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Simple capacitor-switch model of 
excitatory and inhibitory neuron 
with all parts biologically explained 
allows input fire pattern dependent 
chaotic oscillations
Pavel Cejnar1 ✉, Oldřich Vyšata1,2, Jaromír Kukal1, Martin Beránek3, Martin Vališ2 & 
Aleš Procházka1,4 ✉

Due to known information processing capabilities of the brain, neurons are modeled at many different 
levels. Circuit theory is also often used to describe the function of neurons, especially in complex multi-
compartment models, but when used for simple models, there is no subsequent biological justification 
of used parts. We propose a new single-compartment model of excitatory and inhibitory neuron, the 
capacitor-switch model of excitatory and inhibitory neuron, as an extension of the existing integrate-
and-fire model, preserving the signal properties of more complex multi-compartment models. The 
correspondence to existing structures in the neuronal cell is then discussed for each part of the model. 
We demonstrate that a few such inter-connected model units are capable of acting as a chaotic 
oscillator dependent on fire patterns of the input signal providing a complex deterministic and specific 
response through the output signal. The well-known necessary conditions for constructing a chaotic 
oscillator are met for our presented model. The capacitor-switch model provides a biologically-plausible 
concept of chaotic oscillator based on neuronal cells.

Reasoning, resolution from facts are still the domains where the human brain outperforms current computers. 
This, but not only this, is the reason to model its functions, functions of neurons and information processing 
inside them. Neurons are modeled on many different levels of detail1,2 and for many different purposes. Models 
focusing on the information function of a neuron with varying levels of complexity3–5 laid the foundations for 
computer neural networks and are based on a simple mathematical calculus. Phenological models of the neu-
ron6–9 have attempted to simulate more appropriately the output signal using more complicated mathematical 
formulas, however, mostly unrelated to existing biological structures and often only for the purpose of simulating 
nerve tissue alone10. Biological models9,11,12, on the other hand, describe in detail changes of individual quantities, 
ion currents, intracellular second messengers and ion pools in cells or in their compartments, but at the cost of 
high simulation complexity in available software tools like NEURON, GENESYS, or SNNAP7,9,13–15.

The Function of Neuron
To understand the nature of information processing in neurons, we can focus on the differences in structure or 
function of neuronal cells relative to any other cells. Neuronal cells, localized in the brain, are protected from the 
rest of the body by the hematoencephalic barrier. This allows further functional specialization16. Although there 
are still some subcellular structures in neurons whose function is only assumed, like the Nissl substance, there 
are hardly any other undetected physical structures present that would not be identified at least by their physical 
location and shape to date. Morphologically, in a typical neuron, three major regions are recognized: (1) the soma, 
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containing the nucleus and the major cytoplasmic organelles; (2) a variable number of dendrites (generally in 
submillimeter lengths each) or the dendritic tree, differing in size and shape, emanating from the soma to other 
neurons in gray matter and receiving signals from them through the synapses; and (3) the axon (up to lengths in 
meters in extremes17), which extends far from the cell body16. The important difference to other cells consists in 
the frequent changes in electropotential, the oscillation pattern, of the neurons. The potential acquired through 
synapses spreads through the dendritic tree to the soma and possibly undergoes some signal preprocessing oper-
ations. The received signal is thought to be integrated and if exceeding a threshold in the soma, an action potential 
is generated in the axon initial segment18,19 by opening Na+ ion channels and subsequently K+ ion channels. This 
change in potential, the spike, is then actively spread through the axon to other neurons. In the meantime, the 
resting electropotential is maintained using the ionic pumps by means of active transport of ions through the cell 
membrane.

Electric Signals Recorded in Brain and Neuron, Excitatory and Inhibitory Neurons.  Although 
no uniform classification scheme exists, many characteristic patterns among recorded oscillation patterns exist. 
“Regular spiking” generates one spike at a time for a longer period, such as in brain stem and spinal cord motor 
neurons. Sometimes, when a frequency seems to slow down in time, a “spike frequency adaptation” pattern is 
recognized, like in cortical and hippocampal pyramidal cells. Many neurons (thalamic relay neurons, inferior 
olivary neurons, some types of cortical and hippocampal pyramidal cells) are also able to exhibit “burst spik-
ing”, with membrane potential increased through Ca2+ ion currents, accompanied by clusters of regular Na+- 
and K+ -dependent action potentials. However, among these often occurring patterns, many other exist, like 
γ-aminobutyric acid (GABA) releasing interneurons in the cerebral cortex, thalamus or hippocampus generating 
relatively short-duration (<l ms) action potentials and discharging at high frequencies (>300 Hz). Alternatively, 
neurons releasing neuromodulatory transmitters, such as acetylcholine, norepinephrine, serotonin, and hista-
mine, often exhibit spontaneously generating action potentials at relatively slow frequencies (e.g., 1–10 Hz)16. In 
vitro recordings generally confirmed that each morphologically distinct class also differs in its electrophysiologi-
cal features compared to other classes20.

We can divide neurons according to the changes in electropotential they spread and also according to the 
distance of their contacts to other neurons. In the brain we can recognize excitatory neurons making local con-
tacts (e.g., spiny stellate cells of the cerebral cortex), excitatory neurons making distant contacts (e.g., pyramidal 
neurons in the cerebral cortex, spinal motor neurons), inhibitory neurons making local contacts (e.g., GABAergic 
interneurons in the cerebral and cerebellar cortex, in neocortex and hippocampus also classified by their mor-
phology and function – basket cells, Chandellier cells, double bouquet cells, etc.), inhibitory neurons making 
distant contacts (e.g., medium spiny neurons of the basal ganglia or Purkinje cells of the cerebellar cortex) and, as 
a special category, neuromodulatory neurons (e.g., dopaminergic neurons of the substantia nigra) that influence 
the chemical transmission of the electropotential.

Synapses Acting as a Mechanical Voltage-Gated Switch, Synaptic Delay, Passive Spread of 
Signal in Dendrites.  Synapses consist of several components: (1) a presynaptic terminal localized often on 
axon, but alternatively also on dendrites (2) a cleft, and (3) a postsynaptic receptor site located on the dendrites, 
but alternatively also on axon, soma, or other types of cells16. Synapses allow transmission of the potential from 
the terminal to the receptor, and two types of synapses are recognized according to their transfer mechanism – 
electrical synapses and chemical synapses. Electrical synapses have smaller cleft (about 2–4 nm in comparison to 
20–40 nm for chemical synapses21) and contain gap junction channels crossing the plasma membranes of both 
cells and allowing direct electrical coupling of both neurons22. Ions could travel both directions but sometimes, 
in rectifying synapses, voltage-gated ion channels allow traveling only in one direction23. Electrical synapses are 
often found connecting smaller local inhibitory neurons24, allowing them to synchronize25. Chemical synapses 
are found between both excitatory and inhibitory neurons and often occur as axo-dendritic synapses26. They can 
also connect axon with dendrites of the same cell. In the presynaptic area synapses contain neurotransmitters 
enclosed in small membrane-bound spheres – synaptic vesicles. According to the thickness of the presynaptic 
and postsynaptic area and to the shape of the vesicles, synapses also tend to be characterized as asymmetric (with 
rounded vesicles, typically excitatory synapses, found on dendritic spines) or symmetric (with flattened or elon-
gated vesicles, typically inhibitory synapses, found on somata or dendritic shafts)27. The rise in potential on the 
presynaptic element activates voltage-dependent, calcium-selective ion channels28, influencing the membrane 
proteins and changing the shape of the membrane29 to release neurotransmitter from the vesicles to the cleft. On 
binding the neurotransmitter molecules from the cleft, the receptor site opens ligand-gated ion channels in the 
postsynaptic cell membrane, causing the ions to flow from or to the cell, which results in change of potential in the 
postsynaptic element. The change could also be modulated (amplified or inhibited) by chemical messengers pro-
duced inside the postsynaptic cell. At the end of the transmission, the neurotransmitter may be taken back to the 
presynaptic terminal by reuptake pumps, diffused away out of the cleft, or metabolized by the enzymes within the 
subsynaptic membrane30. The whole process allows unidirectional spread of the change in potential from presyn-
aptic terminal to postsynaptic receptor site and, based upon neurotransmitter bound to the synapse, the detected 
significant increase in the potential of the presynaptic terminal (excitatory) or significant decrease (inhibitory) is 
propagated. The small volume of the cleft allows neurotransmitter concentration to be raised or lowered rapidly23, 
however, in comparison to electrical synapses, the whole process of transmission of the change of the potential 
is slower, although the difference is not as distinctive in mammalian neurons as in some cold-blooded animals24. 
The typical delay of 0.3–1 ms in the signal is generated due to releasing and binding of the neurotransmitter11. 
Both the electrical31 and chemical synapses32,33 undergo some long-term changes – exhihibing synaptic plasticity.

