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Abstract: Despite developing prenatally, the adipose tissue is unique in its ability to undergo drastic
growth even after reaching its mature size. This development and subsequent maintenance rely on
the proper coordination between the vascular niche and the adipose compartment. In this review,
the process of adipose tissue development is broken down to explain (1) the ultrastructural matrix
remodeling that is undertaken during simultaneous adipogenesis and angiogenesis, (2) the paracrine
crosstalk involved during adipose development, (3) the mechanical regulators involved in adipose
growth, and (4) the proteolytic and paracrine oversight for matrix remodeling during adipose devel-
opment. It is crucial to gain a better understanding of the complex relationships that exist between
adipose tissue and the vasculature during tissue development to provide insights into the pathological
tissue expansion of obesity and to develop improved soft-tissue reconstruction techniques.

Keywords: white adipose tissue; brown adipose tissue; angiogenesis; adipogenesis; extracellular
matrix remodeling; adipose development; mechanics; paracrine signaling; proteolysis; cell shape

1. Introduction

While classically viewed as merely a storage depot, adipose tissue (fat) has many roles
and is classified as a connective, thermogenic, and endocrine organ. Healthy adipose tissue
is required to regulate systemic energy homeostasis, modulate inflammatory responses,
store and metabolize steroids, protect internal organs, and maintain body temperature (both
as an insulating organ and through non-shivering thermogenesis) [1–6]. Proper adipose
tissue development relies on tightly regulated processes that require careful coordination
and cooperation between many different cell types and their matrix cues.

Full-term human infants are composed of 11 to 28% fat [7], which is classified as
either brown or white fat. Brown fat, which fully develops and matures prenatally, plays a
pertinent role in neonatal thermal regulation, as it contains ample mitochondria to convert
the many, small lipids stored in the brown multilocular adipocytes into thermal energy [8].
However, brown adipose tissue proceeds from being 5% of the human body mass at
birth to a mere 1.5% of the adult human mass and is replaced by white adipose tissue
as the primary adipose mass [9,10]. On the other hand, white adipose tissue fluctuates
in mass throughout both prepubescent and adult life. White adipose tissue serves as the
primary energy reservoir in the human body, with approximately 90% being classified
as subcutaneous (underneath the skin) and 10% being visceral (surrounding the internal
organs/viscera), although there have been quantitative differences shown to be dependent
on sex, menopausal state, and disease state [11–13].

White adipose tissue is a heterogenous mixture of cells, with mature adipocytes being
the primary metabolic component and accounting for approximately 90% of the tissue’s
volume [14,15]. These mature adipocytes arise from precursor preadipocytes that exist
alongside many other cells, including adipose stem cells, stromal cells, endothelial cells,
and resident immune cells. Despite taking up only 10% of the tissue’s space, these cells,
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termed stromal vascular cells, play an important role in regulating vascular innervation
and the immune response within the tissue [16]. The proper development of white adipose
tissue relies on highly coordinated spatial and temporal communication amongst all of
these cells and their microenvironment. There are several reviews published that focus on
the interplay between adipose and endothelial cells during obesity-driven adipogenesis
and angiogenesis [17,18]. However, the process of adipose organogenesis relies not only
on cellular crosstalk but also on cellular self-assembly, which is highly dependent upon
both extracellular and intracellular forces in order to control the cell’s fate, matrix remod-
eling and mechanics, and the development of tissue patterns [19]. There is accumulating
evidence indicating the importance of mechanics given that it affects fundamental factors
of proliferation, migration, and differentiation [20–23]. With the bulk modulus of adipose
tissues being one of the lowest in the body, around 0.5–1 kPa [24], proper cell fate relies
on controlled proliferation and differentiation amidst softer materials. Furthermore, with
adipose tissue being physiologically exposed to a range of bulk physiological forces (com-
pressive, tensile, and shear) due to body weight [25,26], there must be adaptive modalities
on a cellular level to maintain bulk tissue health and integrity.

Here, the process of adipose tissue development is broken down to explain (1) the
ultrastructural matrix remodeling that is undertaken during simultaneous adipogenesis
and angiogenesis, (2) the paracrine crosstalk involved during adipose development, (3) the
mechanical regulators involved in adipose growth, and (4) the proteolytic and paracrine
oversight for matrix remodeling during adipose development.

2. Adipose Tissue Remodeling during Fetal Development
2.1. Ultrastructural Changes during Adipose Tissue Development

Early studies piloted by Hausman et al. and Poissonet et al. described the complexities
of fetal subcutaneous white adipose tissue development using early microscopical and
immunohistochemical techniques [27–35]. Collectively, these studies describe fetal adipose
tissue growth through five defined morphometric stages, as shown in Figure 1. Notably,
these developmental stages are highly dependent upon primitive matrix deposition and
vessel outgrowth and organization.

