free GST, concentrated, and run over Superdex-75 (GE Healthcare) into

20 mM HEPES, 150 mM NaCl, 5% glycerol (pH 7.5). After TEV cleavage, N-terminal (NRD) constructs

were diluted in 20 mM Hepes, 5 mM DTT (pH 7.0), and purified with S-sepharose and Superdex-75

as described for C-terminal constructs.

Human Plk1 kinase domain (13-345) was expressed with an N-terminal His tag in Sf9 cells using

the FastBac expression system. Cells were harvested and lysed in a buffer containing 50 mM Tris,

300 mM KCl, 2 mM MgCl2, 10 mM Imidazole, Sigma Protease Inhibitor (P8340), 2 mM phenylmethyl-

sulfonyl fluoride (pH 8.0). Protein was purified with Nickel Sepharose Excel resin (GE Healthcare)

equilibrated in lysis buffer. The resin was washed with a buffer containing 1 M KCl, 50 mM Tris, 40

mM Imidazole, 10 mM BME, 2 mM MgCl2 (pH 8.0) and protein was eluted in 200 mM KCl, 50 mM

Tris, 300 mM Imidazole, 10% glycerol v/v, 10 mM BME, 2 mM MgCl2 (pH 8.0). Protein was dialyzed

into storage buffer (200 mM KCl, 50 mM Tris, 10 mM BME, 2 mM MgCl2, 10% glycerol v/v (pH 8.0))

and stored at �80 ˚C. The polobox domain of human Plk1 and Cdk2-CycA were expressed and puri-

fied as previously described (Cheng et al., 2003; McGrath et al., 2013).

Mus musculus CBP KIX (CBP residues 567–653), TAZ2 (residues 1764–1855) and TAZ1 (residues

340–439) were expressed in E. coli. KIX was expressed with a His tag and first purified using nickel

sepharose affinity chromatography as described above. TAZ2 was expressed as an MBP fusion
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protein and purified using amylose sepharose affinity chromatography and S-sepharose ion

exchange chromatography. The TAZ2 contained cysteine to alanine point mutations (C1776A,

C1784A, C1827A, C1828A) that increase solubility and stability (De Guzman et al., 2000). ZnSO4

was kept in the media for TAZ2 expression at a concentration of 1 mM. TAZ1 was expressed with a

His-Nus-XL affinity tag and purified using nickel affinity resin followed by tag cleavage. All CBP

domains were further purified with Superdex 75 size exclusion chromatography.

Isothermal titration calorimetry
Equilibrium dissociation constants for FoxM1 NRD constructs binding to TAD constructs were

obtained using ITC with a MicroCal VP-ITC system. FoxM1 protein fragments were run over Super-

dex-75 into 20 mM HEPES, 150 mM NaCl, 5% glycerol (pH 7.5). TAD fragments (100–500 mM) were

titrated into the NRD fragments (10–50 mM) at 25˚C. The equilibrium dissociation constant for

FoxM1 CSR binding to the Plk1 polobox domain was similarly determined. CSR (300 mM), either

phosphorylated or unphosphorylated with Cdk2-CycA, was titrated into polobox (30 mM) at 25˚C.

Reported Kd values are the average fits from two or three technical replicates with the standard devi-

ation reported as error. Values for Kd, n, and DH are reported in Supplementary file 1. For data fit-

ting in experiments involving the FoxM1 NRD, we adjusted NRD concentration such that the

stoichiometry was close to 1. We chose this approach for the fitting, because we otherwise noticed

variability in the n value that we attribute to difficulty measuring the NRD concentration from its low

extinction coefficient. If no significant heat was detected above background, we conclude no associ-

ation. In the case of titrating the TAD fragment 694–726 into 1–203, we observed small heats but

could not fit the data, so we conclude the affinity must be weaker than 10 mM.

Equilibrium dissociation constants for CBP domain binding to FoxM1 TAD were obtained using

ITC with Micro Cal VP-ITC system. Both FoxM1 and CBP proteins were run over Superdex-75 into 20

mM HEPES, 150 mM NaCl, 5% glycerol v/v (pH 7.5). CBP-TAZ2 (250–350 mM) was titrated into

FoxM1 TAD (20–40 mM) at 25˚C. Because of the difficulty in determining CBP-TAZ2 concentrations,

the concentrations were adjusted to a stoichiometry of 1.0. CBP-KIX (600 mM) was titrated into

FoxM1 TAD (60 mM) at 30 ˚C in the same buffer. Reported Kd values are the average fits from two or

three technical replicates with the standard deviation reported as error.

