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Background: Eating behaviors contribute to disproportionate energy intake

and are linked to the development of obesity. Animal studies support the role of

inflammatory cytokines and chemokines in the regulation of obesity-related

eating behaviors and offer a potential target to combat obesity through the

modulation of inflammation. However, more complex eating behaviors are

present in humans, and their relationships with immune/inflammation markers

are unclear. The present study reviewed current literature to synthesize the

evidence on the association of immune/inflammation markers with obesity-

related eating behaviors in humans.

Methods: A systematic search of three electronic databases yielded 811

articles, of which 11 met the inclusion criteria.

Results: The majority of the included studies (91%) were either case-control or

cross-sectional studies. A variety of immune/inflammation markers and

obesity-related eating behaviors have been assessed in the chosen studies.

Three out of four studies identified a positive relationship between C-reactive

protein (CRP)/high-sensitivity CRP and loss of control eating. Other

inflammatory markers that potentially have a positive relationship with

obesity-related eating behaviors include fractalkine and fibrinogen.

Additionally, immune molecules, including interferon gamma (INF-g),
interleukin (IL)-7, IL-10, and a-melanocyte-stimulating hormone-reactive

immunoglobulin G (a-MSH/IgG) immune complex, may have negative

associations with obesity-related eating behaviors. However, most findings

were identified by single studies.
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Conclusion: Limited studies have been conducted in humans. Current

evidence indicates a potential bi-directional relationship between

inflammatory/immune markers and obesity-related eating behaviors.

Additional studies with sophisticated research design and comprehensive

theoretical models are warranted to further delineate the relationship

between immune/inflammation markers and obesity-related eating behaviors.
KEYWORDS
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Introduction

The prevalence of obesity has continued to rise. Over 42%

of adults and 19% of children are currently affected by obesity

in the United States (1, 2). Eating behaviors, such as eating in

the absence of hunger, disinhibited eating, and excessive intake

of dietary fat, contribute to disproportionate energy intake

and have been linked to the development of obesity (3).

Strategies targeting obesity-related eating behaviors may

be a key approach to alleviate the obesity epidemic, and

comprehensive understanding of the underlying mechanisms

is crucial to develop effective interventions.

A growing body of evidence has indicated that immune and

inflammatory molecules play a role in the regulation of eating

behaviors (4–7). It has long been observed that various disease

states can lead to reduced appetite and food intake (8). Several

cytokines, such as tumor necrosis factor (TNF)-a, interleukin
(IL)-1a, IL-1b, IL-6, IL-7, IL-18, have been found to suppress

food intake in animals and potentially in humans (4, 7, 9–12). In

addition to suppressing appetite, alterations in immunological

function may also be involved in the pathogenesis or

perpetuation of obesity-related eating behaviors. In rodent

models, deficiency in IL-6, IL-1 type I receptor, and IL-18

resu l ted in hyperphag ia and obes i ty (6 , 13 , 14) .

Intracerebroventricular administration of IL-6 and IL-1b
reduced sucrose preference and food intake (7, 15). Alleviation

of hypothalamic inflammation and deficiency in interferon

gamma (IFN-g) also reduced food intake and diet-induced

obesity (16–18). Hence, it is hypothesized that dysregulation of

the immune system may initiate or exacerbate appetite and food

reward signals and contribute to the development or

perpetuation of obesity-related maladaptive eating behaviors.

Previous studies in animals supported the role of cytokines

in the regulation of obesity-related eating behaviors (6, 7, 13–

18). However, there has been limited research exploring the

involvement of immune molecules in modulating obesity-

related eating behaviors in humans which are more complex

than rodent models (19). Therefore, this review was conducted
02
to synthesize the evidence on the association between immune

markers and obesity-related eating behaviors in humans.
Methods

To identify relevant publications, systematic searches were

conducted using the following electronic databases: PubMed,

Web of Science, and CINAHL. We used a variety of search

terms including “eating” or “feeding” combined with “obesity”

then crossed with “immune” or “inflammation” or “cytokine”.