In studying human buccal (cheek) fat, Poissonet et al. found that prior to week 14
of gestation, the fat pad consisted solely of amorphous fibers forming a loose connective
tissue [27,28]. The second stage was then distinguished by the existence of adipose lobules
with primordial vasculature. This vasculature formed a glomerular structure around mes-
enchymal cellular aggregates. The third stage was defined between weeks 14 and 16 of
gestation, whereby capillaries began to develop within a more mature lobular architecture
and mesenchymal cells began to compact, allowing for their early differentiation [27,28].
Small multilocular adipocytes began to appear in stage 4 of the development process,
between 23 and 29 weeks of gestation [27,28].

It was shown that during this adipogenic time frame, there was unique basal lamina
and glycoprotein development along the microvasculature and around the adipocytes [35].
Notably, in both stage 4 and stage 5 of adipose development, logarithmic adipocyte hyper-
trophy was occurring alongside expansive, tortuous vascular growth [35]. Hausman et al.
showed that in this developing adipose tissue, the larger, tortuous capillaries had an
abundance of chylomicrons (large triglyceride-rich lipoproteins) and very low-density
lipoproteins along their lengths, which were used as substrates for lipoprotein lipase
(LPL) [31]. Additionally, these vascular cells had high organelle and intracellular vesicle
content, indicating the ability to potentiate transfers requiring more energy, ultimately
fueling the early expansion of the tissue. This was further indicated by the expression of
Adenosine Triphosphatase (ATPase) along the capillaries [31,32]. It was further found that
this tortuosity greatly assisted in rapid adipocyte growth by minimizing the spatial distance
between the capillaries and the developing adipocytes [30,35]. In the final stage of adipose
development, definitive lobules were surrounded by mesenchyme and fibrous collagen,
which rapidly condenses and thickened to form the interlobular septa [27–35]. This array of
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histological and cytochemical studies show that there are immense ultrastructural changes
throughout the simultaneous development of adipocytes and the maturation of pre-existing
capillary beds [29–33,35–37].
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Figure 1. Schematic representations of (A) the localization of white adipose tissue (yellow) and
brown adipose tissue (brown) in a developing neonate and adult human; (B) the breakdown of
adipose tissue development into the 5 specified stages; (C) the prominent Extracellular Matrix (ECM)
components over the course of adipose tissue development. Abbreviations: adipose stem cell (ASC),
low-density lipoprotein (LdL), and endothelial cell (EC). Created with Biorender.com.

2.2. Remodeling during Angiogenesis and Adipogenesis
2.2.1. Angiogenesis

In embryonic development, the main vasculature of the human body is formed through
de novo vasculogenesis, whereby stem cells undergo differentiation towards endothelial
progenitor cells, also known as angioblasts, and then towards endothelial cells to form
tubule structures [38]. However, in specified organogenesis, vessels branch off of existing
vasculature through controlled sprouting or non-sprouting angiogenesis (Figure 2), with
the assistance of existing mesenchymal cells [39]. As previously discussed, the primitive
vasculature in adipose tissue has developed prior to week 14 [27,28]. In order for angio-
genesis to occur, matrix metalloproteinases (MMP) must first break down the basement
membrane that is currently supporting the vessel. In these early stages, MMP2, MMP3, and
MMP9 tend to start this process allowing for the release of fibrinogen and fibronectin, which

Biorender.com
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lay the provisional foundation for the migration of additional endothelial cells [40–44].
Chemotactic signals, such as vascular endothelial growth factor (VEGF), encourage the
proliferation and migration of existing endothelial cells towards the prepared void [45–47].
Furthermore, platelet-derived growth factor-β (PDGF-β) recruits pericytes/smooth muscle
cells to stabilize the vessel [45]. From then on, transforming growth factor beta (TGF-β)
stimulates the differentiation of mesenchymal stem cells to fibroblasts and mural cells
in order to increase extracellular matrix (ECM) production to promote vessel matura-
tion [40,48,49]. While the general composition of the vessel’s basement membrane is rather
consistent: Laminin and Type IV Collagen linked with Nidogen and Perlecans [35,50,51],
the isoform profile and quantity of each ECM will be unique to the specification of the
vessel, whether it be arterial, venule, or capillary. For example, Laminin α4 exists on all
vessels while Laminin α5 is more exclusive to capillaries [39,40]. Furthermore, Laminin
10 is present at birth, but gradually, it is replaced with Laminin 8 [39], showing that not
only does each cell type have a unique matrix signature but also that this signature changes
over time.
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Figure 2. Schematic representations of (A) vascularized adipose tissue and (B) paracrine interactions
between both the vascular and adipose lineages. (C) Stepwise breakdown of cellular and paracrine ac-
tivity during angiogenesis. Abbreviations: Platelet-derived growth factor-β (PDGF-β), transforming
growth factor-β (TGF-β), vascular endothelial growth factor-A (VEGF-A), hepatocyte growth factor
(HGF), angiopoietin-1,2 (Ang-1,2), fibroblast growth factor (FGF), insulin-like growth factor-1 (IGF-1),
extracellular matrix (ECM), and matrix metalloproteinase (MMP). Created with Biorender.com.
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2.2.2. Adipogenesis