Kinase reactions
FoxM1 protein constructs following final purification were incubated with 10 mM ATP, 50 mM

MgCl2, and 10% by mass of either Plk1 kinase domain, Cdk2-CycA, or both Plk1 and Cdk2-CycA,

overnight at 4˚C. Phosphorylation of the protein was confirmed by electrospray mass spectrometry

using a Sciex X500B QTOF system.

Circular dichroism
Circular dichroism spectra of the FoxM1 proteins, prepared in 20 mM sodium phosphate and 50

mM NaCl buffer (pH 7.0), were measured on a JASCO J-1500 spectrometer using a 1 mm path

length quartz cuvette. Data were collected every 0.1 nm from 190 to 300 nm using a scanning speed
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Figure 7. FoxM1 activation through conformational switching of the transactivation domain (TAD). (Left) Autoinhibited conformation, in which the TAD

binds the negative regulatory domain (NRD) as a b-hairpin. (Center) Cyclin-dependent kinase (Cdk) phosphorylation (gray) creates a docking site for the

Plk1 kinase, which phosphorylates the TAD and induces TAD release from the NRD. Both the NRD and TAD become structurally disordered upon

dissociation. (Right) The phosphorylated TAD adopts a helical fold and recruits the coactivator CBP.
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of 50 nm/min, a digital integration time of 4 s, and a bandwidth of 4 nm. Eight sets of data were col-

lected for each protein. Protein concentrations ranged from 35 mM to 10 mM and were measured

using absorption at 280 nm using a nanodrop spectrophotometer.

Protein expression for NMR
Zebrafish FoxM1 (DrFoxM1) transactivation domain (G571-K623) and NRD-TAD fusion (Figure 2—

figure supplement 1A) were expressed and purified from E. coli as above except the cells were

grown in M9 medium supplemented with 15N ammonium chloride and 13C glucose. For isoleucine,

leucine, and valine specific isotope labeling the cells were grown as above in deuterated M9 medium

supplemented with deuterated 12C glucose and the specific precursors added 30 min before induc-

tion as described (Tugarinov and Kay, 2003). For the isotopomer-selective TOCSY experiment,

DrFoxM1 was grown in D2O M9-media using 13C glucose (1H,13C-glucose). For the ILV sample, resi-

dues L19, L104, C87, L569, V571, L622 were mutated to alanine to reduce the number of over-

lapped peaks in the methyl spectra and to prevent disulfide formation (Figure 2—figure

supplement 1A). For each NMR sample, the protein was purified as above and cleavage of the TEV

linker was monitored by SDS-PAGE.

Nuclear magnetic resonance data collection and assignments
FoxM1 NRD-TAD fusion
NMR experiments for resonance assignment were performed on a Bruker Avance III HD 800-MHz

spectrometer equipped with a cryogenically cooled probe head. All samples were prepared in a

buffer containing 20 mM sodium phosphate pH 6.3, 100 mM KCl, and 5% (v/v) D2O. The NMR spec-

tra for backbone resonances assignments were collected using a 270 mM uniformly 13C, 15N–labeled

deuterated DrFoxM1 NRD-TAD. Sequence-specific backbone resonance assignments for DrFoxM1

NRD-TAD were determined using all TROSY-HSQC, TROSY-HNCO, TROSY-HN(CA)CO, TROSY-

HNCA, TROSY-HN(CO)CA, TROSY-HNCB, and TROSY-HN(COCA)CB experiments supplied by

Bruker BioSpin. NMR spectra for methyl sidechain assignments were collected using 270 mM deuter-

ated uniformly 15N-labeled, methyl site specific 13C-labeled protein. Methyl sidechain assignments

were determined using an isotopomer-selective TOCSY, SOFAST NOESY, HMQC, and methyl-

HSQC experiments (Otten et al., 2010; Rossi et al., 2016). Data from the protein samples with

methyl specific labels were collected using SOFAST pulse sequences (Rossi et al., 2016), including

amide to amide NOESY (HN-NHN and N-NHN), amide to methyl (HNHAro-CMHM and CM-NHN) and

methyl to methyl (HM-CMHM and CM-CMHM) SOFAST NOESY experiments all recorded with a recycle

delay of 0.2 s and an NOE mixing time of 300 msec.