The searches were limited to “human” studies, and articles

were restricted to English language. Primary research studies

published through May, 2021 were included if they fulfilled

the following criteria: 1) the relationship between immune/

inflammatory molecules and eating behaviors related to

obesity was examined; 2) to expand the number of articles

included, articles comparing anorexia nervosa (AN) with

obesity were also included, and AN was considered an

eating behavior opposite of those related to obesity; 3)

articles examining brain regions related to eating behavior

regulation were included, and the brain regions were used as

proxies for eating behaviors. Studies were excluded if 1) they

discussed the links between inflammatory markers with

fasting or intake of single foods, nutrients, or dietary

patterns; or 2) they examined local infections, such as

gastric infection by Helicobacter pylori; or 3) they assessed

leptin instead of inflammatory markers, as leptin is commonly

classified as an adipokine; or 4) they were conducted in

patients with cancers.

Figure 1 presents the flow of the literature search. A total of

811 articles were screened. Two reviewers (YM and AK)

independently screened all titles and abstracts to identify

potential articles (n=49). Full texts were extracted and

reviewed by the two reviewers. Of these articles, ten articles

fulfilled the eligibility criteria. References of the identified articles

were further screened. One additional article was identified. A

total of 11 articles were included in this review.
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Results

Study characteristics

Of the eleven included articles (Table 1), five studies

assessed a variety of obesity-related eating behaviors, including

loss of control eating, hunger, binge eating, and emotional

eating. Five studies compared eating disorders with obesity.

One study examined brain regions related to the regulation of

food intake . A var ie ty of cytokines , chemokines ,

immunoglobulins and inflammatory markers have been

assessed in these studies. With regards to study designs, six

studies were case-control studies, four studies were cross-

sectional studies, and one study utilized a quasi-experimental

design. Six studies were conducted in Europe, three in the USA,

one in Brazil, and one in China. The sample sizes ranged from 32

to 194. Five studies included more than or equal to100

participants. Four studies recruited children and adolescents,

and the other studies recruited adults or a mixture of adolescents

and adults. Five studies only conducted assessments with

female participants.
Frontiers in Immunology 03
Descriptive synthesis of main findings

Four studies examined the relationship between the C-

reactive protein (CRP) or high sensitivity-CRP (hsCRP) and

eating behaviors, including uncontrolled eating, binge eating,

hunger, emotional eating and cognitive restraint eating

(Table 2). Two of these studies with relatively large sample

sizes reported positive associations of hsCRP with loss of control

eating or binge eating after controlling for covariates (28, 29).

Particularly, these two studies adjusted for adiposity including

fat mass or body mass index (BMI) in their models. Another

study also reported a positive correlation between CRP and

uncontrolled eating (27). Capuron et al. (20), however, did not

find a significant association between hsCRP and disinhibition

(20). The eating behavior measurements varied among studies,

which may account for the inconsistency of findings. Other than

disinhibited eating, Sayin et al. (27) also reported a positive

association between CRP and emotional eating after controlling

for BMI. Capuron et al. (20) found that reduction in hsCRP one-

year post bariatric surgery was associated with decrease in

cognitive restraint eating.
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FIGURE 1

Literature search flow chart.
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Two studies compared IL-1a levels among participants with

eating disorders, obesity and normal weight controls. Caroleo

et al. (21) found significant differences among subjects with AN,

binge eating disorder (BED), obesity, and normal weight

controls (21). Controls had relatively higher serum IL-1a
levels, but pair-wise comparisons between groups were not
Frontiers in Immunology 04
performed. Raymond et al. (26) found that IL-1a production

by stimulated peripheral blood mononuclear cell (PBMC) from

individuals with obesity was higher relative to normal weight

controls, but there were no differences in IL-1a production by

unstimulated PBMC among individuals with different

conditions (26). INF-g was also assessed in these two studies.
TABLE 1 Included studies.

Article Study
design

Sample
size,

Nation,
Age, and
Gender

Eating behaviors Immune
markers/
cytokines

Variables adjusted Summary of main findings

Capuron,
et al. (20)

Quasi-
experi-
mental
(pretest-
posttest
design)

N=101;
France; Age
37.8±11.2;
Female
100%

TFEQ51 (cognitive restraint,
disinhibition, hunger)

IL-6, hsCRP Age and diabetes status 1. At baseline, IL6 and hsCRP was negatively
associated with hunger scores. But these
associations were not significantly after
adjusting for BMI.