The electric features of dendrites, like the attenuation or delay computed from membrane and internal resist-
ances, allow for spread of the signal in dendrites at short (approximately sub-millimeter) distances to other 
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compartments of the dendritic trees34–37 at reasonably fast speeds, keeping in mind that these connections are not 
as persistent as axons, undergo changes during the neuronal cell life and, in the absence of significant insulation, 
their signal is susceptible to other dendro-dendritic signal preprocessing operations. A wide range of such oper-
ations is documented, like the logical AND/OR operations, coincidence detection, low-pass filter, attenuation, 
segregation, amplification or partial integration38,39.

Ion Concentrations Inside and Outside The Cell, Ionic Pumps and The Resting Potential.  The 
concentrations of important ions like Na+, K+, Cl−, or Ca2+ in neurons are precisely maintained by their active 
transport through the cell membrane using ionic pumps and then by several ionic buffering mechanisms. The 
intracellular and extracellular concentrations of these ions differ markedly: K+ is actively concentrated inside the 
cell, and Na+, Cl−, and Ca2+ are actively extruded out of the cell. However, while the plasma membrane is imper-
meant to larger and other ions, the osmolarity inside the cell is approximately equal to that outside the cell. Ions 
tend to passively move down their concentration gradients through specialized selective pores, ionic channels, if 
they are open in the plasma membrane. As ions travel through the membrane (e.g. K+ out of the cell), they slightly 
decrease the concentration gradient, whereas they significantly increase the electropotential gradient in the oppo-
site direction. The equilibrium, where the concentration gradient of ions is balanced through their electropoten-
tial gradient, can be computed for given ion and its known concentrations on both sides of the membrane using 
the Nernst equation or, when incorporating other ions, using the Goldman–Hodgkin–Katz voltage equation. The 
equilibrium potentials for Na+, K+, Cl−, and Ca2+ ions, together with their intracellular and extracellular concen-
trations, are depicted in Fig. 1. In mammalian neurons, the equilibrium potential is approximately −102 mV for 
K+, 56 mV for Na+, −76 mV for Cl−, and 125 mV for Ca2+16. The change in ion concentration to reach the equi-
librium potential is very small (in a spherical cell of 25 µm diameter, only about 4 µM for intracellular K+ (e.g., 
from 140 to 139.996 mM)). Intracellular recordings from different neurons in the mammalian central nervous 
system reveal different resting membrane potentials in a range of approximately −60 to −75 mV. And this could 
also change during wake/sleep period (e.g. approximately −70 mV during sleep and −55 mV during waking for 
cells receiving axonal input from the retina and projecting it to the visual cortex).

Among ionic pumps, the Na+/K+-ATPase is the most comprehensively understood40, extruding three Na+ 
ions for every two K+ ions transported into the cell at the cost of one ATP molecule. Other ionic pumps are 
used to selectively maintain the proper distribution of different ionic species important for cellular signaling 
and for secondary transport, being operated on the basis of the Na+ gradient across the cell membrane or of 
hydrolysis of ATP. For calcium, the concentration inside neurons is kept very low by both types of ionic pumps 
−Ca2+ is extruded from neurons through a Ca2+/Mg2+-ATPase and also through a Na+/Ca2+ exchanger driven 
by the Na+ gradient across the membrane. Low Cl− concentration in neurons is actively maintained through a 
chloride-bicarbonate exchanger16. The number of the most common ionic pumps in human body cells, Na+ /K +  
-ATPase, differs by cell type but is generally between 8 · 105 and 5 · 107 41,42.

The human brain consumes about 20% of the body’s oxygen supply at rest and utilizes approximately 25% of 
body glucose, even though it represents only about 2% of the body weight16,43. The most of the energy in neuronal 
cells is consumed for maintaining the gradient in concentration of selected ions and thus maintaining the differ-
ence in potential44.

Ionic Generation of Action Potential, Axon Hillock, Axon Initial Segment.  As recorded on the 
squid giant axon by Hodgkin and Huxley and explained using a quantitative mathematical model12,45–47, the 
small deviation from resting potential (of approximately −60 mV inside versus outside on squid giant axon) 
exceeding the activation threshold (approximately − 45 to −55 mV) leads first to the depolarization of membrane 
through opening of Na+ ion channels (quickly approaching the ENa value potential), subsequently inhibition of 

Figure 1.  Different concentrations and equilibrium potentials for selected ions (Na+, K+, Cl−, and Ca2+) 
maintained inside and outside the cell, the example of ionic pump (Na+/K+-ATPase) for active transport against 
the concentration gradient and several passive ion channels for flow of selected ions down the concetration 
gradient.

https://doi.org/10.1038/s41598-020-63834-7


4Scientific Reports |         (2020) 10:7353  | https://doi.org/10.1038/s41598-020-63834-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Na+ channels and activation of K+ ion channels (decreasing potential to values even below the original resting 
potential, after-hyperpolarization) and followed by the stabilization of the potential (back to the values similar to 
the resting potential).

For generation of action potentials, two processes influence the Na+ ion channels, first activation and deac-
tivation of these ionic channels and then also inhibition and de-inhibition. The channels are able to pass the 
ions while they are activated and de-inhibited. At the beginning, the Na+ ion channels are in deactivated and 
de-inhibited state. The depolarization of the membrane potential increases the probability of Na+ channels acti-
vation. As one channel is activated, the influx of Na+ ions increases the potential more and other channels become 
also activated. However, the fast depolarization also leads to inhibition of Na+ ion channels, which thus no longer 
conduct Na+ ions. In addition, the K+ ion channels also become activated and allow the positive charge to exit 
the cell and the membrane potential to repolarize. The persistence of the K+ current for a few milliseconds fol-
lowing the action potential generates the after-hyperpolarization, during which inhibition of the Na+ channels 
is removed16. The temporal overlap between Na+ and K+ currents during an action potential was found to be 
significantly reduced to make the whole process more energy efficient48.

In most cells, each action potential is started somewhere between the region of the neuronal cell body where 
the axon originates, the axon hillock, and the axon initial segment49–51. The cytoplasm in the vicinity of the axon 
hillock is deficient of Nissl substance (a combination of stacks of rough endoplasmic reticulum interposed with 
rosettes of free polysomes) generally present at the soma but with unknown function16. The axon initial segment 
is the region adjacent to the axon hillock. Herein, microtubules generally form characteristic parallel fascicles not 
seen elsewhere. The axon initial segment is a small compartment with the lowest threshold for action potential 
generation due to high density of (voltage-sensitive) Na+ channels. Once a spike is initiated (e.g., about 30–50 µm 
from the axon in cortical pyramidal cells), this action potential is then propagated in both directions – down the 
axon, causing the release of neurotransmitter in the synaptic terminals, as well as back through the cell body, 
potentially modulating intracellular processes in the cell’s dendrites50. The axon initial segment and, to some 
extent, the axon hillock also have a specialized thick electrondense coating with a complex ultrastructure and 
unknown function16 separated by 5–10 nm from the inner surface of the membrane.

