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Abstract

Due to the large number of negative tests, individually screening large populations for rare

pathogens can be wasteful and expensive. Sample pooling methods improve the efficiency

of large-scale pathogen screening campaigns by reducing the number of tests and reagents

required to accurately categorize positive and negative individuals. Such methods rely on

group testing theory which mainly focuses on minimizing the total number of tests; however,

many other practical concerns and tradeoffs must be considered when choosing an appro-

priate method for a given set of circumstances. Here we use computational simulations to

determine how several theoretical approaches compare in terms of (a) the number of tests,

to minimize costs and save reagents, (b) the number of sequential steps, to reduce the time

it takes to complete the assay, (c) the number of samples per pool, to avoid the limits of

detection, (d) simplicity, to reduce the risk of human error, and (e) robustness, to poor esti-

mates of the number of positive samples. We found that established methods often perform

very well in one area but very poorly in others. Therefore, we introduce and validate a new

method which performs fairly well across each of the above criteria making it a good general

use approach.

Introduction

For targeted surveillance of rare pathogens, screenings must be performed on a large number

of individuals from the host population to obtain a representative sample. For pathogens pres-

ent at low carriage rates of 1% or less, a typical detection scenario involves testing hundreds to

thousands of samples before a single positive is identified. Although advances in molecular

biology and genomic testing techniques have greatly lowered the cost of testing, the large num-

ber of negative results still renders any systematic pathogen surveillance program inefficient in

terms of cost, reagents, and time. These costs can quickly become prohibitively expensive in

resource-poor settings (e.g. pathogen surveillance in developing countries [1, 2], in non-

human systems, such as wildlife disease surveillance [3]), or when reagents become scarce due

to a rapid spike in testing demand (e.g. during the COVID-19 pandemic [4]).
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Robert Dorfman first introduced a method to improve the efficiency of large-scale patho-

gen screening campaigns during World War II. In an effort to screen out syphilitic men from

military service, the US was performing antigen-based blood tests on millions of specimens in

order to detect just a few thousand cases. The large number of negative tests struck Dorfman

as being extremely wasteful and expensive and he proposed that more information could be

gained per test if many samples were pooled together and tested as a group [5]. If the test per-

formed on the pooled samples was negative (which was very likely), then all individuals in the

group could be cleared using a single test. If the pooled sample was positive, it would mean

that at least one individual in the sample was positive and further testing could be performed

to isolate the positive samples. This procedure had the potential to dramatically reduce the

number of tests required to accurately screen a large population and it sparked an entirely new

field of applied mathematics called group testing.

Due to practical concerns, Dorfman’s group testing approach was never applied to syphilis

screening because the large number of negative samples had a tendency to dilute the antigen

in positive samples below the level of detection [6]. Despite this, sample pooling has proven to

be highly effective when using a sufficiently sensitive, often PCR-based, diagnostic assay. In

fact, ad hoc pooling strategies have long been used to mitigate the costs of pathogen detection

in disease surveillance programs. For example, surveillance of mosquito vector populations in

the U.S. involves combining multiple mosquitoes of the same species (typically 1—50) into a

single pool, prior to testing for the presence of viral pathogens [7–10]. Elsewhere, such pooling

techniques have been successful in reducing the total number of tests in systems ranging from

birds [11], to cows [12], to humans [13–18]. In many wildlife/livestock surveillance programs,

sample pooling is used to simply determine a collective positive or negative status of a popula-

tion (e.g. a herd or flock) without identifying individual positive samples. While this is often

appropriate and sufficient for small-to-medium scale research experiments or surveillance

programs, a well designed pooling scheme can easily provide this valuable information with

little additional cost. For the purposes of this paper, we will focus on pooling methods that pro-

vide accurate classification of each sample so that infected individuals can be identified.

Group testing theory primarily focuses on minimizing the number of tests required to iden-

tify positive samples and many nearly-optimal strategies for sample pooling have been

described. From a combinatorial perspective, a testing scheme begins by examining a sample

space which includes all possible arrangements of exactly k positive samples in N total samples.

Because the positive samples are indistinguishable from negative samples, a test must be per-

formed on a sample or a group of samples in order to determine their status. The test is typi-

cally assumed to always be accurate, even when many samples are tested together (in practice,

this is often not the case and approaches that consider test error and constraints on the num-

ber of samples per pool have been examined [19, 20]). In the worst case, all of the samples

would need to be tested individually requiring N tests. The goal of group testing is to devise a

strategy which tests groups of samples together in order to identify the positive samples in

fewer than N tests. Group testing methods are generally more efficient when positive samples

are sparse. As the number of positive samples increases, the number of tests will eventually

exceed individual testing for all of the methods. This point has been previously estimated to be

roughly when the number of positives is greater than N
3

for sufficiently large N [21, 22]. In

order to establish the most optimal testing procedure, many group testing schemes are modi-

fied based on the expected number of positive samples, k̂. Because it is impossible to know the

exact number of positive samples, problems arise when this estimate is not accurate (e.g. over-

estimation may require more tests to be performed than necessary, and underestimation may

result in positive samples going undetected). Therefore, it is important to not only consider
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how different schemes scale as the number of positive samples increases but also how robust

they are when the number of positive samples is misestimated.

For real-world applications, many factors should be considered when designing a pooling

strategy, depending on the circumstances. Finding the best strategy often involves weighing

the tradeoffs between the following factors: (a) the number of tests, to minimize costs and save

reagents, (b) the number of sequential steps, to reduce the time it takes to complete the assay,

(c) the number of samples per pool, to avoid the limits of detection, (d) simplicity, to reduce

the risk of human error, and (e) robustness, to poor estimates of the number of positive sam-

ples. We have identified several pooling strategies that perform well or optimally with respect

to at least one of these factors. The goal of this paper is to directly compare the strengths and

weaknesses of each strategy and identify the approaches that we feel are most appropriate for

small-to-medium scale research experiments or surveillance programs. With this goal in

mind, we favored strategies that provided the best balance across each of our criteria, particu-

larly those that maximized the ease of performing the pooling procedure using standard labo-

ratory equipment (i.e. defining pooling groups in ways that are easily captured using multi-

channel pipettes).

We present the pros and cons of different pooling strategies by providing graphical results

from computational simulations with minimal use of mathematical formulas. The computa-

tional simulations allow us to directly compare (a) the number of tests, (b) the number of

steps, (c) the number of samples per pool, (d) the number of individual pipettes, and (d) the

robustness for five existing pooling strategies. We also introduce a new strategy that provides

key advantages in simplicity and provides the best balance between the other criteria. Finally,

we experimentally validate our strategy by testing pools of cow’s milk to detect samples that

are positive for the pathogen Coxiella burnetti.

Review of pooling strategies compared in this work

Pooling strategies often take either a non-adaptive, adaptive, or a hybrid approach. In non-

adaptive methods, an optimal pooling strategy is designed in advance (for a given number of

samples with an expected number of positives) and therefore it does not adapt based on infor-

mation gained from the test results. The pools are all tested simultaneously and the results are

decoded when the tests are complete to determine which samples are positive. The main bene-

fit of non-adaptive methods is the ability to run all of the tests in parallel which can save a lot

of time. Adaptive methods, on the other hand, require a series of tests that must be performed

sequentially because each test relies on information gained from the outcome of a previous

test. Because more information is known at each step, adaptive methods often require fewer

tests than non-adaptive methods. Multistage or hybrid methods are adaptive because they

require multiple sequential stages, however, at each stage, all of the pools are tested simulta-

neously. Below we describe several examples of non-adaptive, hybrid, and adaptive pooling

approaches. In each case, we assume that the test results are always noiseless (the test will

always be positive if a positive sample is present in the pool and negative otherwise) and pro-

duce only a binary or two-state outcome (e.g. positive/negative or biallelic SNP alleles). See

Table 1 for a glossary of the notation used in the following sections.