2. Decreases in IL6 and hsCRP 1-year post
gastric surgery were associated with reduction
in cognitive restraint scores after adjusting for
age, diabetes and variation in BMI.

Caroleo,
et al. (21)

Case-
control

N=90;
Italy;
Age 36.7
±13.2;
Female 69%

AN, BED, obesity without BED,
and normal-weight healthy
controls, grazing, emotional
eating, craving for carbohydrates,
sweet eating, post-dinner
eating, night eating, binge eating,
hyperphagia, social eating,
skipping meals, reducing portions

IL-1a, IL-
1b, IL-2, IL-
4, IL-6, IL-
8,
IL-10, IFN-
g, TNF-a,
MCP-1

Beck Depression
Inventory scores, sex and
age

1. IL-1a was lower in AN patients or patients
with obesity with or without BED than in
healthy controls, while IL-1a was not
influenced by BMI or depression.

2. IL-10 was higher in AN than in healthy
controls. IL-10 was lower in obesity groups
compared to normal weight group.

3. IFN-g was higher in AN patients compared to
healthy controls, and BED and obesity
without BED individuals.

4. Night-eating was positively associated with
IL-8.

5. IL-10 was positively related to post-dinner
eating and negatively related to sweet eating.

Cazettes,
et al. (22)

Case-
control

N=63;
USA;
Age 58.7
±7.7 in
overweight
and obese
group;
Female 51%

Brain regions related to food
intake: lateral and medial
orbitofrontal cortex (OFC),
hippocampus volume, gray matter

Fibrinogen Age and hypertension 1. Fibrinogen was significantly associated with
smaller lateral OFC volume in the overweight
and obese group.

2. Among lean individuals, higher fibrinogen
levels were associated with lower apparent
diffusion coefficient (ADC) (less interstitial
fluid) in the left prefrontal, right parietal and
left occipital lobes.

3. Among individuals with excess weight,
elevations in fibrinogen concentration were
associated with increased ADC (greater
interstitial fluid) in both amygdala and the
right parietal lobe.

Germain,
et al. (23)

Case-
control

N=51;
France;
Age 21.6
±1.5 in AN-
R and 27
±2.1 in OB;
Female
100%

AN restrictive
type (AN-R), AN restrictive type
after recovery (AN-R rec),
anorexia nervosa
bulimic type (AN-BP),
constitutional thinness (CT),
bulimia nervosa (BN), healthy
obese
(OB), and control subjects

IL-7 Not specified 1. 24-hour mean levels of IL-7 were significantly
lower in AN subtypes when compared to
controls, BN, and CT.

2. IL-7 was lower in AN-BP than in AN-R and
AN-R rec.

3. IL-7 in BN did not differ from controls.
4. IL-7 in CT was also similar to controls.
5. IL-7 was significantly decreased in OB

compared to controls.

(Continued)
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TABLE 1 Continued

Article Study
design

Sample
size,

Nation,
Age, and
Gender

Eating behaviors Immune
markers/
cytokines

Variables adjusted Summary of main findings

Lofrano-
Prado,
et al. (24)

Case-
control

N=32;
Brazil;
Age 14-19;
Female: Not
specified

Binge eating scale (BES)
Bulimic Investigation test
Edinburgh (BITE)

TNF-a a-MSH and insulin 1. TNF-a had a positive correlation with BES
and BITE.

2. a-MSH, insulin and TNF-a provided the best
model to explain the variability in BES and
BITE.

Lucas,
et al. (25)

Case-
control

N=158;
France and
Estonia;
Age 47.2
±16.3 for
hyperphagia
obesity;
18.6±4.9
restrictive
AN; 30.6
±11.6 BED;
Female
100%

Hyperphagic obesity (OB), AN,
BN, BED, and healthy controls

a-MSH/IgG
immune
complex

Not specified 1. Both association and dissociation rates of a-
MSH-reactive IgG were decreased in OB
patients. Dissociation rate was increased in
BN and BED groups.