Adipogenesis is a highly regulated, dynamic process whereby adipose stem cells
undergo stepwise differentiation towards an adipocyte. One notable change in white
adipocyte development includes the gradual morphological change from the fibroblastic
shape to a multilocular adipocyte and then finally a spherical unilocular adipocyte, de-
signed to store triglycerides efficiently and effectively [52]. Throughout this adipogenic
process, the cells experience alterations in their ECM secretions and network organiza-
tion, which ultimately affect the rigidity of the environment [53,54]. Antras et al. found
that during the differentiation of adipocytes, there was an obvious slowdown and halt in
the synthesis of actin and other cytoskeletal proteins to accommodate the expansion and
accumulation of lipid droplets intracellularly [55].

One notable change in the ECM profile of adipose-derived stem cells (ASCs) cultured
in growth media versus differentiation media is the gradual loss of fibronectin and increase
in the secretion of laminin of ASCs undergoing adipogenesis [56]. Several studies have
shown that the utilization of decellularized matrix from differentiated adipocytes increased
the adipogenic potential of ASCs when compared to the adipogenic potential of stem cells
cultured with the decellularized matrix of ASCs grown in growth media, indicating that
the matrix contains adipogenic cues [57,58]. Considering their pre-established commitment
to the adipocyte lineage, 3T3-L1 cells are a common model to study adipogenesis. In their
undifferentiated state, 3T3-L1 cells have a fibroblast-like morphology and secretome [59].
It has been shown that these fibroblasts primarily secrete fibrillar Type I and III Collagen
when exogenously stimulated with ascorbic acid [60,61]. In addition to their usage as an
adipogenic model, this ability to secrete fibrous matrix has previously made them very
beneficial as feeder cells to more fragile cells [62,63]. In these adipogenic models, there is
an early peak of fibrillar proteins (Types I, II, and III collagen) by day 4 of differentiation,
followed by a transient decline that is offset by a gradual increase in basement membrane
proteins, including Type IV Collagen, Laminin, and Entactin [64–69].

3. Cellular Crosstalk and Paracrine Signaling during Simultaneous Adipogenesis
and Angiogenesis

It is apparent that there is a macrostructural dependence between developing adipocytes
and their vasculature, with the vasculature defining the architecture of the lobule and sup-
plying the necessary materials to promote adipogenesis [31,32]. However, there are also
paracrine and contact-dependent interactions that promote the development of vascularized
adipose tissue.

It is known that ASCs, which are mesenchymal stem cells not yet committed to the
adipocyte lineage, have the ability to differentiate into multiple cell lineages, including
adipocytes (white or brown) and endothelial cells [70–73]. There has been previous histo-
logical evidence to suggest that adipocytes and adipose-derived endothelial cells share a
common ancestor residing in the vascular niche [34,74,75]. This common precursor was
verified and defined by Tang et al. through the utilization of a Green Fluorescent Protein
(GFP)-Peroxisome Proliferator-activated Receptor Gamma (PPAR- γ) mouse model [76].
This model suggested that there are PPAR-γ positive cells lining the vasculature that also
express Smooth Muscle Actin (SMA), PDGF-β, and neuron-glial antigen 2 (NG2), indicat-
ing that they are of perivascular origin [76,77]. After isolation, it was shown that these
cells took up Bromodeoxyuridine (BrdU), showing their proliferative capacity, while also
having immense adipogenic potential [76,78,79]. Together, these findings demonstrate
that many adipocytes are derived from progenitors that reside within the mural cells’
compartment, surrounding the vasculature [76,77]. However, there are many regulators
that can determine the fate and function of these progenitor cells, including paracrine or
mechanical signals.

It should be firstly noted that there is immense crosstalk within the stromal vascu-
lar fraction (SVF) that influences both adipogenesis and angiogenesis. One prominent
stromal cell, the fibroblast, has demonstrated its importance in adipose tissue develop-
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ment and maintenance. Fibroblast Specific Protein-1 (FSP-1)+ fibroblasts reside adjacent
to preadipocytes and regulate PDGF signaling and MMP expression in order to promote
adipogenesis [80]. As regulators of matrix construction, these stromal cells also support
angiogenesis [81]. ASCs from the SVF promote endothelial colony-forming cell prolifera-
tion and differentiation by secreting proangiogenic factors such as VEGF [16,82]. Moreover,
those stem cells can then differentiate into pericytes to stabilize the newly formed vessel
structure [82]. When in indirect coculture, ASCs release VEGF and Angiopoietin 1 and
2 in order to promote the tubule formation of endothelial progenitor cells which then
upregulate their expression of Tunica Interna Endothelial Cell Kinase 2 (TIE2) and VEGFR1.
In this study, VEGFR2 was not detected, suggesting a more prominent role in Angiopoeitin-
TIE2-mediated angiogenesis in endothelial progenitor cells [83].