DNA Sudoku. DNA Sudoku is a popular example of an optimal non-adaptive pooling

strategy introduced by Erlich et al. [23]. This method was originally designed to increase the

number of samples that can be genotyped in a multiplexed sequencing run. Unique barcodes

are required to tag each sample in a multiplex sequencing run to ensure that reads can be

linked back to the sample after sequencing. Typically, the number of samples per run is limited

by the number of unique barcodes available. The DNA Sudoku approach avoids this limitation
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by pooling many groups of samples together in specific combinations and applying a unique

barcode to each pool. The pooling strategy increases the number of samples per barcode and,

due to the logic behind the sample combinations, individual genotyping is still possible. For

example, if a minor allele is identified in two or more pools, and each of the pools share a com-

mon sample, that sample is likely to be the source of the minor allele. Ambiguity is introduced

if the pools share multiple samples in common because it is no longer possible to determine

which sample is the source of the minor allele. DNA Sudoku uses the Chinese remainder theo-

rem to avoid such ambiguity and ensure that any two samples occur in the same pool a maxi-

mum of one time. This is achieved by staggering the samples that are added to each pool in

different sized windows or intervals (Fig 1); importantly, the size of the intervals must be

greater than
ffiffiffiffi
N
p

and co-prime. Two samples can only co-occur in more than one pool when

the pooling intervals share a common multiple; thereby, forcing the intervals to be co-prime

and greater than
ffiffiffiffi
N
p

ensures that this cannot happen with N samples.

To ensure accurate decoding of the results from DNA Sudoku, the number of pooling win-

dows (the weight) should be based on the expected number (upper bound) of positive samples

(i.e. samples carrying the minor allele in this example), w ¼ k̂ þ 1. If the weight is chosen cor-

rectly using a good estimate of k, the samples that occur the most frequently in the positive

pools are the positive samples. However, if the true number of positive samples exceeds k̂, the

results become ambiguous and false positives can occur (Fig 1). Ambiguous results can be mit-

igated in two ways: (1) by inflating the estimate of positive samples to avoid ambiguous results

or (2) testing ambiguous samples individually to identify the true positives. The first solution

results in a large increase in the number of tests required (> N additional tests for each addi-

tional pooling window) while the second solution adds an additional round of testing which

voids one of the main advantages of non-adaptive testing.

When k̂ is estimated appropriately, DNA Sudoku is a very efficient non-adaptive approach,

especially when the number of samples is very large. However, because it was originally

designed for pooling and barcoding thousands of DNA samples in preparation for high-

throughput sequencing, DNA Sudoku was intended for use in large-scale facilities with robotic

equipment. As a result, the pooling design is complex and intricate and therefore very difficult

for a human technician to perform accurately and consistently by hand.

Table 1. Notation glossary.

Notation Definition

N Total number of samples to be tested

k Realized number of positive samples

k̂ Expected number of positive samples (used to design pooling scheme)

T Number of tests

S Number of steps

P Number of pipettings

c Number of channels in pipette

w The number of pooling intervals (i.e. weight) used in DNA Sudoku

W Window/interval sizes for DNA Sudoku

D Grid dimensions used for 2D pooling

M Number of grids used for 2D pooling

n Number of samples per pool

g Number of pools

https://doi.org/10.1371/journal.pone.0236849.t001
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Two dimensional pooling. Multidimensional pooling is another non-adaptive approach

that is generally easier to perform than DNA Sudoku but can be more prone to producing

ambiguous results. As the name implies, this procedure can be extended to many dimensions

[24, 25], however it becomes more difficult to perform without robotics when more than two

dimensions are used. In the two dimensional (2D) case, N samples are arranged in a perfectly

square 2D grid or in several smaller but still square sub-grids [26]. For example, when testing

96 samples (as in Fig 2), this can be achieved with a single 10x10 grid or through 4 5x5 sub-

grids (with 4 empty spaces). Once arranged, pools are created by combining samples in each

column and each row, resulting in 20 pools for a 10x10 grid, and 40 pools for 4x5x5 grids.

Once the pools are tested, the positive samples are decoded by identifying which of them are

present at the intersection of positive rows and columns [26].

In 2D pooling, ambiguous results arise when positive samples are present in multiple rows

and multiple columns (e.g. in the top left grid in Fig 2, the two positive rows and the two posi-

tive columns intersect at four wells, only two of which (red wells) are positive). When this

occurs, the number of intersecting points is almost always higher than the true number of pos-

itive samples. Ambiguous results can be somewhat mitigated by decreasing the size of the grid

as the expected number of positive samples increases. The chances of ambiguous intersections

increase when there are more positive samples, so using more grids of smaller size (and

Fig 1. DNA Sudoku pooling example. In this example, there are a total of N = 96 samples. The 96-well plates show

which samples are combined into each pool (Pi) for the two different window sizes (W1 = 10 and W2 = 11 which are

greater than
ffiffiffiffi
N
p

and co-prime). By using two different window sizes, the weight of this pooling design is w = 2

meaning that k = w − 1 = 1 positive sample can be unambiguously identified in a single step using T = W1 + W2 = 21

tests. The positive samples are decoded by finding the samples that appear most often in the positive pools. For

example, if G10 is the only positive sample, we can detect this from the pooling results by noticing that G10 was added

to both of the positive (red) pools while the other samples in those pools were added to only one or the other.

Alternatively, if both G10 and D4 are positive, four samples occur with equal frequency (D4, G10, E12, and F2) in the

positive pools (red and purple) and it is impossible to determine which are the true positive samples. This ambiguity is

introduced because the test was designed to handle only one positive sample.

https://doi.org/10.1371/journal.pone.0236849.g001
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consequently more tests), will make ambiguous arrangements less likely. Alternatively, the

ambiguous samples can be tested individually in a second followup round of testing, but this

again nullifies the main benefit of non-adaptive testing, which is the ability for all tests to be

carried out in parallel.

S-Stage approach. Dorfman’s original pooling design for syphilis screening was an adap-

tive two-stage test. Following this method, samples are partitioned and tested in g groups of

size n. All of the samples in groups with negative results are considered to be negative and all

of the samples in groups with positive results are tested again, individually. Ignoring the con-

straints of the actual assay, the optimal group size that minimizes the number of tests depends

on the number of positive samples, k. Specifically, there should be roughly
ffiffiffiffiffiffi
Nk
p

groups of size
ffiffiffi
N
k

p
[5, 27]. Dorfman’s two-stage approach was later generalized to any number of stages using

Li’s S-Stage algorithm [27], which can reduce the number of tests required to identify positive

samples. At each stage, si, of the S-Stage algorithm (Fig 3), the untested samples are arbitrarily

Fig 2. Two-Dimensional pooling example. A total of 96 samples are arrayed in symmetrical 5x5 grids (with 4 empty

wells in the last grid) and k = 9 of the samples are positive (red wells). The pooling procedure combines each row and

each column of a grid into separate pools for a total of T = 2 × 5 × 4 = 40 tests. Samples that are at the intersection of a

positive row and a positive column (marked with an “X”) are potentially positive samples. When more than one row

and more than one column are positive, some of the samples at the intersections are likely false positives (e.g. the top

left and bottom right grids). Otherwise, the results are unambiguous and the correct positive samples can be identified

(e.g. the top right and bottom left grids).

https://doi.org/10.1371/journal.pone.0236849.g002
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Fig 3. S-Stage pooling example. For 96 samples with an estimate of 3 positive samples, the S-Stage algorithm requires

4 steps. In the first step (top 96 well plate), 96 samples are tested in 6 groups (black outline) of 16. In the next step, the

samples in the positive pools from the previous step are arbitrarily redivided into 5 groups of 6 or 7 samples and tested.