2. Plasma levels of a-MSH-reactive IgG were
low in OB patients but high in BN compared
to controls.

3. The MC4R receptor binding affinity,
internalization, and MC4R activation of a-
MSH/IgG immune complex was decreased in
OB patients.

4. BN had higher membrane location compared
to AN. Higher internalization rate of the
immune complex was found in AN group.

5. The anorexigenic effect of a-MSH/IgG
immune complex was reduced in OB at 120
minutes during refeeding.

6. Several alternative epitopes were present in
OB IgG, overlapping with the C-terminal and
with the pharmacophone. In contrast,
reduced binding of the central a-MSH part
was present in IgG from ED patients.

Raymond,
et al. (26)

Case-
control

N=93;
USA;
Age 16-50;
Female
100%

AN, OB, BN, normal weight
control

IL-1a, IL-6,
TNF-a,
IFN-g,
TGF-b

None due to no
correlations of cytokine
levels with BMI, age, time
of venipuncture day,
depression or anxiety.

1. ConA-stimulated IFN-g by cultured PBMC
for AN participants were significantly higher
than those of normal weight control group.

2. Stimulated PBMC from the obese participants
produced significantly higher levels of IL-6
than the BN or normal-weight control
groups.

3. IL-1a production by stimulated cells from the
obese group was significantly elevated in
comparison to the control group.

4. No group differences were detected in the
stimulated production of TGF-b or TNF-a.

5. There were no differences in the levels of any
of the five cytokines produced by
unstimulated cultured PBMC across the four
groups.

Sayin,
et al. (27)

Cross-
sectional

N=100;
Turkey;
Age 12-17;
Female 64%

TFEQ21 (emotional eating and
uncontrolled eating)

CRP Sex, age, BMI 1. CRP positively correlated with EE and UCE.
2. EE was significantly associated with CRP

adjusting for age, gender, or BMI, or UCE.

Shank,
et al. (28)

Cross-
sectional
study

N=194;
USA; Age 8-
18; Female
64%

Loss of control eating (LOC) in
the past month

hsCRP Treatment, sex, race, fat
mass, height, Tanner
stage, depressive
symptoms, eating psycho-
pathology

1. Presence of LOC eating was significantly
associated with higher hsCRP concentration.

2. An increase in the number of LOC eating
episodes in the past month was significantly
associated with higher hsCRP concentration.

Succurro,
et al. (29)

Cross-
sectional

N=115;
Italy;
Age 36.8
±12.7 BED
obese group

BED hsCRP,
WBC

Age, sex and BMI 1. Binge eating disorder obese had higher levels
of hsCRP and WBC counts (p<0.01) after
adjusting for BMI or age and sex compared to
non-BED obese group.

(Continued)
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Both studies found higher serum INF-g or INF-g production by

stimulated PBMC in subjects with AN compared to normal

weight controls.

IL-6 was assessed in three studies. Capuron et al. (20) found

that a decrease in IL-6 one-year post bariatric surgery was

associated with reduction in cognitive restraint eating

accounting for variations in BMI. Raymond et al. (26) found

that IL-6 production by stimulated PBMC from individuals with

obesity was higher than normal weight controls, but no

differences were found in IL-6 production by unstimulated

PBMC. Caroleo et al. (21), on the other hand, did not identify

significant differences in serum IL-6 levels among individuals

with eating disorders, obesity, or normal weight.

Tumor necrosis factor (TNF)-a was assessed in three studies

(21, 24, 26). Only one study with a relatively smaller sample size

(N=32) found positive associations between serum TNF-a levels

with binge eating scores and bulimic investigation test

Edinburgh scores in a group of adolescents (24). The other

two studies (N≥90) did not find significant associations between

serum TNF-a levels or production by stimulated PBMC among

individuals with eating disorders, obesity, or normal weight.