Inhibitory Post-Synaptic Potentials (IPSPs).  Although an increase in K+ mediates IPSPs at some inhib-
itory synapses, in others, like inhibitory interneurons for the spinal motor neuron52, the IPSPs are due to a selec-
tive increase in Cl− conductance. When the receptors on postsynaptic membrane bind the neurotransmitter, 
here the glycine (although the most common transmitter associated with inhibitory actions in many areas of the 
brain is GABA), they become selectively permeable to Cl−. For example, in spinal motor neurons, the membrane 
potential moves from a resting value of −65 mV toward the Cl− equilibrium potential of approximately −70 mV 
as a result of the increase in Cl− conductance.

Active Spread of Signal in Myelinated Axon, Refractory Period for Unidirectional Spread of The 
Signal.  Passive spread of the signal in the axon would allow effective spreading of the potential for up to sev-
eral millimeters, which is not enough in comparison to the known length of axons (the largest ones having the 
length in meters in vertebrates like human or giraffe17). To enhance the conductance properties, it is necessary to 
either increase their diameter (with up to millimeter-scale values like some axons in invertebrates), which would 
be not suitable for mammalian brains, or increase membrane resistance (like in vertebrates). However, in the 
latter case, to keep the passive spreading of the signal fast, this has to be followed by decrease in axon membrane 
capacitance. The way the nervous system does this is through special satellite glial cells – oligodendrocites (in 
central nervous system) or Schwann cells (in peripheral nervous system). These cells wrap many layers of their 
plasma membranes, called together myelin sheaths, around axonal segments and maintain them53,54. The evo-
lution of the insulating myelin sheath then allows for 10- to 100-fold increases in conduction velocity through 
axons of fairly small diameters. The bare portion of the axon at the end of each myelin segment, the node of 
Ranvier, has a complex structure. The density of voltage-sensitive Na+ channels at the node is high (10,000 µm−2) 
in comparison to that in the internodal membrane (20 µm−2). This difference in density means that the impulse is 
only actively generated at the node. A myelinated axon therefore resembles a passive cable with active booster sta-
tions – the impulse jumps from node to node, hence the process is called saltatory conduction. This allows axons 
of small diameters to conduct extremely rapidly55 and may extend over considerable lengths; for example, in a 
20 µm-diameter axon conducting at 120 m·s−1 an impulse of 1-ms duration is transmitted over a 120 mm length 
of axon, including more than 100 nodes of Ranvier. The impulse is probably generated simultaneously by many 
nodes spreading their summed currents to the next adjacent nodes to activate them16.

Nevertheless, for very small and short axons, i.e. less than 1 µm in diameter, it is more effective to be unmy-
elinated56,57. The axon is generally unmyelinated in local circuit neurons (such as inhibitory interneurons). In 
unmyelinated axons, the Na+ and K+ channels taking part in action potential generation are distributed uni-
formly along the axon.

Due to the inhibition of Na+ channels, an action potential cannot be generated immediately after the gen-
eration of the previous one. The period of inhibition of Na+ channels is also accompanied and followed by 
after-hyperpolarization from the opened K+ ion channels, requiring another increased injection of ionic current 
into the cell to exceed the activation threshold again for any subsequent action potential. The practical implica-
tion of these refractory periods is that action potential from axon initial segment and subsequently from nodes of 
Ranvier spreads unidirectionaly – the nodes down in the direction cannot reactivate the nodes back on the path 
during the spread of one action potential.

https://doi.org/10.1038/s41598-020-63834-7


5Scientific Reports |         (2020) 10:7353  | https://doi.org/10.1038/s41598-020-63834-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Chaotic oscillators
If the neuronal cell is able to integrate the input potential in the soma, then the changes of the resistance of the input 
paths can affect the increase or decrease in the frequency of generated action potentials. All this processing is also 
preceded by dendritic signal preprocessing operations. However, upon presenting a completely new, unknown 
input, the unit should be able to output a highly different response, but the documented dendro-dendritic range 
of operations is insufficient for this purpose as it is limited to adjusting the properties of the incoming signal only. 
To clearly distinguish the new pattern of input signal, the preferred response would be, for example, to exhibit a 
highly dissimilar signal on the output. The concept of high sensitivity to the input signal, but still of deterministic 
nature, is known to be employed in chaos theory. A nonlinear dynamic system is called chaotic if it is deterministic 
and highly sensitive to initial conditions58. The output of such a system for given initial conditions can exhibit a 
response similar to stochastic processes. The set of values the system tends to evolve, the system attractor, represents 
the responses the system is able to provide. Units capable of highly complex information processing should be able 
to exhibit chaotic behavior in relation to selected signal quantity, like amplitude, frequency or fire pattern (the time 
intervals between subsequent pulses) and thus to provide a wide set of different responses in relation to changes in 
such a selected quantity. The basic concepts to prove chaoticity59 in discrete dynamic systems include the numeric 
methods of determination of Lyapunov exponents (e.g. ref. 60) or the determination of correlation dimension (e.g. 
ref. 61,62). If the dominant Lyapunov exponent is positive, then the system presents highly divergent responses in 
time for very close inner states. Similarly, if the correlation dimension of attractor is determined to be greater than 
zero, then the system is able to present an uncountable set of responses, therefore the system is chaotic at least.

Oscillators exhibiting chaotic behavior in some selected quantity of signal, like its amplitude or frequency 
or fire pattern, are called chaotic oscillators. If the processing unit is behaving like an oscillator, and the pro-
cessed information is coded by changes in given selected quantity of signal, then sufficient spectrum of oscilla-
tor’s responses is required, for example, chaotic behavior of such units, at least for some values of the processed 
quantity of the signal. Similarly, for aggregation of such units, to grow the number of responses of such a system 
exponentially or more with the number of aggregated units, for each base unit being a chaotic oscillator is also 
the necessary condition.

To construct the chaotic oscillator the theoretical concepts are well known – even three variables, one provid-
ing positive feedback, one providing slower positive feedback and one providing negative feedback, could form a 
simple chaotic oscillator63,64. And thus to prove the chaotic behavior of a given nonlinear dynamic system, in the 
oscillator assembled from simple circuits, at least two excitatory units and one inhibition unit must be included.

Existing Circuit-Based Models of Neuron, Chaotic Oscillators Used as Neuronal 
Models
Many biological models have been inspired by circuit theory, especially after the important works of Rall34,35,65,66, 
as they try to combine the relative simplicity of electrical circuit simulation with observed spreading of signal in 
nerve cells. The whole-cell biological multi-compartment models provide detailed description of changes in con-
centrations of ions and potentials at different places of neuron67–69 and allow biologically relevant simulations at 
the cost of high computing complexity. Each biological structure of the cell is there often represented as a complex 
circuit of several components. One way to reduce the complexity of the model is to minimize the number of used 
electrical parts for each structure trying to preserve the biological relevance. Other way is to reduce the number 
of simulated compartments to only a few or to only one “generalized” compartment in single-compartment mod-
els. The complex and biologically plausible single-compartment models12,70 are often reduced by modification 
or simplification of underlying differential equations, where such models become also phenological only (8,10,71, 
etc.) – describing the outputs very similarly to the real neurons but without any biological justification or any 
proof-of-concept in circuit theory.

The simple single-compartment neuronal models constructed de novo with only small number of biologically 
plausible parts are based on a capacitor, switches or their more complex equivalents (Schmitt trigger, etc.), volt-
age source and resistors (the integrate-and-fire model, Lapicque 190772,73, see ref. 2,74 for review). To provide an 
extended electric geometry of the fire pattern signal in such model, more complex parts are then also included 
(van der Pol-Bonhoeffer–FitzHugh–Nagumo model75–78), like inductors or sets of capacitors, without any sub-
sequent biological explanation for such usage. Relative insensitiveness of the brain to magnetic fields (e.g. MRI 
screening methods) can for example probably disqualify inductors and thus RLC circuits at all77,79 from any such 
biologically plausible models.