In the third step, the samples from positive pools from step 2 are redivided into 4 groups of 3 or 4. In the final step,

individual testing is performed on samples from the positive pools in step 3. The number of tests required depends on

the initial arrangement of positive samples within the pools but in this example 21 tests are required to identify 3

positive samples (red wells). The number of tests is lower than the upper bound in this case due to the fortunate

placement of two positive samples in the same pool in steps 1-3.

https://doi.org/10.1371/journal.pone.0236849.g003
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divided into gi pools of size ni and the pools are simultaneously tested. The samples in

pools with negative test results are deemed negative and removed from consideration. The

samples in positive pools move on to the next stage where they are redivided into gi+1 groups

of size ni+1. This is repeated until the final stage, where ns = 1, and all of the remaining samples

are tested individually. The optimal number of samples per group at each step is ni ¼ ð
N
k Þ

s� i
s

and the optimal number of steps is S ¼ ln N
k

� �
which achieves an upper bound of e

log2e
k log

2
N
k

� �

tests. Li demonstrated that misestimation of the number of positive samples, k̂, has only a

small impact on the total number of tests, especially when the number of stages is high. The

S-Stage algorithm can require many more steps than non-adaptive algorithms, but when the

number of steps is low, it compares favorably, especially in cases when the non-adaptive meth-

ods require additional validation steps.

Binary Splitting by Halving. Sobel and Groll [28, 29] introduced several adaptive group

testing algorithms based on recursively splitting samples into subgroups and maximizing the

information from each test result. They demonstrated that this class of algorithm is robust to

inaccurate estimates of k, particularly in the case of the Binary Splitting by Halving algorithm

which can be performed without any knowledge of the number of positive samples. Binary

Splitting by Halving (Fig 4) begins by testing all of the samples in a single pool. If the test is

negative, all of the samples are negative and testing is complete, if the test is positive, the sam-

ples are split into two roughly equal groups and only one of the groups is tested in each step. If

the tested half is negative, we know that all of the samples in the tested group are negative and

testing is now complete for those samples. We also know that the untested half must contain at

least one positive sample (because the test containing all of the samples tested positive). Alter-

natively, if the tested pool is positive, we know that it contains at least one positive sample and

we know nothing about the untested half. In either case, the binary splitting always continues

with the group that is known to contain a positive sample until a single positive sample is iden-

tified with individual testing. At this point the process begins again by combining all of the

samples that remain untested into to a single pool and testing. This is repeated k times and

stops when the initial test of all the remaining samples is negative or when all samples have

been tested (either through individual testing or elimination). Using this method, k positive

samples can be identified in at most k log2 N tests. Binary splitting is only efficient when fewer

than 10% of samples are positive, otherwise more tests are required than individual testing [28,

29]. This is the only approach discussed here that does not rely on an estimate of k and there-

fore the performance is not impacted by misestimation of the number of positive samples.

Generalized Binary Splitting. Hwang’s Generalized Binary Splitting algorithm is very

similar to Binary Splitting by Halving (Fig 4) except the size of the first split is optimized for

the expected number of positive samples. This is important because it helps bypass some of the

early and least productive tests. In the Halving method, as the number of positive samples

increases, the first few tests are more likely to be positive due to chance. Positive tests provide

the least information and do not eliminate any negative samples; consequently, positive tests

are particularly inefficient early on when the potential to eliminate large groups of samples is

highest. Additionally, it means that each binary search will begin with a large number of sam-

ples requiring more tests and steps to identify the first positive sample. To solve this problem,

The Generalized Binary Splitting algorithm attempts to modify the size of the initial pool so

that it is small enough to capture a single positive sample on average. When smaller groups are

tested they are less likely to be overwhelmingly positive which means more samples can be

eliminated in negative tests and a single positive sample can be found quicker using fewer tests

[30]. As the ratio of samples to positive samples (Nk) increases, the number of tests required to
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identify k positive samples approaches k log
2

n
k

� �
which is nearly optimal; however, like Binary

Splitting by Halving, the Generalized Binary Splitting approach requires many sequential steps

to complete testing.

Modified 3-Stage approach. Here we are introducing a new adaptive multi-stage

approach that we developed with the goal of finding a good balance between the number of

tests, the number of steps, simplicity, and robustness. We found that many of the methods

Fig 4. Binary splitting by halving pooling example. In this example, there are N = 96 samples and two of the samples

are positive (red wells). To begin, all of the samples are pooled and tested (Step 1). If the first test is negative, testing is

complete and all samples are considered negative. Otherwise, half of the samples are pooled and tested (Step 2). If the

tested half is negative, then all of the samples in the tested half are considered to be negative and at least one positive

sample is known to be present in the other non-tested half of the samples. If the tested half is positive, then it contains

at least one positive sample and no information is gained about the other untested half. In either case, the method

continues by halving and testing whichever group is known to contain a positive sample until a single positive sample

is identified (either by individual testing, as seen in Step 7, or by elimination, as seen in Step 16). Once a single positive

sample is identified, the remaining unresolved samples (non-grey wells) are pooled and tested to determine if any

positive samples remain and the process continues until all positive samples are identified. Only one test is required

per round, and in this example, it takes 17 sequential rounds to recover both positive samples.

https://doi.org/10.1371/journal.pone.0236849.g004
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described previously focus on optimizing only one of these features usually to the detriment of

the others. Instead of attempting to perform the best in a single area, we wanted to take a more

balanced approach and find tradeoffs that allow good performance across each of these areas.

Our Modified 3-Stage approach (Fig 5) is based on the S-Stage approach but it is modified so

that the number of steps is constrained to a maximum of three. At three steps, this approach

requires only a few more steps than non-adaptive approaches. Because the S-Stage algorithm is

already fairly robust, constraining the number of steps does not have a large impact on the

number of tests required. We also modified our method to be simpler and easier to perform by

borrowing the recursive subdividing used in the binary splitting approaches. In the S-Stage

approach, the remaining samples in each step are arbitrarily redivided into pools. Not only

does this make it difficult to keep track of the remaining samples spread across the plate, it can

also make it more difficult to collect the samples for a pool using a multichannel pipette (e.g.

Step 2 in Fig 3). Instead, we opted to recursively subdivide the samples from positive pools.

This makes it easier to keep track of the samples that should be pooled at each stage and,

because the samples are always in close proximity, they are easier to collect using a multichan-

nel pipette (compare Figs 3 and 5).

Materials and methods

Computational simulations

Computational simulations were carried out for each of the six pooling strategies described

above. We used realistic sample sizes (in multiples of 96 well plates) for small to medium scale

experiments: 1 × 96 = 96, 4 × 96 = 384, and 16 × 96 = 1, 536. Each set of samples was repre-

sented as a binary array of size N, where 1’s represented positive samples and 0’s represented

negative samples. For each method and set of parameters, 100 simulations were generated by

placing k positive values in random positions in the array, with k ranging from 1 to 20. In each

simulation, the number of tests, the number of sequential steps, and the number of individual

pipettings required to make the pools were recorded. In cases where it was appropriate, the

number of pipettings was calculated assuming either an 8- or a 16-channel pipette in addition

to a single channel pipette. We only considered pooling schemes that were able to completely

and accurately identify all of the positive samples in the sample set. To accomplish this, some

of the pooling schemes required additional steps and tests that are accounted for in the simula-

tion. The simulation code is available at https://github.com/FofanovLab/sample_pooling_sims

and a summary of parameters and formulas is provided in S1 Table.

DNA Sudoku simulations. For the DNA Sudoku experiments, we tested different weights

ranging from 2 to the highest value that did not exceed the number of tests required for indi-

vidual testing. For example, with a sample size of 96, the maximum weight we used was 6 with

window sizes of 10, 11, 13, 17, 19, and 23; this testing design required 93 tests, in the unambig-

uous case, and including any additional testing windows would cause the number of tests to

exceed individual testing. The window sizes at the maximum weight were 20, 21, 23, 29, 31, 37,

41, 43, 47, and 53 for 384 samples; and 40, 41, 43, 47, 49, 51, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,

101, 103, 107, 109, and 113 for 1,536 samples. For smaller weights, the window sizes were just

the first w window sizes listed here for each sample size. For the first round of testing, the total

number of tests was equal to the sum of the window sizes.