Endothelial cells within the SVF are also a source of mitogenic and adipogenic compo-
nents. Conditioned medium from microvascular endothelial cell cultures promoted the
proliferation of preadipocytes [84]. It is likely that this media contained heparin-binding
Fibroblast Growth Factor (FGF) and Insulin-like Growth Factor-1 (IGF-1), as shown in
Figure 2 [85,86]. Furthermore, when endothelial cell-derived ECM components, including
Fibronectin, Laminin, and Collagen IV, were applied as soluble entities to differentiating
preadipocytes in vitro, there was a four-fold increase in triglyceride accumulation, indicat-
ing that a strong paracrine signal from endothelial cells is communicated via the ECM that
they produce [51].

Fukumura et al. used an in vivo fat pad formation murine model in conjunction with
an in vitro preadipocyte differentiation assay to monitor simultaneous angiogenesis and
adipogenesis as well as unravel the intricacies of the paracrine signaling existing be-
tween preadipocytes and endothelial cells [87]. When PPAR-γ is inhibited in vivo, 3T3
cells remained undifferentiated, which corresponded to a reduction in vessel infiltration.
Furthermore, when VEGFR2 was blocked, there was a reduction in both angiogenesis
and 3T3-F442A differentiation. It was found that this was due to the paracrine interac-
tion between endothelial cells and preadipocytes, which is dependent upon endothelial
treatments with VEGF, as the treatment with VEGF and a VEGF blocker on preadipocytes
did not directly affect differentiation in vitro [87]. This study highlights the importance of
cell-specific paracrine signaling in simultaneous adipogenesis and angiogenesis.

In embryonic development and prior to the maturation of white adipocytes, preadipocytes
take on a hormonal role and secrete adipokines, including adiponectin [88]. These secretions
have been shown to have an imperative paracrine effect in assisting angiogenesis [89]. Lep-
tin, another adipose hormone known to play a regulatory role in satiety, has displayed an
important role in regulating fetal growth and organogenesis [90], although its angiogenic
implications remain unclear. In vitro studies with human umbilical vein endothelial cells
(HUVECs) and porcine aortic endothelial cells demonstrated that HUVECs displayed Ob-Ra
and Ob-Rb, two isoforms of the Leptin receptor, and responded to Leptin by increasing
their proliferative rate and forming capillary-like tubes when in Fibrin gels [91]. This func-
tionality was attributed to the activation of the Mitogen-activated Protein Kinase (MAPK)
pathway [91,92]. Other studies have shown the Leptin-mediated upregulation of angiogenic
factors FGF-2 and VEGF, further supporting this pro-angiogenic response [93,94]. However,
more recently, a study reported that metreleptin, a recombinant leptin analog, does not induce
endothelial sprouting in a 3D gel and it also does not affect circulating angiogenic factor
levels [89,95]. Additional research shows that adipocyte-derived leptin induces endothelial
apoptosis through Ang-2, but angiogenesis occurs through VEGF and FGF-2 (also produced
by adipocytes) [93,96,97], demonstrating situationally dependent responses.

4. Mechanical Regulation of Adipogenesis and Angiogenesis
4.1. ECM Regulation
4.1.1. Stiffness

The in vivo microenvironment is constantly modified to preserve the intended function
of cells and tissue, necessitating constant cellular mechanosensing (Figure 3). The local mi-
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croenvironment is a large determinate of the fate of precursor cells, including mesenchymal
stem cells, preadipocytes, and endothelial progenitor cells [98]. Investigators mimicked
this microenvironment in an effort to better understand the factors that influence adipose
tissue development. Young et al. sought to recapitulate both the ECM composition and
mechanical properties of the native tissue in order to promote adipogenesis in the absence
of exogenous small molecules [99]. The bioactive properties of adipose ECM were uti-
lized by functionalizing polyacrylamide gels with decellularized lipoaspirate from women
undergoing elective liposuction. ASCs seeded on top of the softest functionalized gels
(2 kPa) adopted a rounded morphology and upregulated their adipogenic gene expression,
whereas on stiffer (20 and 40 kPa) functionalized gels, stem cells increased their levels of cell
spreading [99]. It can be inferred that the stiffness of the microenvironment greatly impacts
the lineage specification of stem cells, regardless of the innate adipogenic signaling the
matrix holds [57,58]. There has been further evidence to show that these mesenchymal stem
cells retain irreversible mechanical memory and experience impaired neurogenesis and
adipogenesis when differentiated after switching the culture from a stiff to a soft substrate
in vitro [100–102].
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Figure 3. Schematic representations of (A) major mechanotransduction pathways and their down-
stream effects (B). Mechanoresponses of adipose derived stem cells (ASC), adipocytes, endothelial
progenitor cells (EPC), and endothelial cells (EC) in situations of (1) altered matrix stiffness, (2) altered
matrix composition, and (3) altered internal forces. Abbreviations: Vascular endothelial growth fac-
tor (VEGF) receptor (VEGFR), transforming growth factor-β receptor (TGF-βR), Extracellular matrix
(ECM), Ras homologous GTPase (Rho GTPase), Rho-associated protein kinase (ROCK), myosin light
chain phosphatase (MLCP), myosin light chain kinase (MLCK), phosphatidylinositol 3- kinase (PI3K),
protein kinase B (Akt), mitogen-activated protein kinase kinase (MEK), extracellular-signal-regulated
kinase (ERK), large tumor suppressor (LATS), small mothers against decapentaplegic (SMAD), yes-
associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), reactive oxygen
species (ROS), white adipose tissue (WAT), smooth muscle cell (SMC), and focal adhesion (FA).
Created with Biorender.com.