There are many known chaotic oscillators based on electric circuits80–85. For neuronal models based on the 
reduction or adaptation of such circuits, it is very ease to diverge from biologically plausible parts in the model to 
previously used complex electric parts required by such oscillators, like transistors, operational amplifiers, etc.77,86, 
and lack to add any biological justification or description of any analogous mechanism present in a neuronal cell.

To include electrotonic structure of the neuron and realistic signal geometry properties of the fire patterns, the 
minimal model based on biologically plausible parts used, like the integrate-and-fire model, was also thought to 
consist of at least two compartments (e.g., ref. 87,88). Such two-compartment models were able to capture essential 
aspects of spike-firing patterns, as well as a wide range of regular spiking responses, including repetitive bursting9. 
Up to our knowledge for biologically plausible few-compartment models, the description of model variant for inhib-
itory neuron to meet the minimal requirements for forming a simple chaotic oscillator has also never been reported.

In this paper, we present a single-compartment model of excitatory and inhibitory neurons, the 
capacitor-switch model (CS model) of excitatory and inhibitory neurons, capable of simulating common fire 
patterns like regular spiking or repetitive bursting behavior in relation to electrotonic changes in the potential, 
but also using only electrical parts with identified biological counterparts of similar assumed function in neuronal 
cells. Later we show that few such inter-connected units are able to form a chaotic oscillator and provide a highly 
complex range of responses to given input signal based on its fire pattern.
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Results and Discussion
The proposed CS model of neuron.  CS model of the excitatory neuron.  In Fig. 2 a scheme of electrical 
circuit for the CS model of excitatory neuron is presented as an extension of classical integrate-and-fire model. 
The circuit includes several simple electrical components – a capacitor, a voltage-gated switch, a floating DC 
source, a trashing path and outgoing paths to other units consisting of a diode and a resistor. The presented circuit 
integrates the incoming potential through the voltage of the capacitor and, in case of reaching the upper voltage 
bound, the connected DC source completely discharges the capacitor and any incoming current. The circuit 
allows any outgoing path to end even in the same unit and become recurrent.

To monitor the threshold at the capacitor, a special electrical part, a voltage-gated switch, was added. The 
voltage-gated switch in its blocking (open) state waits until the voltage on its input reaches the assigned upper 
voltage bound (VS, upper bound parameter, the initial threshold) and then switches to its conducting state (closed). 
The switch remains closed until the voltage on its input (and similarly on the capacitor) reaches the assigned 
lower voltage bound (VS, lower bound parameter, the after-hyperpolarization bound) and then it switches back to the 
open state. The upper bound value is defined above the ground potential (the resting state), and the lower bound 
potential is defined below the ground potential. The source voltage (VDC withdraw − the difference between action 
potential and initial threshold) plus the assigned lower voltage bound are kept to be greater than the assigned 
upper voltage bound. Keeping this condition allows to completely discharge the capacitor to the assigned lower 
voltage bound not only through the trashing path but also through outgoing paths even if neighboring units have 
their capacitors charged to the voltages near the upper voltage bound. The used part differs for example from 
often used Schmitt trigger76,89, that it is only a passive part allowing to pass the current through with the same 
voltage as on its input.

From the perspective of circuit theory, the added Rground path represents the currents delivered by ionic pumps 
reverting the potential back to the resting state and could also function as a simple shunt path (crowbar), but a 
very inefficient one, due to high resistance of Rground resistor. This path is able to discharge the capacitor if there is 
no current on the incoming paths and high voltage on the capacitor (emulating failed initializations in neurons) 
or, in case of negative voltage on the capacitor, it allows recharging the capacitor up to zero level.

The ratio of Rout resistance to the resistors on the output paths and voltage on their targets determine the 
charge passed to each path. To support the Rout path and accelerate the decrease of the potential, there could also 
be another DC source on this path, however, this could be similarly emulated by significant decrease of Rout in 
comparison to resistors on other paths.

Membrane simulation and ionic pumps in our model.  Many similar models of the cell membrane, including the 
integrate-and-fire model, use parallel connection of capacitor and resistor and we also keep this scheme – the 
capacitor as a membrane capable to separate two environments with different potentials and the ionic pumps try-
ing to maintain the resting potential to some base level, a reference point. For such a reference point, the ground 
is used in circuit theory and thus one side of capacitor and resistor in our model is connected to the ground. This 
grounding is not related to the potential of extracellular space or the real ground. It only represents the potential 
which ion pumps are focused on, i.e. the resting potential. The active transport of ionic pumps is slower in order 
of magnitude than changes in potential caused by short openings of passive ion channels based on passive flow 
of ions down the concentration gradient. This disproportion could be reduced by comparatively larger numbers 
of ionic pumps relative to ion channels present in the cell. The process of reverting back the cell soma potential 
to the values of resting potential by ionic pumps is simulated through the added resistor in the model of a high 
resistance in comparison to any other resistors added later, which results in slow charging or discharging of the 
capacitor. As we focus only on the changes in overall potential in the model, we do not separate the ionic pumps 
by ions as is seen in many existing models. The energy of active transport required by ionic pumps is discussed 
after the next section.

Figure 2.  Final scheme of CS model of excitatory neuron consisting of capacitor C, resistor Rground, voltage-
gated switch S, DC source, trashing path and outgoing paths to other units consisting of diode and resistor 
(drawn as part of incoming path). For the demonstration of principle only, the threshold values for voltage-
gated switch S are selected as VS, upper bound = +10 V, VS, lower bound = −5 V, the DCwithdraw source voltage as VDC 

withdraw = +20 V.
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Action potential in the model of excitatory neuron.  Fast depolarization followed by after-hyperpolarization in the 
potential are originated through the passive flow of the Na+ and subsequently K+ ions between two environments 
with high concentration gradient of these ions. Even though the transport is passive down the concentration 
gradient, the energy has been consumed as ATP for ATPase ionic pumps, which will have to pump the ions back 
to maintain the concetration gradient. The sharp increase in the potential originates in the exponential number 
of ionic channels activated. In electric circuits, the energy-fueled sharp increase and sharp decrease in potential is 
the function of a pulse DC source and we also added such a source to our model. The action potential is generated 
after reaching the threshold and for that case we can add two voltage-gated switches connecting different sources 
of voltage (see Fig. 3). Then the simulated action potential (Vaction = 30 V) can be generated by connection of the 
first voltage source, DCaction (VDC action = 30 V). To prevent immediate voltage increase up to the action potential, 
slightly higher voltage (e.g. 31 V) behind a resistor could be used instead. Once the Vaction value is reached, the 
source is disconnected and the second source, DChyperpolarization (VDC hyperpolarization = −5 V or −6 V behind the resis-
tor), is connected. After reaching some Vhyperpolarization (here Vhyperpolarization = −5 V) on the capacitor, this source is 
also disconnected. After the end of action potential, the capacitor is left with the potential of Vhyperpolarization, which 
is subsequently reverted back to the resting potential through the ground behind the Rground resistor.