Xw

i¼1

Wi > w
ffiffiffiffi
N
p
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Fig 5. Modified 3-Stage pooling example. For 96 samples and an estimate of 2 positive samples, the Modified 3-Stage

approach begins by creating 6 pools with 16 samples each. The positive pools from the first step are then subdivided

into 4 groups of 4 in the second step. In the final step, the samples from the positive pools in step 2 are tested

individually. In the modified 3-Stage approach, the pools are recursively subdivided into groups instead of arbitrarily

redividing the remaining samples at each step. This is simpler and keeps the samples for each subsequent pool in close

proximity. The total number of tests depends on the arrangement of the positive samples, but in this example, the

modified 3-stage algorithm requires 22 tests.

https://doi.org/10.1371/journal.pone.0236849.g005
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If the result was ambiguous (i.e. any time the number of positives exceeded w − 1), the

number of steps increased to two and additional tests, equal to the number of ambiguous sam-

ples, were added to the test count. Because the samples that were added to each pool are stag-

gered, multichannel pipettes do not provide any advantage; therefore, the number of

pipettings was calculated assuming only a single channel pipette (P = N × w + |Ambiguous

Samples|).

2D pooling simulations. For the 2D pooling simulations we used square D × D grids and

each of the M grids in a simulation were the same size. The samples were pooled along each

row and column requiring 2DM tests. When the results were ambiguous, the number of steps

increased by one and the number of tests increased by the number of ambiguous samples to

account for the validation. Because the pooling along columns and rows can be easily and

more efficiently performed using multichannel pipettes, the number of pipettings was calcu-

lated using an 8- and a 16-channel pipette, in addition to a single channel pipette. The number

of pipettings was P ¼
P2DM

i¼1
d
ni
c e where ni is the number of samples in each row or column and

c is the number of channels in the pipette. We assumed that any additional pipettings required

for testing the ambiguous samples was performed with a single channel pipette.

S-Stage simulations. The S-Stage simulations were provided with an expected number of

positive samples, k̂. The number of steps was calculated as S ¼ ln N
k̂

� �
and the number of sam-

ples per group was ni ¼
N
k̂

s� i
s . Because these calculations do not provide integer values, a nearest

integer approximation was used. Optimal integer approximations of these values can be deter-

mined numerically but here we consistently applied a ceiling function. For each true number

of positive samples (k = 1 − 20) we ran simulations with expected values, k̂, ranging from 1-20.

The number of tests was calculated as

T ¼
Xs

i¼1

gi �
N
n1

þ
kn1

nþ 2
þ . . .þ

kns� 2

ns� 1

þ kns� 1

where gi ¼ b
Ni
ni
c is the number of groups tested at each step. The number of pipettings for a sin-

gle channel pipette was equal to the number of samples in each of the pools that were tested.

For multichannel pipettes, the number of samples in each pool was divided by the number of

channels and rounded up. In cases where the samples in the pool were not in adjacent wells,

additional pipettings were required.

Modified 3-Stage simulations. Our modified 3-Stage approach is similar to the S-Stage

algorithm except that the number of steps was constrained to a maximum of three:

S ¼ min 3; dln N
k̂
e

� �
. In order to recursively subdivide each pool, the number of subgroups was

calculated as gi ¼ b
ni

niþ1
c with ni calculated the same way as the S-Stage simulations. For each

true number of positive samples (k = 1 − 20) we ran simulations with expected values ranging

from k̂ ¼ 1 � 20. The number of tests and the number of pipettings were calculated the same

way as the S-Stage simulations.

Binary Splitting by Halving. The Binary Splitting by Halving simulations did not require

any estimate of the number of positive samples. The simulation performed repeated binary

searches for positive samples until no more positive samples remained. Only one test was per-

formed at each step and, because each step depended on information gained in the previous

step, none of the steps were performed in parallel. Therefore, the number of tests was equal to

the number of steps. The number of pipettings was equal to the size of each pool divided by

the number of channels in the pipette, rounded up.
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Generalized Binary Splitting. The Generalized Binary Splitting simulations were similar

to the Binary Splitting by Halving simulations except that the initial group size was calculated

based on the number of expected positive samples (k̂). More specifically, the initial group size

was calculated as 2α where a ¼ blog
2

n� k̂þ1

k

� �
c. Binary Splitting by Halving (as described

above) was performed on the initial group until a positive sample was identified at which point

the value N was updated to reflect the number of remaining untested samples and the value k̂
was decremented by 1 if a positive sample was found. The next group of 2α was calculated

using updated values of N and k̂. This continued until either N � 2k̂ � 2, at which point the

remaining samples were tested individually, or k̂ ¼ 0, at which point all of the suspected posi-

tive samples were identified. Because the standard algorithm only guarantees that up to k̂ posi-

tive samples will be found, we added additional rounds of binary splitting to ensure all of the

positive samples were identified. The number of tests, steps, and pipettings were calculated the

same way as the Binary Splitting by Halving simulations.

Experimental validation of modified 3-stage approach

We set up rare pathogen detection experiments in complex microbiome backgrounds to test

our Modified 3-Stage approach. We used a total of 768 samples (eight 96-well plates) that con-

tained a background of 2 μL of DNA extraction from cow’s milk and 8 μL of molecular grade

water. These samples originated from 24 distinct cow milk samples and were replicated (32

replicates each) to fill eight 96-well plates—a total of 24 unique microbiome backgrounds. C.
burnetti DNA (1 μL) was added to 10 randomly chosen background samples (* 1.3% carriage

rate) as we verified that the spike-in was successful using a highly sensitive Taqman assay

designed to target the IS1111 repetitive element in Coxiella burnetti [31]. Using the same Taq-

man assay, we also verified that the target pathogen was not present in any of the 24 unique

microbiome backgrounds prior to the spike-in. To ensure a consistent amount of background

DNA, the milk extractions were tested to determine the amount of bacteria with a real-time

PCR assay that detects the 16S gene and compares it to a known standard [32].

The pooling procedure was carried out by a typical researcher looking to identify samples

that are positive for the pathogen of interest, C. burnetti. Assuming N = 96 and k̂ ¼
d96� 0:013e ¼ 2 the pooling scheme recommended by our modified 3-stage approach is

depicted in Fig 5. In the first step, 6 pools consisted of 16 samples each, collected along every 2

columns of the 96 well plate using an 8-channel pipette. The 2 μL aliquots from each sample

were collected in a plastic reservoir and then pipetted back into a single well in a new 96 well

plate. The C. burnetti Taqman assay was used to test each of the pools. For the reaction, the fol-

lowing were combined for a final volume of 10 μL: 1 μL from the pool, 2 μL of Life Technolo-

gies TaqMan1Universal PCR Master Mix for a final concentration of 1X, 0.3 μL each of the

forward and reverse primers for a concentration of 0.6 μM, 0.13 μL of the probe for a concen-

tration of 0.25 μm and molecular grade water to a final volume of 10 μL. The reaction was run

on an Applied Biosystems 7900 Real Time PCR system with the following conditions: 50˚C for

2 minutes, 95˚C for 10 minutes, and 40 cycles of 95˚C for 15 seconds and 60˚C for 1 minute.

The second pooling step was carried out by subdividing the samples from the positive pools in

the previous step into four groups of four samples. Again, 2 μL from each well was combined

into the pool. These pools were subjected to Taqman C. burnetti assay as described above.

Finally, the individual samples belonging to pools positive in the second pooling step, were

tested as described above.
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Results and discussion

One of the goals of this paper is to help clarify where each of these different pooling methods

performs well and where they perform poorly so that it is easier to determine which method is

appropriate for a given set of circumstances. One of the challenging aspects of determining the

best method is that the performance is highly dependent on the circumstances and it can be

difficult to understand these dynamics. Identifying these tradeoffs can be difficult so here we

will isolate each of our features of interest (number of tests, number of steps, number of sam-

ples per pool, simplicity, and robustness) and compare the pooling methods directly to deter-

mine which perform the best and the worst in each circumstance. Fig 6 shows a summary of

these comparisons for different sample sizes (N) with either 1 or 20 positive samples.