The application of external forces on ASCs has also been studied in vitro. Under me-
chanical strain, ASCs increased their proliferation rate, dependent upon the activation of
the integrin β1 receptor and the Ras homolog (Rho) family member A (RhoA)/myosin light
chain (MLC) pathway [103]. However, the adipogenic potential of these cells was depen-
dent upon the magnitude of the applied force [103,104]. Furthermore, regulating the RhoA
pathway has considerable effects on the phenotype and functionality of preadipocytes. Ida
et al. assessed the effects of Rho-associated coiled-coils containing a protein kinase (ROCK)
inhibitor (ROCKi) on three dimensional 3T3-L1 organoids. ROCKi applications increased
lipid size, increased Collagen IV and VI, reduced Fibronectin and Collagen I, and produced

Biorender.com
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drastically less stiff organoids [105]. Importantly, the modulation of the Rho pathway can
further direct progenitors to either an adipogenic or myogenic cell fate decision, depend-
ing on the Rho activity, with lower Rho activity preferentially differentiating towards an
adipogenic lineage [106].

Mechanical signals play an important role in regulating adipose vasculature as well.
The adipose SVF contains a subset of Fetal Liver Kinase-1 (Flk-1)+ endothelial progenitor
cells [107–110]. Importantly, these cells provide paracrine support for angiogenesis while
also actively differentiating to participate in vessel formation [107–110]. It has been demon-
strated that cellular specification, towards either endothelial cells or smooth muscle cells,
is dependent upon the mechanical environment, with mechanosensing and cell fate deci-
sions being mediated through the Hpo Kinase/Yes-associated protein (Hippo/YAP) path-
way [107,108,111,112]. Additionally, VEGF binding, internalization, and signaling amongst
endothelial cells is dependent upon matrix stiffness [113]. Endothelial cells on softer sub-
strates internalize more soluble VEGF, the key mediator of angiogenesis [114]. Despite
having increased VEGF responsiveness and angiogenic propensity on soft matrices, there is
evidence to indicate that endothelial cells and their stromal support cells gradually stiffen
the new matrix around the neovessel to promote maturation [115]. However, when initially
embedded in a stiff matrix, pathological, sprouting angiogenesis occurs with disrupted
endothelial cell–cell junctions [116]. It is apparent that both the adipocyte lineage and
endothelial cells depend on a soft environment to allow for proper adipose development.

4.1.2. Matrix Composition

As previously described, and similarly to the gradual occurrence of matrix stiffening,
there are progressive alterations in the composition of the extracellular matrix over the
course of adipogenesis and angiogenesis. Researchers have sought to examine how these
compositions alter the cellular phenotype of adipocytes. Liu et al. conducted several studies
to establish the effects of collagen remodeling on cellular fate of adipocytes [117]. It was
demonstrated that both Collagen I and Gelatin directed 3T3-L1 and C2C12 cells toward a
myofibroblast lineage [117]. Importantly, these substrates encouraged YAP nuclear local-
ization and TGF-β1 expression through the activation of reactive oxygen species (ROS) to
promote myofibroblast differentiation [117]. Further evaluation of the adipogenic potential
of these 3T3-L1 preadipocytes showed that Collagen I inhibits the adipogenesis of 3T3-L1
cells and upregulates primary cilia proteins through YAP inhibition of PPAR-γ and CCAAT
enhancer-binding protein alpha (CEBPα) in order to promote cellular migration [118–120].
There have also been recent experiments exploring potential extracellular components that
regulate thermogenic capacity and the conversion of white adipose tissue towards beige
adipose tissue. It has been shown that ASCs induced towards a beige lineage when on top
of Collagen 1A1, Collagen 3A1, and Laminin A4 had lower levels of Uncoupling Protein 1
(UCP-1) (a critical component for the regulation of brown/beige adipose tissue) compared
to those differentiated on uncoated dishes [121]. In the absence of the Laminin A4 gene,
thermogenic markers were upregulated in white adipose tissue, suggesting that the ECM’s
composition plays a role in maintaining white adipocytes [121–124].