Other immune/inflammatory markers, including IL-1b, IL-
2, IL-4, IL-7, IL-8, IL-10, transforming growth factor beta (TGF-

b), monocyte chemoattractant protein 1 (MCP-1), fibrinogen,

fractalkine, a-melanocyte-stimulating hormone-reactive

immunoglobulin G (a-MSH/IgG) complex, and white blood

cell count (WBC), were only assessed in single studies. Twenty-

four-hour average plasma IL-7 levels were lower in individuals

with obesity compared to those with AN restrictive type,

constitutional thinness or normal weight controls (23). Serum

IL-8 was positively associated with night time eating (21). IL-10

was found to be lower in individuals with obesity but higher in
Frontiers in Immunology 06
AN compared to normal weight controls. IL-10 levels were also

associated with post-dinner eating and “not having sweet eating”

(21). Serum fractalkine levels were higher in adolescent girls with

obesity but lower in AN compared to healthy controls (30).

Lucas et al. (25) found that plasma levels of a-MSH/IgG

immune complex in individuals with obesity were lower than

healthy controls (25). The melanocortin-4-receptor (MC4R)

binding affinity, internalization and receptor activation of a-
MSH/IgG immune complex were also decreased in individuals

with obesity. On the contrary, the internalization rate of the

immune complex was higher in AN. Higher white blood cell

counts were found in obese individuals with BED compared to

those without BED (29). Cazettez et al. (22) assessed the

associations between fibrinogen and brain regions linked to

eating behavior regulation (22). The authors found that higher

plasma fibrinogen levels were associated with smaller lateral

orbitofrontal cortex (OFC) volume in the overweight and obese

group. Among individuals with excess weight, higher fibrinogen

levels were linked to greater interstitial fluid in the amygdala and

right parietal lobe. Other assessed inflammatory markers,

including IL-1b, IL-2, IL-4, TGF-b, and MCP-1, were not

significantly associated with obesity-related eating behaviors.
Discussion

To date, only a few studies have focused on the associations

between inflammatory/immune molecules and obesity-related

eating behaviors. Despite the limited number of studies, a variety

of inflammatory/immune markers and eating behaviors have

been examined. Yet, the findings have been inconsistent. The

inflammatory markers that potentially have a positive
TABLE 1 Continued

Article Study
design

Sample
size,

Nation,
Age, and
Gender

Eating behaviors Immune
markers/
cytokines

Variables adjusted Summary of main findings

41.8±12.8
non-BED
obese group;
Female 65%

Zhang,
et al. (30)

Cross-
sectional

N=96;
China;
Age 11-18;
Female
100%

AN, healthy control and OB
group

FKN BMI 1. Serum FKN levels in the AN group were
significantly lower than in the healthy control
and OB groups.

2. Serum FKN levels were significantly higher in
OB compared to healthy control.

3. Serum FKN per BMI levels was significantly
higher in AN group compared to levels in the
healthy control and OB groups.
TFEQ is three factor eating questionnaire. AN represents anorexia nervosa; BN represents bulimia nervosa; BED represents binge eating disorder; OB represents individuals with obesity;
CT represents constitutional thinness. IL is interleukin; hsCRP is high sensitive C-reactive protein; IFN-g is interferon-gamma; TNF-a is tumor necrosis factor-alpha; MCP-1 is monocyte
chemoattractant protein-1; TGF- b is transforming growth factor beta; a-MSH/IgG is a-melanocyte-stimulating hormone reactive IgG; MC4R is melanocortin-4-receptor; WBC is white
blood cell; and FKN is fractalkine.
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TABLE 2 Results based on individual immune/inflammation markers.

Article Eating hsCRP CRP IL-1a IL-6 IL-7 IL-8 IL-10 INF-g TNF- Fibrinogen a-MSH/IgG immune
complex (IC)

Fractalkine WBC

Higher
WBC
after
adjusting
for BMI

(Continued)
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3
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0
2
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2
114
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n
tie
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rg

0
7

behaviors a

Capuron
et al. (20)

Cognitive
restraint

“+” after
adjusting
for age,
diabetes
and BMI.

“+” after
adjusting
for age,
diabetes
and
variation
in BMI.

Disinhibition “NS” “NS”

Hunger At baseline,
“-”; “NS”
after
adjusting
for BMI

At
baseline,
“-”; “NS”
after
adjusting
for BMI

Shank,
et al. (28)

Loss of
control
(LOC) eating

“+” with
presence of
LOC eating
and the
number of
LOC
episodes.