Number of tests

Because minimizing the number of tests is one of the primary goals of group testing, we begin

by comparing the number of tests required for each method using a range of sample sizes: 96,

384, and 1,536. The number of positive samples ranged from 1 to 20 which resulted in mini-

mum positive rates of 1.04%, 0.26%, and 0.07%; and maximum positive rates of 20.83%,

Fig 6. Comparison of five pooling methods. The radar charts show the average number of tests, number of steps,

maximum number of samples per pool, number of pipettings (for 1-, 8- and 16-channel pipettes), and the number of

additional tests and steps required when the number of positive samples is overestimated (k = 1, k̂ ¼ 20) or

underestimated (k = 20, k̂ ¼ 1). The left column shows results from simulations with one positive sample and the right

column shows simulations with 20 positive samples. The rows are different sample sizes from top to bottom: 96, 384,

and 1,596. In each plot the values for each feature have been Min-Max normalized. In each category, methods with

points at the center performed the best while methods with points near the edge performed the worst.

https://doi.org/10.1371/journal.pone.0236849.g006
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5.20%, and 1.30% for 96, 284, and 1,536 samples, respectively. Fig 7 compares the number of

tests for each method using the optimal parameter settings. For the S-Stage, Modified 3-Stage,

and General Binary Splitting approaches, the results shown are for simulations where the

expected number of positive samples was the same as the true number of positives (k ¼ k̂). For

DNA Sudoku and 2D Pooling, the results shown are for simulations with parameters that

resulted in the lowest average number of tests.

As expected, the General Binary Splitting method consistently required the fewest number

of tests in all cases because it is nearly optimal according to group testing theory. Also expect-

edly, all of the pooling methods were most efficient when positive samples were sparse (Fig 7,

compare y-axis scale in left column where k = 1 vs. right column where k = 20). The two non-

adaptive methods (DNA Sudoku and 2D Pooling) required the highest number of tests when

k = 1. DNA Sudoku performed slightly worse than 2D pooling (by one test) owing to the fact

that the window sizes were co-prime instead of symmetrical like 2D Pooling. Binary Splitting

by Halving performed the worst when the positive rate was high (the maximum was k = 20 for

our simulations) and exceeded individual testing (dashed grey line) for 96 samples (along with

many DNA Sudoku simulations). The number of tests required for our Modified 3-Stage

approach and the S-Stage approach typically fell somewhere in the middle. When N = 1, 536

Fig 7. Comparison of the number of tests required for each pooling method. The swarm plots show the distribution

of the number of tests required for each method (100 simulations each). The left column shows simulations with one

positive sample and the right column shows simulations with 20 positive samples. The rows are different sample sizes

from top to bottom: 96, 384, and 1,596. For the S-Stage, Modified 3-Stage, and General Binary Splitting approaches,

the results shown are for simulations where the expected number of positive samples was the same as the true number

of positives. For DNA Sudoku and 2D Pooling, the results shown are for simulations with parameters that resulted in

the lowest average number of tests (DNA Sudoku: w = 2 when k = 1, and when k = 20, w = 3 for 96 samples and w = 4

for 384 and 1,536 samples; 2D Pooling: when k = 1, the grid sizes shown are 1x10x10 for 96 samples, 1x20x20 for 394

samples, and 1x40x40 for 1536 samples, and when k = 20 the grid sizes are 11x3x3 for 96 samples, 24x4x4 for 384

samples, and 96x4x4 for 1,536 samples).

https://doi.org/10.1371/journal.pone.0236849.g007
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and k = 20, the Modified 3-Stage simulations required only slightly fewer tests, on average,

than 2D Pooling, which performed the worst (Table 2).

For each of the pooling methods described, we only considered the number of tests

required for processing the samples and did not account for any additional controls that may

be relevant to certain assays. If we assume, irrespective of the type of assay, that at least one

positive and negative control test must be run alongside each group of pooled samples, this

could add many additional tests in some cases. This is particularly true for the purely adaptive

methods (i.e. binary splitting approaches) in which the pools are tested one at a time. In these

cases, every individual pool would require 2 additional controls resulting in triple the number

of tests. For the multistage methods (i.e. S-Stage and Modified 3-Stage), where multiple pools

are run simultaneously at each stage, only 2 additional control tests would be required per

stage. Similarly, for the non-adaptive methods, only two or four control tests would be

required depending on whether the results were ambiguous or not.

Number of steps

The number of sequential steps is one of the major factors that differentiates pooling methods.

The major benefit of non-adaptive pooling methods is that, in some cases, all of the tests can

be run at the same time which means that testing can be completed faster. In our simulations,

the non-adaptive tests required the fewest steps even when the results were ambiguous, and

thereby requiring a second round of validation (Fig 8, Table 3). For 96 samples, the highest

weight that we tested for DNA Sudoku was 6 which meant that any simulation with 5 or more

positive samples was ambiguous. Although higher weights could be used to avoid ambiguous

results, the number of tests required would have exceeded individual testing. For 384 and

1,536 samples, up to 9 and 20 positive samples, respectively, were unambiguously identified

without exceeding individual testing. The ability to unambiguously identify the positive sam-

ples in a single step, however, came with a high cost in the number of tests that needed to be

performed. For example, the cost of saving one step when using w = 6 versus w = 2 for 5 posi-

tive samples was on average 56.56 tests for 96 samples. This increased to an additional 1,321.57

tests on average for 1,536 samples using w = 21 (1 step) versus w = 4 (2 steps) when k = 20 (S1

Fig).

For 2D Pooling, ambiguous results occurred more frequently as the number of positive

samples increased and were more likely in larger grid arrangements (S2 Fig). Unlike the DNA

Sudoku results, which were always ambiguous or unambiguous based on the weight and the

number of positives, ambiguous results for 2D Pooling depended on the random arrangement

of the positive samples in the grid and therefore were not always consistent for a given window

size. For 96 samples, up to 16 positive samples could be identified in a single step but this only

occurred in 1% of the simulations (S3 Fig). At 5 positive samples (the highest number that

Table 2. Average number of tests for each of the pooling methods for sample sizes N = 96, 384, and 1,536, when k = 1 and k = 20.

No. of Samples DNA Sudoku 2D Pooling S-Stage Halving Gen. Binary Splitting Modified 3-Stage

Avg. No. Tests

(k = 1, k̂ ¼ 1)

96 21 20 13 8.65 7.99 14

384 41 40 16.59 10.66 9.99 22.1

1,536 81 80 20.61 12.60 12.00 34.68

Avg. No. Tests

(k = 20, k̂ ¼ 20)

96 97.77 85.18 80.84 132.05 70.34 80.99

384 147.19 152.16 149.63 171.37 112.60 155.84

1,536 214.43 250.67 224.82 211.14 152.96 248.78

The best and worst performing methods in each row are indicated in green and orange, respectively.

https://doi.org/10.1371/journal.pone.0236849.t002
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could be unambiguously identified using DNA Sudoku), 66% of the simulations required only

one step using 3x3x11 grids (using 66 tests vs. 93 for DNA Sudoku). For 384 samples, up to 20

positive samples were unambiguously identified using 3x3x43 grids (258 tests) in 15% of the

simulations. For 1,536 samples, 20 positive samples were unambiguously identified in 60% of

the 3x3x171 grid simulations (1,026 tests), and in only 6% of the 6x6x43 grid simulations (516

tests). This shows that reducing the grid size increases the chances of an unambiguous result

but, again, it comes with a large increase in the number of tests (1,026 tests for 3x3x171 grid vs.

160 tests for 20x20x4 at 1,536 samples).

For the adaptive methods, the trade-off for being more efficient in the number of tests is

often an increase in the number of sequential steps. This is most striking in the case of the

Fig 8. Comparison of the number of steps required for each pooling method. The swarm plots show the

distribution of the number of steps required for each method (100 simulations each). The left column shows

simulations with one positive sample and the right column shows simulations with 20 positive samples. The rows are

different sample sizes from top to bottom: 96, 384, and 1,596. The results are from the same set of simulations as shown

in Fig 7.

https://doi.org/10.1371/journal.pone.0236849.g008

Table 3. Average number of steps for each of the pooling methods for sample sizes N = 96, 384, and 1,536, when k = 1 and k = 20.