4.2. Tractional Regulation of Cell Fate

It has been stated that changes in the ECM composition and stiffness are able to alter
downstream behaviors such as migration, shape, proliferation, and the differentiation of
cells. This occurs due to signal transduction through transmembrane proteins, such as
integrins and cadherins, which then influence intracellular pathways, cytoskeletal proteins,
and transcription factors [125]. As a cell undergoes adipogenesis its matrix composition
changes, which in turn affects the surrounding rigidity. As a result, cells remodel their
cytoskeleton to define their future fate and function.
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4.2.1. Cell Shape

Mechanical forces simultaneously impact adipogenesis and angiogenesis. White
adipocytes are unique in their rounded, spherical shape, which contributes to the over-
all function of the cell to store lipids. When supported with a simple fibronectin matrix,
3T3-L1 cells will adhere and spread, displaying a low adipogenic potential. However,
when forced to stay rounded on the fibronectin, cells will preferentially differentiate
towards adipocytes [59]. McBeath et al. explained these findings by showing that this
shape-dependent differentiation is regulated through the RhoA pathway [59,98].

In addition to the substratum regulation of cell spreading, cell crowding and cadherin
enactment tend to control cell spreading and shape [126]. Importantly, the cell and ECM
density impacts the cell’s spreading capacity, which directly affects the ability for cells,
including endothelial cells, to proliferate and differentiate due to the modulation of both
Rac and Rho GTPase signaling [126–128]. Ingber et al. demonstrated that endothelial tube
formation is dependent upon several conditions, including a soft substrate with adequate
adhesion, cell–cell contacts to allow for retractions from the substrate, and the switch of
endothelial cells to a more rounded shape, indicating a cessation in DNA synthetization
and a switch towards differentiation [128]. However, the degree of cell rounding was a
critical factor as a completely rounded cell would undergo gradual involution and cell
death [128]. These endothelial cell-rounding phenomena were found to be dependent upon
caldesmon, a component of the actomyosin complex. The inhibition of caldesmon resulted
in a reduction in actin stress fibers which encouraged cell rounding that triggered the
inhibition of the cell cycle and promoted apoptosis [115]. Additionally, when cell tension
was suppressed independently of cell shape, cell growth was also reduced [115]. This
indicates that both the cell shape and contractility play imperative roles in defining a
cell’s fate.

4.2.2. Tractional Forces

When on top of or encapsulated within a substrate, cells will exert tractional forces onto
the substrate. This occurs by forming adhesion complexes and modifying their internal
cytoskeletal forces to resist outside forces. It has been shown that the tractional force
and cell-spreading areas are proportional to the number of active focal adhesions on the
cell, whereby the focal adhesion is the transduction interface between the extracellular
environment and the intracellular filaments, commonly via an integrin [129].

Preadipocytes are known to be highly motile cells that will migrate to form cellular
aggregates within the future lobule throughout the process of development [27]. This
process of migration and cellular aggregation is highly dependent on their ability to dy-
namically remodel the surrounding matrix through cell–matrix interactions in order to
then form cell–cell junctions. The preadipocyte mass will respond to both chemical and
mechanical signals in order to mature only at the designated adipose lobule [130,131].
As these preadipocytes differentiate, they gradually reduce their tractional forces on the
extracellular environment due to the alterations in cell shape and cytoskeletal rearrange-
ment [52,132]. Importantly, adipocytes have the lowest single cell elastic modulus, of
0.61 kPa when compared to osteoblasts and chondrocytes [133]. However, there is evidence
to show that murine preadipocytes stiffen with differentiation due to the accumulation of
lipids [134,135]. On the contrary, human ASCs undergo a reduction in stiffness over the
course of their adipogenic differentiation and cytoskeletal remodeling [52,132,136]. Further-
more, a reduction in ROCK activity promotes adipogenic differentiation and a reduction
in cell stiffness in human cells [98,105,136,137]. Additionally, the disruption of actin via
cytochalasin D has similar effects to that of Rho Kinase inhibition with Y-27632, whereby
adipogenesis is promoted [98]. This indicates that cytoskeletal forces play a large role in
the differentiation of adipose cells, with progenitors having disorganized cytoskeletons
and lower internal tension being more prone to adipogenesis [98,136,138].

Given that the process of angiogenesis and endothelial migration relies heavily on
the ability for endothelial cells to overcome external forces by internally balancing the ap-
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plied forces, they are constantly remodeling their cytoskeleton into filopodia, lamellipodia,
or stress fibers [139]. However, this endothelial migration is guided by gradients from
proangiogenic chemicals, either soluble or immobilized, or through mechanotaxis, whereby
migration is governed by mechanical forces [140,141]. When subendothelial stiffnesses
increase, endothelial cells will increase their tractional force and upregulate TGF-β2 [142].
Furthermore, in response to exogenous TGF-β2, endothelial cells will increase their trac-
tional forces [142]. Knizeva et al. showed that an increase in ECM density regulates the
contractility of endothelial cells (through actin mediated forces) and impairs their angio-
genic abilities in 3D [143–145].