Let us think of the situation again. Once the DCaction source is connected, the charge on the capacitor C with 
capacitance CC and voltage Vthreshold will increase immediately or after a short time by ΔQ = CC · (Vaction − Vthreshold). 
When the Vaction is reached, subsequent switches to output paths are opened and DChyperpolarization is also connected. All 
the charge of Q = CC · (Vaction potential − Vhyperpolarization) is removed from the capacitor and distributed through the path 
with the DChyperpolarization source and other opened output paths. The voltage on the capacitor falls from Vaction down 
to Vhyperpolarization and once the Vhyperpolarization is reached, the DChyperpolarization is disconnected and all other output paths 
are also closed. The charge from the capacitor is distributed according to voltages to the targets and resistors on their 
paths of all simultaneously opened paths from the capacitor. The similar situation could be established in another 
way, instead of two different connected sources, one voltage-gated switch and one floating source DCwithdraw (VDC 

withdraw = Vaction − Vthreshold = 20 V) could be used together with one trashing path connected through the Rout resistor 
as in Fig. 2. When the potential of Vthreshold is reached on the capacitor, then the switch connects the voltage source and 
Vthreshold + VDC withdraw is presented on its output. The charge drawn from the capacitor is CC · (Vthreshold − Vhyperpolarization), 
which is less than in the previous case, however, this charge is also distributed according to resistances and potentials 
of all simultaneously opened output paths, including the trashing path. The correct setting of Rout and potential at the 
voltage source of the trashing path (e.g. 0 V for the ground) then allows distributing the same charge to all other output 
paths the same way as in the previous case. For the trashing path, the distributed charge will then be exactly ΔQ = CC · 
(Vaction − Vthreshold) lower than in the previous case. If any simulation is not dependent on the original values of distrib-
uted charges for the trashing path, then we can use this substitution without loss of generality. Such substitution will 
also have another effect. In the previous case, at the beginning of the action potential, when the DCaction is connected, 
any input signal at the input paths trying to charge the capacitor should have at least Vaction not to be blocked by the 
action potential itself. If we employed the two-compartment model with some capacitor at the dendrite compartment, 
then the input signal could charge the capacitor in the dendrite compartment and, after the action potential, in the 
soma compartment, this charge could also be later transferred to the soma. Here, with the one floating DCwithdraw 
source, the voltage on the capacitor is Vthreshold or less all the time and thus input signal from any other unit generating 
the action potential could enter the capacitor even when the current unit is already generating the action potential. 
And thus, the synchronized action potential of several units on one long path will not block either of them.

Synapses, dendrites, axon and further reduction of complexity in the model.  For simulation of synapses, the 
voltage-gated switches on the incoming paths (or on the outgoing paths) can be added, emulating the passing 
of the charge only in case of spikes delivered from preceding units (or to succeeding units, respectively) (see 

Figure 3.  Draft modeled scheme of excitatory neuron with respect to increase and decrease in action potential 
caused by different ions depicted as two voltage-gated switches connecting two diferent sources. The condition 
required before reactivation of the same source is depicted in red. The synapses are represented as voltage-
gated switches at the beginning of incoming paths and at the end of outgoing paths. The values of potential and 
voltage are for demonstration purposes only.
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Fig. 3). Assuming that the lower and upper voltage bounds for the inner voltage-gated switch and the synaptic 
voltage-gated switches on the output paths are set very similarly, differing only in addition of voltage of DC source 
(VDC withdraw), then the function of voltage-gated switches on the output paths of the same unit is reduced only to a) 
maintaining the direction of discharge from the capacitor of the unit to capacitors of neighboring units down the 
outgoing paths and b) not allowing any mutual bridging among the outgoing paths. For these two cases, we can 
further reduce the complexity of the model by replacing the synaptic input voltage-gated switches with ordinary 
diode elements on the output paths, leaving only the inner voltage-gated switch before the DCwithdraw source, as 
depicted in Fig. 2).

The axon allows the active spread of the signal using nodes of Ranvier. However, since these nodes only repeat 
the signal actively and unidirectionally to pass it through the resistors on one path, which can be simulated by 
additional inner voltage-gated switches, floating DC sources and diodes, we reduce this representation to use only 
one floating DC source for one unit like in Fig. 2.

Even though the dendritic operation can be very complex, our constructed model assume that these opera-
tions can also be simulated later in the soma, or that these operations could be at least simulated by aggregating 
more modeled units in sequence. Thus the path from synapse to soma is modeled here as a simple cable path with 
one resistor only. If some amplification of the signal is also required, a small floating-voltage DC source could be 
added.

CS model of the inhibitory neuron.  If the inhibitory unit somehow mirrors any given excitatory unit using 
only very simple parts, then there are few theoretically apropriate schemes for such circuits. To provide negative 
voltage on the output, we designed the circuit presented in Fig. 4, a slight modification of the circuit in Fig. 2. 
This circuit uses additional voltage-gated switches (on its drawing paths) that are controlled by the potential of 
the capacitor of the unit, however, when they are closed, they are able to draw the voltage from any other con-
nected capacitor, i.e. from any other unit. If we replace all the switches in the unit by only one main voltage-gated 
(multi)-switch (double pole single throw – DPST), then the mode of operation for the main voltage-gated switch 
and the subsequent switches will be the same. The DPST switch is also able to close several paths at once – the 
one connecting the capacitor of the unit with the DCwithdraw source and also the drawing paths with the DCwithdraw 
source – as depicted in Fig. 4.

The drawing path can be connected as any other incoming path to other units to inhibit the potential on their 
capacitors provided that the activating conditions are modified for the switches on these paths in the same way 
as the existing activating conditions for the main DPST switch, or that they are generally replaced by diodes on 
these paths. The original output node is grounded by the trashing path to trash the drawn potentials, however, 
if appropriate, there could also be regular non-trashed output paths. This inhibiting circuit is able to increase its 
activity with increasing activity on the incoming paths and is independent of the activity on the drawing paths.

Action potential in the model of inhibitory neuron.  Figure 5 depicts the electrical scheme of inhibitory neu-
ron provided that an inhibiton potential originates in the decrease of potential to defined Vhyperpolarization value 
(Vhyperpolarization = −5 V in the model). Once the Vthreshold potential is reached at the capacitor, the DChyperpolarization 
voltage source (−5 V or −6 V behind the resistor) is connected, removing all the charge from the capacitor and 
some other from the drawning paths. The activating condition for synapses on drawing paths (inhibitory) and 
regular output paths (excitatory) generally differs in the draft schemes presented, which is in correspondence 
to existing differences between inhibitory and excitatory synapses in real neurons. In the draft scheme, we can 
also make a substitution similar as for the excitatory neuron. A scheme depicted in Fig. 4 is able to simulate the 
same voltages on the capacitor and the same currents going through the drawning paths. Once the new floating 
source DCwithdraw (VDC withdraw = 20 V) is connected, all the charge is removed from the capacitor, leaving it with 
Vhyperpolarization potential as before. To be able to reach this value, the VDC withdraw has to be at least −1 · Vhyperpolarization 
(or more for any resistors behind) to discharge the capacitor down to the Vhyperpolarization potential. The resistances 
on the drawning paths must be then adjusted to simulate the same currents leaving through drawning paths as in 
the previous scheme, and the only difference in simulated current is left for the path containing the Rout resistor 
(the trashing path).

Figure 4.  Final scheme of CS model of inhibitory neuron consisting of capacitor, DPST voltage-gated switch S, 
DC source, trashing path and drawing paths. Drawing paths to other units consist of diode and resistor (drawn 
as part of incoming path). For the demonstration of principle only, the threshold values for voltage-gated switch 
S are selected as VS, upper bound = +10 V, VS, lower bound = −5 V, the DCwithdraw source voltage as VDC withdraw = +20 V.
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An electrical circuit consisting of one or more CS models of neuron can produce spiking behav-
ior similar to that recorded in real neurons.  To emulate a simple source of the signal, a pulse DC 
square-wave voltage source with a diode can be connected to the input of the CS model of excitatory neuron (see 
scheme in Fig. 6). The resulting potential (against ground) measured on the entry point of the resistor Routput, 
along with the voltage on capacitor C, is then presented in Fig. 7a) using the parameters summarized in Table 1. 
Applying power laws to given electrical circuits, the resulting voltage on the capacitor and the potential on the Rout 
resistor could also be recorded using slightly different parameter sets, or at least the same fire patterns (the time 
intervals between subsequent pulses) could be obtained (see Table 1). The value of RC time constant for resistance 
of Rground and capacitance of C and the properties of DCinput source affect the ability of the capacitor to charge to 
its base (zero-level) potential before the next pulse from DCinput source occurs. If the capacity of C is too high or 
the resistance of Rinput is too high, then several pulses are required for reaching the upper bound (see Fig. 7b)). In 
such a case, too small values of Rground resistance would discharge the capacitor to zero level potential before the 
next pulse occurs and thus never reach the upper bound, which is observed as silent fire pattern.