No. of Samples DNA Sudoku 2D Pooling S-Stage Halving Gen. Binary Splitting Modified 3-Stage

Avg. No. Steps

(k = 1, k̂ ¼ 1)

96 1 1 5 8.65 7.99 3

384 1 1 6 10.66 9.99 3

1,536 1 1 8 12.60 12.00 3

Avg. No. Steps

(k = 20, k̂ ¼ 20)

96 2 2 2 132.05 69.56 2

384 2 2 3 171.37 112.54 3

1,536 2 2 5 211.14 152.94 3

The best and worst performing methods in each row are indicated in green and orange, respectively.

https://doi.org/10.1371/journal.pone.0236849.t003
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Generalized Binary Splitting method which performed the best overall in the number of tests

but, in some cases, required over 100 steps. Even so, the Binary Splitting by Halving method

required even more steps than the General Binary Splitting method. This is partially due to the

fact that the number of tests is highly correlated with the number of steps for both of these

methods and the General Binary Splitting algorithm does a better job of minimizing the num-

ber of tests (the General Binary Splitting method also switches to individual testing in some

cases and, because individual tests can be completed in parallel, this can also reduce the total

number of steps). The number of steps required for the S-Stage approach was much more

moderate compared to the binary splitting algorithms; however, they did get as high as 8

sequential steps. Our Modified 3-stage approach performed the best among the adaptive meth-

ods because it enforced a maximum of 3 steps.

Number of samples per pool

The number of samples that are combined in a single pool is a very important practical con-

cern because it can determine whether the assay can produce accurate results. Typically, assays

can fail to identify positive samples if the positive signal is diluted beyond the limit of detec-

tion. This means that pooling approaches that limit the number of samples per pool are more

likely to perform better in practice. Fig 9 compares the maximum number of samples per pool

for each pooling method.

For the DNA Sudoku simulations, the number of samples per pool was determined by the

pooling interval. Because the size of the pooling interval determined the number of pools, a

smaller interval resulted in more samples per pool. For 96 samples, the smallest interval was 10

which resulted in up to 10 samples per pool, for 394 samples, the smallest interval was 20 with

up to 20 samples per pool, and for 1,536 samples the smallest interval was 40 with up to 39

samples per pool (Table 4). For 2D Pooling, the number of samples per pool was equal to the

number of samples in each column or row for a given grid layout. The largest grid layouts had

the largest number of samples per pool: 10 for 96 samples, 20 for 384 samples, and 40 for 1,536

samples. For both DNA Sudoku and 2D Pooling, the number of samples per pool remained

fairly consistent across all pools. This could be an advantage because assay results may be more

consistent and easier to interpret when they are run on a similar number of samples.

For the adaptive approaches, the number of samples per pool varied at each step and was

the largest for the first step. For the S-Stage, the Modified 3-stage, General Binary Splitting

approaches, the maximum number of samples per pool was lowest when the number of

expected positive samples was high and increased as the number of expected positive samples

decreased (Table 4). The Modified 3-Stage approach always had the same or fewer samples per

pool compared to the S-stage approach. This was particularly true when the number of positive

samples was low, resulting in a reduction of 24, 137, and 628 samples per pool for N = 96, 384,

1,536, respectively. The Binary Splitting by Halving method required the largest number of

samples per pool at 96, 384, and 1536, due to the need to pool and test all of the samples

together as the first step.

The appropriate number of samples per pool is highly dependent on the type of pathogen,

the pathogen load within each specimen, and the sensitivity of the detection assay, and must

therefore be independently be validated for each situation. For reference, studies have shown

that positive samples of SARS-COV-2 can be consistently detected using RT-qPCR in pools

with up to 32 samples, and possibly even as high as 64 samples with additional PCR amplifica-

tion cycles [13–16]. Human immunodeficiency virus (HIV) has been detected using nucleic

acid amplification on pools of 90 samples [33]. Experimentally validated sensitivity for differ-

ent pool sizes are limited so many pooling experiments keep the number of samples
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conservatively low around 5-20 samples [17, 34–37]. In general, assays will have better sensitiv-

ity and specificity when the number of samples per pool is low because larger pools can pro-

duce overwhelming noise, inhibit reactions, and/or dilute signal below detection thresholds.

Simplicity of pooling method

The simplicity of a pooling method can be somewhat subjective. However, one of the major

points of failure when combining pools by hand, is mistakes in pipetting the wrong samples.

Therefore, we used the number of individual pipetting actions required for each method using

1-, 8-, and 16-channel pipettes as an indicator for the simplicity and reproducibility of each

method. Fig 10 and Table 5 compare the number of pipettings required for each method with

either 1 or 20 positive samples for each of the sample sizes.

In most methods, using a multichannel pipette reduced the number of pipettings by an

order of magnitude in some cases. Compared to the 8-channel pipette, the 16-channel pipette

Fig 9. Comparison of the maximum number of samples per pool for each pooling method. The plots show the

maximum number of samples in a single pool for each method. The left column shows simulations with one positive

sample and the right column shows simulations with 20 positive samples. The rows are different sample sizes from top

to bottom: 96, 384, and 1,596. These results are from the same set of simulations as shown in Fig 7.

https://doi.org/10.1371/journal.pone.0236849.g009

Table 4. Maximum number of samples per pool for each of the pooling methods for sample sizes N = 96, 384, and 1,536, when k = 1 and k = 20.

No. of Samples DNA Sudoku 2D Pooling S-Stage Halving Gen. Binary Splitting Modified 3-Stage

Max No. Samples per Pool

(k = 1, k̂ ¼ 1)

96 10 10 48 96 64 24

384 20 20 192 384 256 55

1,536 40 40 768 1,536 1,024 140

Max No. Samples per Pool

(k = 20, k̂ ¼ 20)

96 10 3 3 96 2 3

384 20 4 8 384 16 8

1,536 40 4 34 1,536 64 20

The best and worst performing methods in each row are indicated in green and orange, respectively.

https://doi.org/10.1371/journal.pone.0236849.t004
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reduced the number of pipettings only for schemes where the pool sizes were large (particu-

larly the binary splitting methods). Our Modified 3-Stage method required the fewest pipet-

tings with a single-channel pipette, compared to the other methods; however, the S-Stage

method performed similarly well in cases where the number of steps happened to be similar

(i.e. in Table 3, both methods required the same number of steps when k = 20 for N = 96 and

384). Fewer pipettings with a single-channel pipette was generally associated with better per-

formance when using multichannel pipettes.

Binary Splitting by Halving was the least efficient method in number of pipettings, likely

because the method required many samples to be pooled at each step for many steps. The per-

formance was slightly improved when multichannel pipettes were used but it was still the least

Fig 10. Comparison of the number of pipettings for each pooling method. The number of pipettings required for

each pooling method is an indicator of method simplicity and reproducibility. The swarm plots show the distribution

of the number of pipettings required to create pools for each method using 1-, 8-, and 16-channel pipettes (columns).

The DNA Sudoku method does not benefit from the use of multichannel pipettes so the number of pipettings is the

same across each row. These results are from the same set of simulations as shown in Fig 7.

https://doi.org/10.1371/journal.pone.0236849.g010
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efficient in many cases. Using a single pipette, DNA Sudoku was not the most inefficient com-

pared to the other methods. However, because the samples that were combined in each pool

are spaced out in different intervals instead of in consecutive groups, the number of pipettings

did not improve by using multichannel pipettes. This means that, in the best case, a laboratory

technician would need to correctly pipette * 200 (N = 96) to * 6, 000 (N = 1, 536) times to

combine the samples into pools.