Succurro
et al (29)

BED-OB vs
non-BED-OB

“+” after
adjusting
for BMI

Sayin,
et al. (27)

Emotional
eating

“+”
adjusting
for age,
gender,
or BMI,
or UCE.

Uncontrolled
eating (UCE)

“+”

Caroleo
et al. (21)

AN vs NWC Lower than
HCs, not
influenced
by BMI or
depression.

“NS” “NS” Higher
than
NWC

Higher
than the
other
groups.

“NS”
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TABLE 2 Continued

Article Eating hsCRP CRP IL-1a IL-6 IL-7 IL-8 IL-10 INF-g TNF- Fibrinogen a-MSH/IgG immune
complex (IC)

Fractalkine WBC

(Continued)

M
e
n
g
an

d
K
au

tz
10

.3
3
8
9
/
fi
m
m
u
.2
0
2
2
.9
0
2
114

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
8

behaviors a

BED vs
NWC

Lower than
HCs, not
influenced
by BMI or
depression.

“NS” “NS” “NS” “NS”

OB without
BED vs
NWC

Lower than
HCs, not
influenced
by BMI or
depression.

“NS” “NS” Lower
than
NWC.

“NS”

Other eating
behaviors,
such as
emotional
eating,
craving,
grazing, etc.

“NS” “NS” “+”
with
night-
eating

“+” with
post-
dinner
eating;
“-” with
sweet
eating.

“+” with
long
fasting

“NS”

Raymond,
et al. (26)

AN vs NWC “NS” “NS” Produc-
tion by
stimulated
PBMC
were
higher
than NWC

“NS”

OB vs NWC Production
by
stimulated
PBMC
elevated
than NWC

Stimulated
PBMC
produced
higher
levels than
NWC.

“NS” “NS”

Germain
et al. (23)

AN subtypes
vs NWC

24-hour
mean
levels
lower than
controls

BN vs NWC “NS”

CT vs NWC “NS”

OB vs NWC Decreased
than
controls
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TABLE 2 Continued

Article Eating hsCRP CRP IL-1a IL-6 IL-7 IL-8 IL-10 INF-g TNF- Fibrinogen a-MSH/IgG immune
complex (IC)

Fractalkine WBC

Associated with smaller lateral
OFC volume in the overweight
and OB group. Among
individuals with excess weight, +
with increased ADC in both
amygdala and the right parietal
lobe.

Higher internalization rate of
IC

Plasma level of IC was high
and dissociation rate was
increased.

Increased dissociation rates of
IC

Decrease in the association
and dissociation rates of IC;
a-MSH-reactive IgG were
lower; The receptor binding
affinity, internalization, and
activation by IC was
decreased;

FKN per BMI
levels was
higher in than
HC and OB
groups.

levels were
higher than
HC

lled eating. AN represents anorexia nervosa; BN represents bulimia nervosa; BED represents binge eating
BES is Binge eating scale; BITE is Bulimic Investigation test Edinburgh. IL is interleukin; hsCRP is high
reactive IgG; WBC is white blood cell. IL-1b, IL-2, IL-4, transforming growth factor beta (TGF-b), and
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Prado
et al. (24)

BES “+”

BITE “+”

Cazettes
et al. (22)

Brain regions
related to
food intake

Lucas
et al. (25)

AN vs HC

BN vs HC

BED vs HC

Hyperphagic
OB vs HC

Zhang et
al. (30)

AN vs HC

OB vs HC

“+” indicates Positive association; “-” indicates negative association; “NS” indicates non-significant. LOC is loss of control eating. UCE is uncontro
disorder; OB represents individuals with obesity; CT represents constitutional thinness; NWC and HC represents normal/healthy weight controls
sensitive C-reactive protein; IFN-g is interferon-gamma; TNF-a is tumor necrosis factor-alpha; a-MSH/IgG is a-melanocyte-stimulating hormon
monocyte chemoattractant protein-1 (MCP-1) was assessed, but no significant results were identified.
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relationship with obesity-related eating behaviors include

hsCRP, fractalkine, and fibrinogen. Other immune molecules,

including INF-g, IL-7, IL-10 and a-MSH/IgG, may have negative

associations with obesity-related eating behaviors. However,

these findings were mainly identified by single studies and

replications are warranted.