The bursting spike behavior (see Fig. 7c) could be easily produced temporarily by increasing the lower bound 
threshold voltage for the switch and including any non-zero refractory period for the switch. If the threshold volt-
age VS, lower bound is increased (here from −5 V to +8 V) the voltage on the capacitor will remain high after the spike 
– until the next spike or until discharging by the Rground path. If we add another parameter for the voltage-gated 
switch, the refractory period TS, min off delay preventing any immediate reactivation of the switch, then the temporar-
ily high current on the input path can result in several spikes in a train on the output path, as the switch is drawing 
the potential almost immediately and is then blocked for some time, until the next spike can occur. While Ca2+ 
ions are known to play a significant role in burst spiking, our model suggests that changing the sensitivity of K+ 
ion channels or their partial deactivation or inhibition could be one of the molecular mechanisms employed. 
In the CS model, if the threshold voltage VS, lower bound or the refractory period TS, min off delay has to be regulated, 
then real setting of any of these parameters would be highly dependent on the hardware implementation of 
voltage-gated switch and would be also probably controlled by some other physical quantity like the specific 
voltage on another input to the used part.

If we want to see some spike frequency adaptation pattern, a more complex scheme is required – an excitatory 
unit receiving input from three other units or three pulse DC sources, each on its own path (see Supplementary 
Fig. S1 for the scheme). The resistance of resistor on the selected path (Rinput,1), with an initial value of 10 Ω, is 
increased by 30 Ω after the end of each produced spike, while the resistances on the other paths (Rinput,2, Rinput,3) 
are kept at 250 Ω. The fire pattern recorded at the unit is depicted in Fig. 7d), exhibiting spike-frequency adapta-
tion through reducing the value of input current to the capacitor.

Figure 5.  Draft modeled scheme of inhibitory neuron with decrease in potential caused by specific ion 
channels. The values of potential are for demonstration purposes only. The synapses are represented as voltage-
gated switches at the beginning of incoming paths and at the end of outgoing paths.

Figure 6.  Scheme used for measuring output potentials – a scheme of excitatory neuron with the preceding 
pulse DC source to emulate a simple source of the signal.
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For chaotic fire pattern, one modeled excitatory unit with only a few independent sources of regular periodic 
input signal is not able to produce such fire pattern. Either a chaotic fire pattern signal should be present on the 
input for such behavior or, for the regular periodic input signal, a positive and a negative feedback have to be at 
least provided.

Several units of the CS model of neuron can form a chaotic oscillator and the relation of fire 
patterns in their input signals is an important factor for chaotic behavior to occur.  To measure 
the response to input fire pattern, a scheme of three excitatory base units and two inhibitory units based on real 
neuron couplings observation90 was modeled as an electrical circuit (see Fig. 8). A central excitatory unit (N3 
in Fig. 8) is cyclically interconnected with a chain of two excitatory units to provide a positive feedback to the 
signal at the unit and then with two other interconnected inhibitory units to provide the negative feedback. Three 
independent DCinput,i pulse sources are also provided to control the feedback characteristics. For this circuit, an 
output fire pattern from the interval of 0–3000 s was recorded using a discrete simulation with a fixed time step 
of 5 µs. An initial inconsistent fire pattern occurred only in a very short interval (approx. 10 ms) and thus was 
neglected. For each DCinput,i pulse source the max voltage was set to 15 V, DCinput,i frequency to 200 Hz if not stated 
otherwise, and DCinput,i duty cycle to 5%. For each excitatory and inhibitory unit the Ci capacitance was set to 6 
µF, threshold voltage VS, upper bound to +10 V, VS, lower bound to −5 V. All Rground resistances were set to 1000 Ω. All Rinput 
and Rout resistances were set to 10 Ω. The resistances for Ri,j paths are depicted in Fig. 8b). The fire pattern was 
then measured on unit N3 all the time.

For the capacitance, DCinput pulse sources maximum voltage and frequencies used, one pulse is enough to 
charge the capacitor to reach the threshold voltage VS, upper bound, and thus the maximum detected interspike 

Figure 7.  (a) Voltage on capacitor C (red) and potential on the entry point of resistor Rout (blue) for using 
the parameters set as in Table 1 (Value Set 1). For slightly higher capacities, the recharging even does not 
reach the rest state before the next spike. (b) For very high capacities of C or high resistances of Rinput, several 
pulses are required to reach the VS, upper bound threshold voltage. The potential depicted is for Rinput resistance of 
80 Ω and other values set as before (with peaks much higher than upper voltage bound for the switch being 
the artifact of the simulation). (c) Bursting pattern behavior observed for the capacitance of C = 6 µF, DCinput 
frequency = 80 Hz, DCinput duty cycle = 20%, threshold voltage VS, lower bound = 8 V, switch S refractory period 
TS, min off delay = 0.5 ms and other parameters set as in Table 1 (Value Set 1). (d) Spike frequency adaptation 
pattern produced at the unit receiving the input from three DCinput pulse sources (the full scheme is depicted 
in Supplementary Figure S1) and increasing the resistance of Rinput,1 (to one of the sources) from 10 Ω by 30 Ω 
after each produced spike. The resistances of Rinput,2, Rinput,3, to other sources, are set to 250 Ω. Each pulse source 
DCinput is also shifted in phase of emitted spikes for 120 degrees. The capacitance of C = 6 µF and all the other 
parameters for the unit and the sources are set as in Table 1 (Value Set 1).

https://doi.org/10.1038/s41598-020-63834-7


1 1Scientific Reports |         (2020) 10:7353  | https://doi.org/10.1038/s41598-020-63834-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

interval can be at most 5 ms or 1000 time steps of 5 µs (see also Table 2 and Table 3). The selected simulation time 
allowed us to measure at least 6 · 105 points in the recorded fire pattern.

Attractor dimension in RN is known to be equal to the attractor dimension reconstructed from one output in 
RW, where W ≥ 2 N + 1 is the length of the sliding window, i.e. the embedding dimension91,92.

Each simulated electrical circuit could be seen as a (discrete) dynamic system. The description of complete 
state of such a system would include the voltage in all nodes and current in all branches of the circuit. For descrip-
tion of complete state of circuit as depicted in Fig. 8, it is appropriate to remember the charge of each capacitor, 
the state of the switch in each unit and the global time (to determine the phase of cycle or voltage of each DCinput 
source). All the other parameters required for computation of complete description, such as resistance, DCinput 
frequencies or duty cycles are constant during the simulation. The dimension N is thus estimated as 11 for a cir-
cuit consisting of five units and 7 for circuits consisting of three units (see below), and the embedding dimension 
(sliding window) was then selected as W = 23 for all the circuits.

For the Lebesque measurable set F ⊂ Rn, the correlation sum for given distance r > 0 is defined as62:

Parameter

Parameter sets and their alternatives 
for the same voltage on C and 
potential on Routput as in Fig. 7a)

Similar parameter set 
for at least the same fire 
patterns as in Fig. 7a)*

Value Set 1 Value Set 2 Value Set 3

DCinput max voltage +20 V +20 V +10 V

DCinput frequency 200 Hz 200 Hz 200 Hz

DCinput duty cycle 5% 5% 5%

Rinput resistance 6 Ω 60 Ω 6 Ω

Rout resistance 10 Ω 100 Ω 10 Ω

The base 
unit

Rground resistance 1000 Ω 10 000 Ω 1000 Ω

C capacitance 500 nF 50 nF 500 nF

S upper bound threshold 
voltage (VS, upper bound) +10 V +10 V +5 V

S lower bound threshold 
voltage (VS, lower bound)

−5 V −5 V −2.5 V

DCwithdraw voltage (VDC withdraw) +20 V +20 V +10 V

Table 1.  Parameter sets used for simulation of potentials depicted in Fig. 7a): the one used (Value Set 1), the 
alternative one (Value Set 2) to produce the same potentials, and the one (Value Set 3) to produce the same fire 
patterns as in Fig. 7a). The parameter sets are derived for diodes modeled by the ideal diode model. These would 
slightly differ for other models, like the Shockley diode model. *The recorded potential could differ from the 
values in Fig. 7a) by a multiplication constant.