FoxM1 TAD
NMR experiments for resonance assignment were performed on a Bruker Avance III HD 800-MHz

spectrometer equipped with a cryogenically cooled probe head. All samples were prepared in a

buffer containing 20 mM Sodium Phosphate pH 6.3, 100 mM KCl, and 5% (v/v) D2O. The NMR spec-

tra for backbone resonances assignments were collected using a 450 mM uniformly 13C, 15N–labeled

DrFoxM1 TAD protein. NMR labeled TAD protein was phosphorylated by Plk1 kinase domain as

described above. Sequence-specific backbone resonance assignments for DrFoxM1 TAD were

determined using HSQC, HNCO, HNCACB, CBCA(CO)NH, and C(CO)NH experiments supplied by

Bruker BioSpin. Sequence-specific backbone resonance assignments for phosphorylated DrFoxM1

TAD were determined using HSQC, HNCO, HNCACB, and CBCA(CO)NH experiments supplied by

Bruker BioSpin.

Residual dipolar coupling
The backbone DNH (NH) dipolar couplings used for RASREC-Rosetta structure modeling were mea-

sured using uniformly 15N-labeled deuterated FoxM1 NRD-TAD protein. The NMR sample was

made by mixing DrFoxM1 NRD-TAD (250 mM final concentration) with Pf1 phage (12.5 mg/mL final

concentration) and 10% D2O (Hansen et al., 1998). RDCs were collected on a Varian INOVA 600

MHz spectrometer using J modulation experiments similar to those described (Tjandra et al., 1996).

The DNH coupling experiment was performed with the ILV NRD-TAD sample containing the alanine

mutations (Figure 2—figure supplement 1A).
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A separate set of backbone DNC’ (NCO) dipolar couplings were measured using uniformly
15N/13C/2D labeled FoxM1 NRD-TAD fusion protein and used for structure validation. This set of

RDCs was not used in the structural calculation of the FoxM1 model. The NMR sample was made by

mixing DrFoxM1 NRD-TAD (250 mM final concentration) with Pf1 phage (12.5 mg/mL final concentra-

tion) and 10% D2O (Hansen et al., 1998). RDCs were collected on a Varian INOVA 600 MHz spec-

trometer using J modulation experiments similar to those described previously (Liu and Prestegard,

2010). The DNC’ coupling experiment was performed with the uniformly 15N/2D-labeled NRD-TAD

fusion sample (no alanine mutations) used for backbone assignments.

All NMR data were processed with NMRPipe and NMRDraw (Delaglio et al., 1995). Chemical-

shift assignments were made with SPARKY (https://www.cgl.ucsf.edu/home/sparky/).

Structure modeling using RASREC-Rosetta
Structural models of the NRD-TAD complex were calculated using RASREC-Rosetta (Nerli and

Sgourakis, 2019). RASREC-Rosetta is a Monte Carlo-based fragment assembly approach that uti-

lizes NMR chemical shifts to guide the conformation search for a near-native structure. Together

with NMR chemical shifts, which aid in the selection of accurate secondary structural elements, we

utilized NOE and RDC measurements that helped identify the correct fold of the two domains

(Nerli et al., 2018). Alongside NMR data, RASREC-Rosetta uses optimized algorithms across six

stages of resampling in a parallelized manner to achieve high structural convergence. During the ini-

tial stages of the protocol, various b-sheet topologies are sampled. In the subsequent stages, frag-

ments derived from (i) high-resolution X-ray structures, and (ii) preliminary low-resolution

conformations (from the initial sampling stages), are applied to intensify and finalize the folds of a

target protein. In the final stages of the protocol, the low-resolution models generated during the

initial and intermediate stages are refined in the Rosetta force field to produce high-resolution

structures.