5. Regulation of ECM Remodeling
5.1. Proteolytic Involvement during Adipose Tissue Development

Catabolic ECM remodeling is required to accommodate new vasculature and adipocytes.
Thus, proteolytic processes (Table 1), such as the fibrinolytic and matrix metalloproteinase
(MMP) systems, are imperative in order to degrade matrix components and activate latent
proteinases [42].

Firstly, the fibrinolytic system is known to play an important role in angiogenesis as
plasmin degrades fibrin and promotes cell migration through the interstitial matrix, as
previously mentioned [146,147]. The main inhibitor of plasmin activity is plasminogen
activator inhibitor-1 (PAI-1), which mainly targets tissue type-plasminogen activator (t-PA).
There has been extensive research into PAI-1 as it is expressed in both human and murine
adipose tissue [148,149], although the results have been contradictory. There is literature
indicating angiogenic inhibition through VEGFR-2 downregulation and the inhibition of
VEGFR-2-vitronectin interactions in HUVECs [150]. This PAI-1 driven inhibition of the
vitronectin interaction was similarly observed in human-brain microvascular endothelial
cells; however, PAI-1 also stimulated fibronectin dependent migration upon the inhibition
of vitronectin interaction [151]. This PAI-1-dependent migratory regulation was similarly
observed by Crandall et al., who investigated the potential of PAI-1 as a regulator for
preadipocyte motility [152]. Interestingly, it was found that preadipocytes and adipocytes
synthesize PAI-1, which then binds to the αvβ3 integrin receptor on preadipocytes, de-
creasing their ability to bind to vitronectin and reducing their ability to migrate [152,153].
Further, it has been shown that the overexpression of PAI-1 in 3T3-L1 cells inhibits their adi-
pogenic differentiation, as indicated by a reduction in PPARγ, C/EBPα, and aP2, while also
inhibiting plasmin and increasing Collagen I [154]. This indicates a complex, potentially
haptotactic role of PAI-1 in adipose development that should be explored further.

Matrix Metalloproteinases (MMPs) are another group of proteases that are able to
degrade a range of matrix proteins, activate other MMPs, process bioactive molecules,
bind to surface receptors, and regulate gene expression [155]. These MMPs are highly
regulated by tissue inhibitors of MMPs (TIMPs), and the overall degradation of the tissue
is determined by the balance between MMPs and TIMPs. These metalloproteinases are
critical for adipogenesis and angiogenesis to occur during adipose development [156]. The
most well-studied MMPs in adipose tissue are MMP2, MMP9, and MT1-MMP. Both MMP2
and MT1-MMP have exhibited immense adipogenic potential and are promotors of white
adipose-tissue development [42,157,158]. MMP2 is secreted by adipocytes and promotes
their subsequent migration and organization into three dimensional clusters within a
completely remodeled matrix [157]. Chun et al. showed that MT1-MMP’s adipogenic
potential lies in its ability to degrade collagen to coordinately alter matrix compliance,
cellular tension, and subsequent cell shape. These matrix degradation products were
further shown to increase adipocyte hypertrophy [98,159].
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Table 1. Proteolytic Enzymes, their regulators, and downstream effects.

Proteolytic System Enzymes Activators Inhibitors Activity Citation

Fibrinolytic

Plasminogen-
inactive

� Tissue-type plasminogen activator (t-PA) (Predominantly in blood circulation)
� Urokinase-type plasminogen activator (u-PA) (Activates cell bound

plasminogen)

� α2 antiplasmin
� Plasminogen activator

inhibitors (PAI-1/2)

� Degrades Fibrin into soluble
degradation products

� Activates some MMPs
[147,152,156]

Plasmin-Active

Collagenases

MMP1
(Collagenase 1)

� VEGF induces MMP1 expression

� TIMPs

� Digest Fibrillar Collagen
� ASC-derived MMP1

promotes vascular sprouting

[160–162]

MMP13
(Collagenase 3)

� MT1-MMP activates proMMP13
� Digest Fibrillar Collagen
� Enhances over the course of

adipose differentiation

MT1-MMP � Regulated by proprotein convertase � Inhibited by TIMP2

� Degrade Type 1 Collagen to
promote three-dimensional
adipocyte lipid
accumulation through
matrix rigidity regulation

� Promotes tubulogenic
activity of endothelial cells

[158,159,163]

Gelatinases

MMP2
(Gelatinase A)

� Direct activation of proMMP2 (progelatinase A) is achieved in a plasmin
independent mechanism