Figure 8.  (a) Electric circuit of five interconnected units used to demonstrate chaotic oscillations. Two 
inhibitory units (N1, N2) are interconnected with three excitatory units (N3, N4, N5). DCinput,i pulse sources are 
connected to units N2, N3 and N5 through Rinput,i resistors. (b) Schematic representation of the electric circuit 
with inputs, outputs, excitatory units and connections (white), inhibitory units and connections (black), and 
inter-unit path resistances.
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where ||·|| denotes Euclidean norm, I is the indicator function, E is the mean value function, and x1,…, xn are the 
vectors from F. The correlation dimension D2 of set F is then defined as62,93:

= → +D C r
r

lim ln ( )
ln( )r2 0

Using another method61, rotational spectrum S(Ω) for given Ω ∈ +R0  is defined as:

Circuit 
no.

DCinput,2 
frequency

DCinput,3 
frequency

DCinput,5 
frequency

Back 
synapses 
(Ri,i paths)

Rground 
paths

Trashing 
paths (Rout 
paths)

N4, 
N5

Max. 
detected 
interval 
(in 5 µs 
time steps)

Estimated 
correlation 
dimension D2 
including 90% 
confidence interval 
using correlation 
sum based method

Coefficient of 
determination 
R2 for regression 
used for 
estimating D2

Estimated 
correlation 
dimension D2 
including 90% 
confidence interval 
using rotational 
spectrum based 
method

Coefficient of 
determination 
R2 for regression 
used for 
estimating D2

1 200 200 223 - - - + 891 0.807±0.011 0.991 0.794±0.002 0.999

2 200 200 223 + - - + 891 0.765±0.009 0.995 0.767±0.003 0.999

3 200 200 223 - + - + 886 0.664±0.009 0.993 0.654±0.004 0.994

4 200 200 223 + + - + 886 0.664±0.009 0.993 0.654±0.004 0.994

5 200 200 223 - - + + 971 1.143±0.010 0.998 1.141±0.002 1.000

6 200 200 223 + - + + 971 1.146±0.007 0.997 1.141±0.003 0.999

7 200 200 223 - + + + 969 0.626±0.004 0.998 0.623±0.001 1.000

8 200 200 223 + + + + 969 0.622±0.003 0.999 0.625±0.003 0.996

9 200 223 200 + + + + 890 0.700±0.003 0.997 0.700±0.002 0.999

Table 2.  Estimation of D2 correlation dimension using correlation sum based method and rotational spectrum 
based method for fire pattern recorded in electrical circuit as in Fig. 8 or with some components removed – 
Circuits with non-zero estimate for D2 dimension. Back synapses ‘-’ value: All recurring paths with Ri,i and 
adjacent diodes are removed. Rground paths ‘-’ value: All Rground paths are removed, the capacitor is left connected 
to ground. Trashing paths ‘-’ value: All trashing paths (Rout paths) and adjacent diodes and grounding are 
removed. N4, N5 ‘-’ value: Units N4 and N5 together with all their input and output paths are removed.

Circuit 
no.

DCinput,2 
frequency

DCinput,3 
frequency

DCinput,5 
frequency

Back 
synapses 
(Ri,i paths)

Rground 
paths

Trashing 
paths (Rout 
paths)

N4, 
N5

Max. detected 
interval (in 5 
µs time steps)

10 200 200 - - - - - 980

11 200 200 - + - - - 980

12 200 200 - - + - - 976

13 200 200 - + + - - 976

14 200 200 - - - + - 979

15 200 223 - - - + - 884

16 200 200 - + - + - 979

17 200 223 - + - + - 884

18 200 200 - – + + - 975

19 200 200 - + + + - 975

20 200 200 200 + + - + 979

21 200 223 223 - - + + 884

22 200 200 200 + + + + 975

23 200 223 223 + + + + 891

Table 3.  Estimation of D2 correlation dimension using correlation sum based method and rotational spectrum 
based method for fire pattern recorded in electrical circuit as in Fig. 8 or with some components removed – 
Circuits with zero estimate for D2 dimension. Back synapses ‘-’ value: All recurring paths with Ri,i and adjacent 
diodes are removed. Rground paths ‘-’ value: All Rground paths are removed, the capacitor is left connected 
to ground. Trashing paths ‘-’ value: All trashing paths (Rout paths) and adjacent diodes and grounding are 
removed. N4, N5 ‘-’ value: Units N4 and N5 together with all their input and output paths are removed.
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and if correlation dimension D2 exists, then it can be computed as:

=
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Using both methods the estimated D2 values differ a little. These differences are prevalently due to the discrete 
simulation of the system. The simulation also does not allow the presence of interspike intervals shorter than the 
time step. However, both methods are robust enough to prove the resulting D2 values being non-zero and thus 
confirm the chaoticity, or being zero for only a countable set of supposed responses. The selected cases for deter-
mination of D2 dimension, together with embedding in two dimensions, are depicted in Fig. 9.

For two circuits tested (no. 22 in Table 3, no. 8 in Table 2), the frequency of all pulse sources DCinput,i is set to 
200 Hz, with the exception of DCinput,5. For circuit no. 22 the DCinput,5 frequency is also set to 200 Hz, for circuit 
no. 8 this frequency is set to 223 Hz. For a given circuit differing only in the frequency of selected DCinput source, 
the output fire pattern was able to demonstrate chaotic behavior for 223 Hz at DCinput,5. To determine the other 
required components for reaching chaotic behavior, some parts were removed from circuit no. 8 and the D2 corre-
lation dimension of fire pattern was estimated for circuits without back synapses (Ri,i paths), without Rground paths, 
without excitatory units N4 and N5, without trashing paths (Rout paths), or with any combination of these restric-
tions. As can be seen from Table 2 and Table 3, even without Rground paths, without back synapses, and without the 
trashing paths, the circuit is still able to exhibit chaotic behavior. However, if the part of the circuit consisting of 
N4 and N5 units (positive feedback based on the same or different frequency) is removed, the chaoticity is lost. 
Even if the input frequency of the measured unit (DCinput,3) is different from the input frequency of negative feed-
back (DCinput,2), the chaotic behavior is not present unless positive feedback on different input frequency is also 
present. The input signal frequency for measured unit (DCinput,3) and positive feedback unit (DCinput,5) is required 
to be different to keep the chaotic response. The input signal frequency for negative feedback unit (DCinput,2) could 
then match any of these frequencies.

If the Rground paths are present in an already chaotic oscillator, the D2 coefficients tend to be decreased, prob-
ably due to discharge of the small voltages of the capacitor to ground which results in slight smoothing of the 
fire pattern intervals. However, the selected Rground,i resistances were not able to completely suppress the chaotic 
behavior at all. The effect of trashing paths seems to be a little pro-chaotic if they are present in an already chaotic 
oscillator, but not in all cases. The Rout paths were not able to evoke chaotic behavior in the absence of any other 
required component.

The D2 dimensions computed for circuits with and without back synapses are almost equal, which theoreti-
cally holds for connected ideal DCi sources and thus it also confirms the numerical stability of the simulation. As 
another test of numerical stability, we can confirm that all the circuits with the chaotic output fire pattern keep 
this behavior and vice versa if we exchange the 200 Hz and 223 Hz frequencies, i.e. in circuits where all the original 
200 Hz sources become 223 Hz sources and all the original 223 Hz sources become 200 Hz sources, or if we use 
the smaller time step of 1 µs. All the circuits also keep their chaotic or non-chaotic behavior for both diode model 
implementations used (the Shockley diode model with forward voltage at 1 A set to 805.9 mV, or the ideal diode 
model).