Sensitivity to misestimation of positive rate

Most of the methods described here required an estimate of the positive rate in order to design

the pooling scheme. In some cases, over or underestimating the number of positives can have

a large impact on the number of tests and/or the number of steps required to complete the

assay. Methods that minimize the impact of misestimation are more robust to fluctuating rates

in the sample population which is common in outbreak scenarios.

Binary Splitting by Halving was, by default, the most robust of the approaches because the

protocol was not modified based on any estimate of the number of positive samples (Fig 11,

bottom left, and S4 Fig). Although the number of tests increased when there were more posi-

tive samples, assuming a fixed sample size, knowledge of the number of positive samples did

not have any impact on the performance of this approach. In contrast, the size of the initial

pool for the Generalized Binary Splitting method depended on k̂ and, among the adaptive

approaches, misestimation of the true value resulted in the largest impact on the number of

tests and steps (Fig 11, bottom right, and S5 Fig). The consequences of extreme overestimation

(k = 1 and k̂ ¼ 20) and underestimation (k = 20 and k̂ ¼ 1) are provided in Table 6 which

shows that this method is more sensitive to overestimation than to underestimation. Of the

adaptive methods that depended on an estimate of the number of positive samples, the S-Stage

Table 5. Average number of pipettings using 1-, 8-, and 16-channel pipettes for each of the pooling methods for sample sizes N = 96, 384, and 1,536, when k = 1 and

k = 20.

No. of Samples Pipette Channels DNA Sudoku 2D Pooling S-Stage Halving Gen. Binary Splitting Modified 3-Stage

Avg. No. Pipettes

(k = 1, k̂ ¼ 1)

96 1 192 192 172 336.21 220.41 126

8 192 39 26 45.22 29.23 22

16 192 20 17 25.22 16.35 18

384 1 768 768 675.66 1,345.15 900.98 447.96

8 768 111 91.59 171.2 114.3 70.11

16 768 79 50.59 88.25 58.95 43.11

1,536 1 3,072 3,072 2,762.68 5,380.22 3,656.16 1,688.32

8 3,072 384 352.61 675.81 458.76 232.68

16 3,072 222 181.61 340.5 231.08 122.68

Avg. No. Pipettes

(k = 20, k̂ ¼ 20)

96 1 351.77 229.18 144.84 3,155.22 198.82 144.99

8 351.77 85.18 80.84 457.67 70.78 80.99

16 351.77 85.18 80.84 272.33 70.78 80.99

384 1 1,590.19 840.16 575.92 12,619.78 1,070.53 592.76

8 1,590.19 223.16 160.5 1,655.52 189.78 155.84

16 1,590.19 151.16 160.5 879.89 115.82 155.84

1,536 1 6,187.43 3,162.67 2,519.24 50,118.54 4,504.79 1,970.68

8 6,187.43 556.67 476.96 6,360.46 588.54 404.98

16 6,187.43 399.67 349.81 3,242.2 324.61 324.98

The best and worst performing methods in each row are indicated in green and orange, respectively.

https://doi.org/10.1371/journal.pone.0236849.t005
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Fig 11. Changes in the number of tests and steps given different estimated positive rates for the adaptive

methods. The figure shows the number of tests (y-axis) and the number of steps (marker size) required to recover all

positive samples (x-axis) in simulations with N = 384 samples using each of the adaptive methods. For each method,

except for Binary Splitting by Halving, the pooling scheme was optimized around the expected number of positive

samples (marker color) provided to each simulation. Each point represents a single simulation and the lines are the

average number of tests for a given number of expected positives. The black dashed line in the S-Stage, 3-Stage, and

Binary Splitting by Halving figures represents the upper bound of the number of tests (assuming that the number of

positive samples is estimated correctly, where applicable). For the Generalized Binary Splitting figure, the number of

tests approaches the lower bound (black dashed line) when N
k is large.

https://doi.org/10.1371/journal.pone.0236849.g011

Table 6. The robustness of each pooling method to over- and underestimation of the number of positive samples.

No. of

Samples

DNA Sudoku 2D Pooling S-Stage Halving Gen. Binary

Splitting

Modified

3-Stage

Change in No. Tests (and Steps) with Overestimate

of Positive Samples

(k = 1, k̂ ¼ 20)

96 +935 +45 +22 (-3 steps) 0 +68.77 (+32.19

steps)

+21 (-1 step)

384 +1187 +217 +37.41 (-3

steps)

0 +109.30 (+73.08

steps)

+31.89

1,536 +1455 +945 +35.39 (-3

steps)

0 +146.96 (+110.89

steps)

+54.65

Change in No. Tests (and Steps) with Underestimate

of Positive Samples

(k = 20, k̂ ¼ 1)

96 -857.68 (+1

step)

+11.5 (+1

step)

+14.53 (+3

steps)

0 +61.99 (+62.57

steps)

+11.75 (+1

step)

384 -1027.82 (+1

step)

-60.79 (+1

step)

+11.34 (+3

steps)

0 +58.40 (+58.40

steps)

+54.74

1,536 -1212.81 (+1

step)

-691.86 (+1

step)

+7.34 (+3

steps)

0 +56.80 (+56.80

steps)

+108.85

Results show the average increase/decrease in the number of tests and steps when k = 1 and k̂ ¼ 20 (overestimation) and when k = 20 and k̂ ¼ 1 (underestimation). The

most and least robust methods in each row are indicated in green and orange, respectively.

https://doi.org/10.1371/journal.pone.0236849.t006
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(Fig 11, top left, and S6 Fig) and our Modified 3-Stage approach (Fig 11, top right, and S7 Fig)

were the most robust to misestimations of k. The number of steps was more robust in the

Modified 3-Stage approach than the S-Stage due to the 3-Step constraint; however, the Modi-

fied 3-Stage was more sensitive in the number of tests in some cases (Table 6).

DNA Sudoku (Fig 12, left, and S1 Fig) was the most sensitive method overall. Overestimat-

ing the number of positive samples caused the weight of the pooling design (w ¼ k̂ þ 1) to be

set higher than necessary. When this happened, all of the positive samples were still unambigu-

ously identified but each unnecessary increase in the weight required more than
ffiffiffiffi
N
p

addi-

tional tests. When the number of positive samples was underestimated, fewer tests were

performed but the pooling scheme was no longer able to unambiguously identify the positive

samples in a single step and a second round of verification was required. A similar pattern

occurred in the 2D Pooling simulations (Fig 12, right, and S3 Fig). While the grid dimensions

did not directly depend on k, generally larger grids were more efficient when the number of

positive samples was low and smaller grids reduced ambiguous results when the number of

positive samples was high but at the cost of many more tests. However, because 2D Pooling

was constrained to two dimensions, the number of tests did not vary as drastically as DNA

Sudoku.

Although we did not consider it here, adaptive approaches afford some flexibility in correct-

ing misestimations of the positive rate that become obvious during the testing procedure.

Underestimates are easily detected; for example, in binary splitting, when k̂ positive samples

have been identified but the remaining pool of samples still tests positive, or in the multistage

approaches, when more than k̂ pools are positive in the first round of tests. Detecting overesti-

mates before all of the tests are complete is more difficult but it can still be accomplished prob-

abilistically by estimating the likelihood of each test outcome given k̂. In either case, k̂ can be

updated mid-procedure to improve the efficiency of the adaptive approaches.

Experimental validation of modified 3-Stage approach

To experimentally validate our modified 3-Stage approach, we set up a controlled experiment

with C. burnetti DNA spiked into complex microbiome background samples. All of the 24

Fig 12. Changes in the number of tests and steps given different estimated positive rates for the non-adaptive

methods. The figure shows the number of tests (y-axis) and the number of steps (marker size) required to recover all

positive samples (x-axis) in simulations with N = 384 samples using DNA Sudoku and 2D Pooling methods. Each

point is the average number of tests required for 100 simulations and the width of the bands is the standard deviation.

The simulations were run using different weights for DNA Sudoku and different symmetrical 2D grid sizes for 2D

Pooling. Small markers indicate unambiguous results that required only a single round of testing and the larger

markers indicate ambiguous results that required a second validation step to correctly identify the positive samples.