� Activated through TIMP2 and homo-dimerization of MT1-MMP
� During angiogenesis-serine proteinase plasmin activates

� Ro 28-2653
� Tolylsam
� TIMP-1 (B)
� TIMP-2 (A)-without

MT1-MMP

� Fragments Basement
Membrane, Collagen, and
Gelatin promoting
endothelial proliferation,
chemotaxis, and
angiogenesis

� Mediates adipocyte
migration and clustering to
form lobular architecture

[42,43,158,164–167]

MMP9
(Gelatinase B) � Activation of proMMP9 (progelatinase B) is achieved by plasmin � TIMP’s

� Release of fibrinogen and
fibronectin which lay the
provisional foundation for
the migration of additional
endothelial cells

� Promotes adipocyte
differentiation

[40–44,89]
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5.2. Adipokine Regulation of ECM Remodeling

As aforementioned, adipokines are critical hormones released primarily from adipose
tissue that play a role in fetal development, as gestational levels of adipokines predict future
adipose growth patterns [168]. These adipokines, notably Adiponectin and Leptin, have
a diverse set of targets and responses. One cellular response is extracellular remodeling
for the purpose of adipogenesis or angiogenesis in tissue development and expansion.
Importantly, it has been shown that Leptin treatment increases the expression of proteinase,
MT1-MMP, which then translocates to the plasma membrane to mediate matrix proteolysis
and the activation of gelatinases, MMP2, and MMP9 [169,170]. The activity of MMP2 was
then found to be critical for proper adipogenesis to be undertaken [169,171]. Similar effects
were found with the treatment of Leptin on myofibroblasts, whereby Leptin treatment
promoted MMP2 concurrently with MT1-MMP and promoted intracellular accumulation
of pro-collagen-1, a precursor to Collagen I [172].

However, it has been shown that Adiponectin has antagonizing effects on endothe-
lial angiogenic activity. Adiponectin agonist, AdipoRon, promotes endothelial migration
and tube formation, while also upregulating CXCL1, VEGF-A, MMP2, and MMP9 in HU-
VECs [89]. This angiogenic activity is due to the combination of chemotactic signaling
alongside the facilitated matrix organization [89,170]. In cardiac fibroblasts, adiponectin
promotes cellular migration through APPL1-AMPK signaling, inducing collagen and elastin
remodeling but maintaining basal collagen secretion [170]. Similarly, in human microvas-
cular endothelial cells, globular adiponectin binds to the AdipoR1 receptor and promotes
cellular proliferation and migration through the AMPK-Akt pathways [173]. While MMP2
and MMP9 activation was mediated by globular adiponectin binding to either AdipoR1 or
AdipoR2 receptors, full-length adiponectin promotes microvascular endothelial cell prolif-
eration through the AdipoR2 receptor [173]. It is evident that developing adipose tissue
regulates, through adipokine release, the progression of adipogenesis and angiogenesis
through extracellular matrix-mediated communication.

6. Conclusions

Despite being accepted as a critical connective tissue, adipose tissue has only recently
been recognized for its paracrine and endocrine contributions. In the past several decades,
these functionalities have been investigated specifically during adipose development, but
there has yet to be a comprehensive explanation of the appropriate cellular and matrix
interactions that exist during adipose development.

Adipose tissue development is a coordinated process that is highly dependent on
matrix structural components, paracrine signaling, mechanical regulatory signals, and
proteolytic degradation that is undertaken during simultaneous adipogenesis and angio-
genesis. Here, the spatiotemporal relationship between adipogenesis and angiogenesis has
been highlighted. Early reports of human buccal adipose-tissue development demonstrate
that during the second trimester of human gestation, the foundation for white adipose
tissue is laid with newly synthesized vascular structures providing both a structural and
functional route for adipogenesis [27,28,174]. Additionally, the developing adipose tissue
provides feedback to the sprouting vasculature in the form of paracrine signals. These
signals, including adipokines, such as Leptin and Adiponectin, regulate endothelial cellular
activities such as proliferation in addition to encouraging proper proteolytic activity to
support the appropriate environment for developing adipocytes [89]. Several factors of this
microenvironmental regulation are illustrated. Importantly, extracellular matrix stiffness,
rigidity, and composition play an important role in both endothelial and adipocyte cell
fate [19]. Through mechanotransduction, both adipocytes and endothelial cells sense and
respond to external forces by adjusting their cytoskeletal tension and cellular traction.
Through their applied traction, cells are able to migrate, which is critical for preadipocytes
and endothelial cells during adipose lobule formation [125]. It is crucial to gain a better
understanding of these complex relationships that exist between adipose tissue and its
vasculature during prenatal and postnatal adipose tissue development. This information
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has the potential to provide insights into the cellular and biomechanical activities of adi-
pose expansion for applications regarding soft-tissue reconstruction or the development of
pathological obesity.
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