The proper coupling of excitatory and inhibitory units, with appropriate frequencies of input signal, is able 
to form a highly deterministic response (see also the projection of recorded fire patterns to two dimensions in 
Supplementary Fig. S3 and for selected cases in Fig. 9) presented in the form of their output signal fire pattern. 
The confirmed chaotic behavior then proves the high sensitivity of the presented system to the input signal – its 
frequency or, more generally, its fire pattern.

Biological relevance of proposed CS model of neuron.  Our electrical schemes use potentials and 
selected resistances to best explain the function of the circuit and, as can be seen from Table 1, these values could 
be simply scaled to better match the values measured on a biological neuron. The presented one-compartment 
model is able to show the oscillation patterns of regular spiking, bursting or spike adaptation. Similarly, if den-
dritic compartments maintain the potential independently of the soma, similar CS model units could also be 
located in dendrites or such units could be adapted a little to execute some other simple signal preprocessing 
operations. Even though such preprocessing operations are important, the fact that synapses at dendrites can be 
dynamically created or eliminated suggests that these operations improve the overall performance, but possibly 
are not fundamental to resulting information processing. This is assumed based on the fact that 1) diseases affect-
ing axon conductivity, like demyelination at multiple sclerosis, have a much more detrimental effect on overall 
information processing and memory storage and 2) following high damage of brain tissue, many functions, for 
example for controlling the musculoskeletal system, can be reconstructed through adaptation of only a small 
fraction of undamaged tissue, generally not sharing the identical dendritic tree.

Nevertheless, using this function model, chemical synapses would represent a limiting factor for the frequency 
pattern of the output signal. The approximately 1 ms delay for reaching the potential to postsynaptic cell bottle-
necks the processed frequencies of spikes in the signal to approximately 1000 Hz. To the best of our knowledge, 
even for pathologic states of the brain, such in the centers of epileptic lesions, no strong signals of any higher 
frequencies were recorded (e.g. ref. 50). Care should be also taken where signal processing methods like Fast 
Fourier Transform are applied to any non-harmonic recorded signal, like periodic pulse signal, reporting properly 
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non-zero values for harmonic coefficients significantly higher than 1000 Hz94 (see also Supplementary Fig. S2) 
even if no such signal was originally present.

The electrical circuit consisting of many small conductive compartments separated by membrane clefts and 
synapses could also have several advantages over one always-connected system. In the compartmental system, 
the collapse of one cell or a compartment would not collapse the whole circuit – an alternative path in the highly 
interconnected system could be possibly found. Another advantage would be that the multicompartmental 
system is not dependent on exact values of capacitance in each of the compartments. The spread of potential, 
increased to the same or similar but controlled levels from presynaptic to postsynaptic terminal, allows to spread 
similar potential through many compartments differing in their capacitance highly – the ion channels simply 
raise the potential up to the required level at the expense of higher energy consumption in compartments with 
high capacitance. When seen as a robust cable path with booster stations to keep the spreaded potential, such a 
function is not in collision with our proposed model. Another function of the limited amount of neurotransmitter 
in the synapse or of meaningful resistances in the axon or dendrites could be to stop any high currents flowing 
through the circuit. This was also suggested as prevention of hyperexcitability, for example in cortical pyramidal 
neurons95. Last but not least, a role of intraneuron compartmentalization would also be the temporary preserva-
tion of the incoming signal received during the action potential. Indeed, the sharp increase in potential in only 
one whole cell compartment would block the input signal from any other cells. This problem could be overcome 
through integration of the signal in the preceding dendrite compartment. In our model, the preservation of the 
received input signal during the action potential is simulated by using a floating DC source instead of connecting 
the two DC sources of opposite potentials in fast sequence.

The simulation using electric circuits is based on spreading the changes in electropotential through metallic 
wires (3 · 108 m/s), which is significantly faster than through solution of ions (in tens of meters per second, also 

Figure 9.  Determining the correlation dimension D2 for (a) circuit no.13, (b) no. 9 and (c) no. 6 using 
regression analysis. (1) log10(C(r)) vs. log10(r) plot (red) and fitted linear regression (black), (2) log10(S(Ω)) vs. 
log10(Ω) plot (red) and fitted linear regression (black), (3) Embedding of recorded values of fire patterns in two 
dimensions, where xi are only two-dimensional vectors. For better readability of the plots, decimal logarithms 
were used instead of natural logarithms.

https://doi.org/10.1038/s41598-020-63834-7


1 5Scientific Reports |         (2020) 10:7353  | https://doi.org/10.1038/s41598-020-63834-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

reported as 120 or 150 m/s for saltatory conduction16,22). The speed of light allows these changes to propagate 
almost immediately, while the limited speed of saltatory conduction could cause some delay of signal. When 
comparing the speed of saltatory conduction with the theoretical limit recorded as approximately 1 ms delay of 
synapse switching, the resulting distance passed until the next possible fire (12 or 15 cm) is still enough to pass 
from one part of the brain to another. Even though the non-zero delay could affect other important features like 
synchronization of fire patterns, a simulation of similar systems showed90 that the signal delay is not as important 
as changes in path resistances for the resulting observed fire patterns. For this, a dynamic change of amount of 
neurotransmitter released to the synaptic cleft, or the protein machinery of Nissl substance with stacks of rough 
endoplasmic reticulum interposed with arrays of free polyribosomes, could play a supportive role.

Conclusion
The constructed electrical circuit, the capacitor model of neuron, allows to generate common fire patterns 
occuring in neuronal cells including advanced fire patterns like repetitive bursting, previously known only from 
two-compartment models. In comparison to other models based on simple electrical circuits, only parts with 
equivalent biological structures of neuronal cells have been used and for this reason the usage of inductors, sets of 
capacitors or transistors has been avoided. As a necessity condition for formation of any simple chaotic oscillator 
responding to input signal frequency or fire pattern, both the excitatory and inhibitory units have been designed. 
The combination of these units has been then proven to work as a chaotic oscillator, and for a selected frequency 
of the input signal, it is able to generate highly different fire patterns in response. It has been later shown that the 
chaotic behavior of such an oscillator is dependent at least on the frequency of the input signals and the included 
inhibitory and excitatory units providing negative and specific positive feedback to the signal.

Methods
Software simulation of electrical circuits, statistical evaluation.  All the circuit simulations were 
done using Paul Falstad’s Circuit Simulator 1.6i compiled in Java 11 for CentOS 7.6 and running on Cisco C220 
M5 server computer (2 Intel Xeon Gold 6154 processors, 384 GB RAM). A time step of 5 µs was used (allowing 
approximately 1000 points for each DCinput source period) and the results were subsequently confirmed using the 
time step of 1 µs. All the data were subsequently evaluated using R software for Windows96.

Determination of correlation dimension.  The vectors in formulas xi, xj are elements of [0.0, 1.0]23 and 
represent the embedding of the time series of determined interspike intervals in RW. This means (xi)k is the k-th 
time interval in the xi vector, where the detected interspike interval is normalized to [0.0, 1.0] by division by the 
maximum detected interspike interval of the series (see Table 2 and Table 3. For the maximum detected interspike 
intervals listed in Table 2 and Table 3 and for the time step of 5 µs, the normalized value is never below 10−3. Thus, 
to estimate the D2 correlation dimension of recorded fire patterns, the r values62,93 were selected linearly from 
the logarithm scale of [10−3, 100], and similarly, the Ω values61 were selected linearly from the logarithm scale of 
interval [100,103]. For random 106 pairs of points the C(r) and S(Ω) values were computed for each r and Ω value, 
and D2 was estimated together with the 90% confidence interval using the linear regression method for the central 
region of the curve, with the coefficient of determination R2 also computed (see Table 2). The values of D2 less 
than 0.03 were treated as zero. All non-zero values of D2 were also determined as significantly non-zero values 
(p-value at most 6 ∙ 10−112), confirming the chaoticity.
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