Additionally, the majority of the identified studies were

either case-control or cross-sectional studies, which were not

capable of clarifying the causality between inflammatory

markers and obesity-related eating behaviors. However,

current evidence indicates a potential bi-directional

relationship. Dysregulation of the immunological molecules

may contribute to the development or progression of obesity-

related eating behaviors. On the other hand, these eating

behaviors may stimulate the production of pro-inflammatory

cytokines through imbalanced nutrient intake and/or excess

weight gain.

Although the blood-brain barrier prevents large molecules

and cells from being freely transported to the central nervous

system, studies have indicated that immune cells and cytokines

with the facilitation of saturable transporters can pass through

the barrier (31, 32). Also, peripheral cytokines may stimulate

endothelial cells of the barrier to produce substances, such as

prostaglandins, to induce inflammation and activate selective

hypothalamic neurons (33, 34). Furthermore, microglia in the

central nervous system share immunological functions as

mononuclear cells. Both microglia and astrocytes are able to

secrete inflammatory cytokines (35, 36). Once immune cells and

molecules reach the central nervous system, several mechanisms

potentially underlie their role in the regulation of obesity-related

eating behaviors (8, 37), including modulation of orexigenic and

anorexigenic signals in the hypothalamus, induction of

hypothalamic inflammation, and regulation of food reward

circuitries (Figure 2). In addition, vagus nerves may partially

relay the effect of peripheral immune molecules on the

regulation of obesity-related eating behaviors (38).

Evidence suggests a role of immune molecules in the

regulation of orexigenic and anorexigenic signals and

subsequent modulation of appetite and satiety in the

hypothalamus. Inflammatory cytokines, such as IL-1b, can
stimulate leptin production (15, 39). Leptin is a key adipokine

that interacts with neurons in the hypothalamus and food

reward circuits to modulate food intake (40). IL-6 can enhance

central leptin action, increase hypothalamic signal transducer,

and reduce food intake (11). Cytokines also interact with other

hormones and neuropeptides involved in eating regulation. IL-

1b and interferon may reduce circulating appetite-stimulating

hormones, such as ghrelin, and increase appetite-suppressing

hormones, such as cholecystokinin (CCK) (41–43). Cytokines,

such as IL-1b and IL-7, are able to promote the expression of

anorexigenic peptides, such as proopiomelanocortin, and inhibit

the expression of orexigenic peptides, such as agouti-related

peptide and neuropeptide Y (4, 8). Circulating immunoglobulins
Frontiers in Immunology 10
are also found to bind to a-melanocyte-stimulating hormone

(a-MSH) to form immune complexes (a-MSH/IgG) and

modulate the activation of MC4R to decrease appetite (25).

Furthermore, other than the role in regulating orexigenic and

anorexigenic signals, inflammatory cytokines are able to directly

activate neurons in key hypothalamic appetite regulatory

regions. IL-1 receptors have been found in neurons in the

hypothalamic arcuate nucleus (ARC), ventromedial nucleus,

paraventricular nucleus, and the lateral hypothalamic area (8).

IL-7 has been shown to directly activate and improve survival of

the ARC neurons (4).

Another mechanism particularly related to the perpetuation

of obesity and obesity-relate eating behaviors is hypothalamic

inflammation (44). In animal models, high fat feeding activates

cellular inflammation in diverse tissues including the

hypothalamus (5, 45). Fractalkine is involved in the

recruitment of monocytic cells to the hypothalamus and

promotes hypothalamic inflammation induced by high fat diet

(5). Hypothalamic inflammation contributes to leptin and

insulin resistance (46). Studies have shown that central

inhibition of the cellular inflammatory pathway in the

hypothalamus can promote leptin and insulin sensitivity,

reduce high fat food intake, and consequently protect against

high fat food induced obesity (47–49). IL-10, a potent anti-

inflammatory cytokine, may decrease hypothalamic

inflammation. Controversially, IL-10 deficiency also reduces

food intake (50).