Structure calculations were set up with automated Python scripts available at the CS-Rosetta web-

site (https://csrosetta.chemistry.ucsc.edu). Prior to setting up these calculations, we (i) removed flexi-

ble end regions in the target sequence based on TALOS-N RCI-S2 predictions, and (ii) used the

trimmed target sequence and chemical shift values to pick structural fragments of amino acid

lengths 3 and 9 (standard lengths). After these steps, we used the protein sequence, structural frag-

ments, chemical shift, NOE and RDC measurements as input to the RASREC-Rosetta protocol. From

a set of 100 models generated by RASREC-Rosetta in its final stage, we selected 30 lowest energy

models from which we filtered ten converged structures that fit the experimental RDC data. We sub-

sequently refined the final ensemble twice (first, using NOE and RDC data sets and second, without

any data sets to eliminate heavy bias from NMR data) using Rosetta’s relax protocol (Tyka et al.,

2011). The structures of NRD-TAD domains were calculated by treating the protein as a single poly-

peptide chain with the TEV site as a linker, which was later removed from the models.

To calculate the structural models of the FoxM1 NRD-TAD domains, we used a total of 64 NOE

distance restraints derived from highly sensitive SOFAST-based experiments recoded with short

inter scan delays (200 msec) and long (300 msec) mixing times (Supplementary file 2). These dis-

tance restraints consist of (i) 14 amide to amide, (ii) 11 amide to methyl, and (iii) 39 methyl to methyl

NOEs. The observed intensities of the NOEs can be affected by distance-independent processes

such as T1 relaxation and spin diffusion during the long NOE mixing time. Accordingly, we consid-

ered several additional parameters, alongside the signal intensities of the NOEs (relative to their

diagonals), to calibrate upper distance bounds for all the three classes of NOE restraints described

above. In particular, we performed an analysis of distance statistics within b-sheet structures in the

PDB, and used preliminary models of the NRD-TAD domains calculated using more generous (7 Å),

uniform NOE distance limits as benchmarks. First, we filtered NOEs based on high signal intensities.

From a non-redundant set of 5 b-sheet X-ray structures in PDB, we found that anti-parallel b-strands

have NOEs between pairs of amide protons within ~3 Å or ~5 Å and parallel b-strands within ~3 Å or

~4 Å. We then used the approximate relation that NOE signal intensities are inversely proportional

to sixth power of distances (INOE ¼ c� r
�6, where INOE is the NOE signal intensity, c is the propor-

tionality constant and r is the distance) to obtain estimates of upper distance bounds. To determine

the proportionality constant, we used the strongest-intensity NOE and approximate distances

between the amide protons from b-sheet X-ray structures in PDB. Further, we applied the estimated

proportionality constant and measured signal intensities to generate upper distance bounds for
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other amide-amide NOEs. Similarly, we used preliminary models computed using fixed distance

bounds to calibrate distances of amide-methyl and methyl-methyl NOEs. Using this process, we

observed that the resulting convergence of NRD-TAD ensemble calculated by RASREC-Rosetta

increased progressively, together with the optimization of structural quality parameters such as

Rosetta energies and MOLPROBITY scores.

Cell culture
Human osteosarcoma U2OS cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM)

containing 10% fetal bovine serum, 2 mM L-glutamine, and 1x Penicillin Streptomycin and split every

2–3 days. Cells tested negative for Mycoplasma contamination using a PCR assay.

Reporter assays were performed using the FoxM1c isoform, which includes 15 amino acids down-

stream of the DNA binding domain that are absent in FoxM1b. The amino acid sequences of the

NRD, CSR and TAD domains are identical in FoxM1c and FoxM1b. For clarity, mutations are indi-

cated using FoxM1b numbering throughout the figures and text. Mutants were expressed from the

pCDNA3 plasmid with an N-terminal FLAG tag: pCDNA3-FOXM1C (WT), pCDNA3-FOXM1C-I62A

I64A, pCDNA3-FOXM1C-V76A I78A, pCDNA3-FOXM1C-I88A, pCDNA3-FOXM1C-I88A L91A T92A,

pCDNA3-FOXM1C-F106A L108A, pCDNA3-FOXM1C-V723A (V708A in FOXM1b), pCDNA3-

FOXM1C-L724A (L709A in FOXM1b), pCDNA3-FOXM1C-V723A L724A (V708A L709A in FOXM1b),

pCDNA3-FOXM1C-L731A (L716A in FOXM1b), pCDNA3-FOXM1C-S730A (S715A in FOXM1b). In

co-expression experiments with Plk1, Plk1 was expressed from pRcCMV myc-Plk1 wt (a gift from