The grey dashed line is the number of tests required for individual testing.

https://doi.org/10.1371/journal.pone.0236849.g012
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background samples used in the validation experiment were negative for the C. burnetti patho-

gen prior to the spike-in and each background extraction was found to have similar amounts

of the 16S gene (CT values of 29 to 31), indicating similar background bacterial loads. C. bur-
netti was detected in the spike-in samples prior to pooling. The random placement of the C.
burnetti positive samples within the eight 96-well plates is shown in Table 7. Although the

expected number of positive samples per plate was * 2 given the 1.3% carriage rate, the actual

number of positives ranged from 0 to 3 and none of the plates had exactly 2 positive samples

(Table 7). The TaqMan assay was able to accurately identify the positive pools without any

false positives or false negatives even during the first step when the number of samples per

pool was the largest at 16. Using an 8-channel pipette where appropriate, a total of 180 pipet-

tings was required to pool the samples. A total of 120 TaqMan assays were performed which

is* 84% fewer than would be required to individually test 768 samples.

Conclusions

Picking the right pooling approach for a given pathogen surveillance campaign can be a com-

plicated decision which is often driven by a set of conflicting constraints and priorities, includ-

ing budgetary limitations, complexity of the procedure (and thus likelihood of human error),

and time-to-answer requirements. This is all in addition to ensuring that the pooling proce-

dure is suitable given the epidemiology of the infectious agent, the amount of specimen avail-

able, and the accuracy and sensitivity of the detection assay. Given the amount of work that

goes into developing and standardizing a pooling protocol for a specific surveillance campaign,

it is important to understand the strengths and weaknesses of different pooling methods in

order to boost the odds of success. As is evident from the data presented in this manuscript, no

single group testing approach is a clear winner under all these possible constraints—the correct

choice depends on the predominant constraints placed on the surveillance campaign. Below

we present some of the practical implications of the various group theory approaches outlined

in this manuscript.

When minimizing the total number of tests is the absolute overriding goal and time-to-

answer is not an important constraint, Generalized Binary Splitting is the optimal choice. This

approach minimized the total number of tests while maintaining a reasonable complexity, as

measured by the number of distinct pipetting actions, but sacrifices speed due to significantly

increase in the number of serial steps. On the other hand, when speed is the predominant

Table 7. Using the modified 3-Stage approach we were able to accurately recover all of the positive C. burnetii samples.

Plate # Positive Samples (k) Exp. Positive Samples (k̂ ) Samples (N) Positive Wells Tests Pipettings

1 3 2 96 F1, A4, G9 30 48

2 1 2 96 H2 14 20

3 1 2 96 D9 14 20

4 1 2 96 E11 14 20

5 0 2 96 NA 6 12

6 3 2 96 F3, A10, C10 22 28

7 0 2 96 NA 6 12

8 1 2 96 D4 14 20

Eight 96-well plates were filled with background DNA from complex cow milk microbiome samples and 10 randomly chosen samples had C. burnetii DNA spiked in.

The table shows the number and location of the positive samples in each 96-well plate and the number of tests and pipettings required to identify the positive samples

using our Modified 3-Stage pooling approach.

https://doi.org/10.1371/journal.pone.0236849.t007
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constraint, DNA Sudoku can offer a single-step pooling approach with the minimum number

of tests, at the cost of significant complexity. DNA Sudoku, however, is far from optimal for

monitoring rapidly changing pandemics due to its extreme sensitivity to misestimation of the

carriage rate of the pathogen in population.

A good middle ground between the adaptive and non-adaptive pooling approaches is the

Modified 3-Stage approach—our preference in our own surveillance applications. While it is

never the absolute best in any one category, it also rarely performs the absolute worst. It is

always nearly optimal in terms of number of serial steps, complexity, number of tests, and it is

highly resilient to misestimation of the carriage rate. The latter is particularly important, as it

allows this approach to be useful for surveillance in situations with rapidly changing pathogen

carriage rates (e.g. in pandemic or seasonal outbreaks), while keeping number of serial steps as

low as possible for an adaptive method.

Supporting information

S1 Table. Summary of parameters and calculations used in simulations for each pooling

method.

(PDF)

S1 Fig. The number of tests required for DNA Sudoku for different weights. The figures

show the number of tests (y-axis) required to fully recover all of the positive samples (x-axis)

in each simulation for 96 (top), 384 (middle), and 1,536 (bottom) samples (note the different

scales). Simulations were run with different weights, w, which determined how many pooling

intervals were used. When the true number of positive samples was less than or equal to w − 1,

the test results were unambiguous and the testing was completed in a single step (small mark-

ers). When the results were ambiguous, the prospective positive samples were all tested indi-

vidually in a second round of testing (large markers). Each point is the average number of tests

required for 100 simulations and the width of the bands is the standard deviation. The grey

dashed line is the number of tests required for individual testing.

(PDF)

S2 Fig. Ambiguous 2D pooling simulations. The proportion of 2D Pooling simulations that

had ambiguous outcomes in at least one grid for different grid sizes and number of positive

samples.

(PDF)

S3 Fig. The number of tests required for 2D pooling using different grid sizes. The figures

show the number of tests (y-axis) required to fully recover all of the positive samples (x-axis)

in each simulation for 96 (top), 384 (middle), and 1,536 (bottom) samples (note the different

scales). Simulations were run with different symmetrical 2D grid sizes, and the window size

indicates the size of each dimension. Each point is the average number of tests required to

accurately recover all of the positive samples in 100 simulations and the width of the bands is

the standard deviation. Small markers indicate unambiguous results that required only a single

round of testing and larger markers indicate unambiguous results that required a second vali-

dation step. The grey dashed line is the number of tests required for individual testing.

(PDF)

S4 Fig. The number of tests required for binary splitting by halving. The Binary Splitting by

Halving pooling method does not depend on an estimate of the number of positive samples.

Therefore, the results simply indicate the number of tests and the number of sequential steps

that were required to identify the number of true positive samples indicated along the x-axis.
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One hundred random sample arrangements were simulated for each true positive value from 1

to 20. The black dashed line is the theoretical upper bound on the number of tests (k log2(N)).

The grey dashed line is the number of tests required for individual testing.

(PDF)

S5 Fig. Number of tests required for generalized binary splitting. Each point represents the

number of tests required for a single simulation and the lines show the average for schemes

designed for a given expected number of positive samples. The number of sequential steps

required for each scheme is indicated by the marker size. As N
k increases, the number of tests

required for this method approaches k log
2

N
k

� �
which is plotted as a black dashed line.

(PDF)

S6 Fig. The number of tests required for S-stage pooling method given different expectations

for the number of positive samples. The figures show the number of tests (y-axis) required to

fully recover all of the positive samples (x-axis) in each simulation for 96 (top), 384 (middle), and

1,536 (bottom) samples (note the different scales). The number of steps (marker size) and the

size of the pools were determined by the expected number of positive samples provided to each

simulation, even when the estimate was inaccurate. Each point represents a single simulation

and the lines are the average number of tests for a given number of expected positives. The black

dashed line is e
log2ðeÞ

k log
2

N
k

� �
which is the upper bound of the number of tests required to find k

positive samples. The grey dotted line is the number required for individual testing.

(PDF)

S7 Fig. Number of tests required for our Modified 3-stage method given different expecta-

tions for the number of positive samples. The figures show the number of tests (y-axis)

required to fully recover all of the positive samples (x-axis) in each simulation for 96 (top), 384

(middle), and 1,536 (bottom) samples (note the different scales). The number of steps (marker

size) and the size of the pools were determined by the expected number of positive samples

provided to each simulation, even when the estimate was inaccurate. Each point represents a

single simulation and the lines are the average number of tests for a given number of expected

positives. The black dashed line is is the upper bound of the number of tests required to find k
positive samples, it is calculated as g1 + kg2 + kg3 where gi is the number of subgroups at each

stage. The grey dotted line is the number required for individual testing.

(PDF)
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