In addition to appetite and satiety regulated by hypothalamic

nuclei, hedonic eating is modulated by food reward circuitries

located in the nucleus accumbens, ventral tegmental area,

amygdala, and OFC (40). Decarie-spain et al. (51) found that

high saturated fat intake triggers inflammation in the nucleus

accumbens in mice and a blockage of cellular inflammation in

this brain region suppresses compulsive sucrose seeking

behavior (51). The lateral OFC and amygdala are potentially

involved in taste and food preference (22, 52), and are important

brain regions that participate in food reward (40). Cazette et al.

(22) found that elevated levels of fibrinogen, a marker of

inflammation, were associated with smaller lateral OFC, and

increased interstitial fluid in the amygdala and the right parietal

cortex in individuals with excess weight. Therefore,

inflammation in food reward circuitries may also play a role in

the development or perpetuation of obesity-related

eating behaviors.

Other than direct interactions between immune molecules

and the central nervous system, the vagus nerve is also involved

in connecting peripheral inflammatory cytokines with eating

regulation (8). A high fat diet can lead to inflammation in the

vagus nerve ganglia, which can attenuate the signals of appetite

suppressing hormones, such as leptin and CCK, relayed by the

vagus nerve to the central nervous system (38).

In addition to eating regulation by immune molecules,

obesity-related eating behaviors potentially affect the serum
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levels of inflammatory/immune markers through accumulated

adipose tissue and food intake. Eating behaviors, such as

disinhibited eating, emotional eating, high intake of dietary fat,

contribute to excessive calorie intake and subsequently the

development of obesity (3). The hyperplasia and hypertrophy

of adipose tissue in obesity produces mediators, including

adipokines and fatty acids, which trigger the accumulation of

macrophages and lymphocytes (53). Cytokines derived from the

accumulated immune cells lead to a state of chronic, low-grade

systemic inflammation associated with obesity. Therefore,

obesity-related eating behaviors may contribute to the systemic

inflammation, such as elevated hsCRP, through their impact on

adipose tissue (54, 55). Additionally, eating behaviors directly

affect dietary intake (56, 57). Diet, such as high intake of dietary

fat and low intake of vegetables, and certain dietary patterns, has

been linked to increased serum levels of inflammatory markers,

such CRP, TNF-a, and IL-6 (58–60). Hence, obesity-related
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eating behaviors may alter inflammatory status through

dietary intake.

Thus far, the majority of evidence on the relationship

between immune molecules and obesity-related eating

behaviors has been generated by animal studies. More research

in humans is desirable to delineate the role of immune/

inflammatory molecules in modulating obesity-related eating

behaviors and subsequently become potential targets for weight

loss interventions. Moving forward, more rigorous research

methodologies, such as randomized controlled trials and

longitudinal studies, are necessary to delineate the causal

relationship between immune/inflammation markers and

obesity-related eating behaviors. Additional adjustment of

potential confounders will be valuable to further define this

relationship (61, 62). For example, systemic inflammation and

obesity-related eating behaviors usually concur with obesity.

Including or adjusting BMI or fat mass in the analysis is a
FIGURE 2

Mechanisms linked immune/inflammatory markers to obesity-related eating behaviors. Immune/inflammatory markers are potentially involved in
several mechanisms of regulation of obesity-related eating behaviors, including modulation of orexigenic and anorexigenic signals in the
hypothalamus, induction of hypothalamic inflammation, regulation of food reward circuitries, and suppression anorexigenic signals by induction
of inflammation in the vagus nerve ganglia. GI, gastrointestinal tract; Hyp, hypothalamus; PFC, prefrontal cortex; OFC, orbitofrontal cortex; NAc,
nucleus accumbens; Amy, amygdala; VTA, ventral tegmental area.
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critical step to elucidate the relationship. Similarly, dietary intake

is another potential key mediator. However, none of the

included studies considered dietary intake. Future studies with

sophisticated research design, comprehensive theoretical

models, and robust adjustment of relevant confounders may

clarify the relationship between immune/inflammation markers

and obesity-related eating behaviors in humans.
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