Erich Nigg) (Golsteyn et al., 1994). The day prior to transient transfections, 2 � 105 U2OS cells

were seeded into 12-well plates in antibiotic-free medium (DMEM/10% FBS/L-glutamine). Cells were

then transfected with Lipofectamine 2000 Reagent (Invitrogen 11668–019) according to the manu-

facturer’s protocol with 650 ng pGL3-6DB-reporter or pGL3-PLK1 promoter reporters (a kind gift

from Piotr Sicinski, Anders et al., 2011). 650 ng pcDNA3-FOXM1C (WT or mutant), and 10 ng of

pCMV-Renilla luciferase. In experiments that assayed activation by Plk1, 160 ng of pRcCMV myc-

Plk1 wt or an empty vector control was also included. Media was refreshed 4 hr post-transfection.

Cell lysates were prepared 25 hr post-transfection using the Promega Dual Luciferase Reporter

Assay System kit (Promega, E1960) and luminescence was measured on a Promega Glo Max. Rela-

tive luminescence was determined by normalizing the Firefly luciferase activity (expressed by pGL3

reporter plasmids) activity to Renilla Luciferase (transfection efficiency control). Three technical repli-

cate transfections were performed in each experiment and each experiment was carried out three

times (biological replicates). Analysis was performed in Excel and GraphPad Prism software.

Western blot and cell cycle analysis
The day prior to transient transfections, 2 � 106 U2OS cells were seeded into 10 cm plates in antibi-

otic-free medium (DMEM/10% FBS/L-glutamine). Cells were then transfected with Lipofectamine

2000 Reagent (Invitrogen 11668–019) according to the manufacturer’s protocol with 9.5 mg

pcDNA3-FOXM1 plasmids. Media was refreshed 4 hr post-transfection. Cell lysates were prepared

25 hr post-transfection by resuspending cells in RIPA buffer (150 mM NaCl, 1% Triton-X 100, 0.5%

Sodium deoxycholate, 0.1% SDS, 50 mM Tris-Cl pH 8.0, 5 mM Sodium Fluoride, 1 mM Sodium

Orthovanadate, 80 mM b-glycerophosphate, 1 mg/mL Leupeptin, 1 mg/mL bestatin, 1 mM Benzami-

dine HCl, 1 mM DTT) for 30 min on ice, followed by centrifugation. Protein concentration was deter-

mined using Bio-Rad Protein Assay Dye Reagent (Cat#5000006) and measured on an Eppendorf

BioPhotometer Plus. Lysates were added to 4X SDS-PAGE Sample Buffer (0.25 M Tris pH 6.8, 8%

SDS, 40% glycerol, 20% b-mercaptoethanol) and heated to 95˚C for 5 min. 10–20 mg total protein

was then subjected to SDS–polyacrylamide gel electrophoresis (SDS–PAGE), followed by transfer to

nitrocellulose membranes, and Western blotting with the following antibodies: rabbit anti-FoxM1

(Bethyl A301-533A-M), mouse anti-actin (Sigma A1978), mouse anti-Flag (Sigma F1804). For cell

cycle analysis, cells were fixed in 70% ethanol at 4 ˚C overnight. Cells were then centrifuged, washed

with PBS, washed with PBS with 0.5% Tween20, then incubated with IFA 5 mg/ml RNaseA for 30 min

at 37 ˚C. Propidium iodide was added to a final concentration of 50 mg/ml. Data were collected

using a Guava EasyCyte HT (Millipore) and analyzed with FlowJo software.
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Data availability
NMR backbone assignments for zebrafish FoxM1 TAD and phosphorylated TAD are available from

the BMRB with accession number 27763 and 27764 respectively. Coordinates, NOE and RDC

restraint lists of NRD-TAD domains are available under PDB accession number 6OSW with corre-

sponding chemical shift measurements available from BMRB accession number 30608.
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