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Cancer neoantigen prioritization through sensitive
and reliable proteogenomics analysis

Bo Wen® "2, Kai Li® "2, Yun Zhang® "2 & Bing Zhang® 2%

Genomics-based neoantigen discovery can be enhanced by proteomic evidence, but there
remains a lack of consensus on the performance of different quality control methods for
variant peptide identification in proteogenomics. We propose to use the difference between
accurately predicted and observed retention times for each peptide as a metric to evaluate
different quality control methods. To this end, we develop AutoRT, a deep learning algorithm
with high accuracy in retention time prediction. Analysis of three cancer data sets with a total
of 287 tumor samples using different quality control strategies results in substantially dif-
ferent numbers of identified variant peptides and putative neoantigens. Our systematic
evaluation, using the proposed retention time metric, provides insights and practical guidance
on the selection of quality control strategies. We implement the recommended strategy in a
computational workflow named NeoFlow to support proteogenomics-based neoantigen
prioritization, enabling more sensitive discovery of putative neoantigens.
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ARTICLE

roteogenomics has become a routine approach for the

detection of protein sequences, resulting from genomic

aberrations such as single nucleotide variants (SNVs),
insertions and deletions (INDELs), RNA editing, novel junctions,
gene fusions, and novel transcription regions! =3, This is achieved
by simultaneously performing whole-exome sequencing (WES),
RNA sequencing (RNA-Seq), and tandem mass spectrometry
(MS/MS)-based shotgun proteomics analysis on matched sam-
ples, producing customized, sample-specific protein databases
from DNA, and/or RNA sequencing data, and then searching
MS/MS data against the customized protein databases. In contrast
to proteomics data analysis that relies on reference protein
databases alone, this approach allows the identification of pep-
tides not included in reference protein databases, providing new
opportunities to improve protein-coding genome annotation®>
and to identify disease-specific protein sequences®~13.

Human tumors typically harbor multiple somatic mutations,
and their translation may give rise to neoantigens, which are ideal
targets for T-cell-based cancer immunotherapy because they are
foreign to the immune system!“4. To identify neoantigens for
personalized vaccine development, WES of matched tumor- and
normal-cell DNA from individual patients has been used to
identify somatic mutations, followed by prioritization of mutated
alleles by RNA-Seq profiling of the tumor and subsequent in
silico prediction of the binding affinity between putative neoan-
tigens and the major histocompatibility complex (MHC)!>:16,
Because MHC binds peptides rather than RNA molecules, vali-
dation of mutated alleles through proteomic profiling will likely
provide more functionally and clinically relevant neoantigens for
prioritization.

Successful application of the proteogenomic approach to
neoantigen prioritization relies on sensitive and reliable identifi-
cation of variant peptides in proteomics data. In proteomics data
analysis using reference protein databases, quality control is cri-
tical and achieved by estimating false discovery rate (FDR) using
the target-decoy strategy!”. Directly applying this strategy to
proteogenomic studies without discriminating reference and
variant peptides would underestimate the true FDR for variant
peptides because the likelihood of experimentally observing a
variant peptide is lower than that of a reference peptide. Thus,
this global FDR method is prone to false-positive variant peptide
identifications. To address this issue, two alternative FDR esti-
mation methods have been proposed. The separate FDR method
calculates FDRs for known and variant peptides separately!$:19,
The two-stage FDR method involves two stages: in the first stage,
the MS/MS data are searched against a reference protein database,
and the confidently identified spectra are removed; in the second
stage, the remaining spectra are searched against the variant
protein database, and the FDR for variant peptides is calculated
based on the second stage search results2%-2!. The separate FDR
and two-stage FDR methods calculate FDRs based on a small
number of identifiable variant peptides, which may generate
highly variable estimates. The two-stage FDR method is further
vulnerable to false negatives because an MS/MS spectrum gen-
erated from a variant peptide may be incorrectly matched to a
reference peptide in the first stage and excluded from the second
stage analysis. Moreover, a common limitation for all three
methods is that false positives may occur when a spectrum
matched to a variant peptide is actually derived from a reference
peptide containing a chemical or post-translational modification
that was not considered in database searching.

To strengthen quality control, multiple tools have been
developed to validate the variant peptides passing the FDR
threshold, such as SAVControl?2, SpectrumAI#, and PepQuery?3.
SAVControl provides site-level quality control of single amino-
acid variant (SAV) peptide identifications. It relocates the mass

shift responsible for a SAV to search for alternative interpreta-
tions. SpectrumAl is specifically designed to curate SAV peptide
identifications using the ions flanking both sides of the sub-
stituted amino acid. PepQuery is a peptide-centric search engine
for novel peptide validation, including SAV peptides and other
types of novel peptides such as those derived from INDELs. For
each peptide-spectrum match (PSM), a permutation p value is
calculated based on randomly shuffled peptide sequences to
evaluate the statistical significance of the PSM score. The peptide-
centric analysis in PepQuery also allows comprehensive con-
sideration of sequence modifications during the analysis. In
general, all three tools can help reduce false positives, but they
cannot rescue false negatives.

Applying different quality control strategies to the same pro-
teomics data may result in different numbers of identified variant
peptides, obscuring neoantigen prioritization and other down-
stream proteogenomic applications. Recent studies have com-
pared different FDR estimation methods for novel peptide
identification21-2425, i et al.2 and Ivanov et al.2> utilized spike-
in data sets in which spiked-in proteins were considered as novel
proteins. Sequences of spiked-in proteins are usually very dif-
ferent from those in the reference database. In contrast, most
variant proteins identified in proteogenomic studies only involve
very minor sequence changes compared with the reference
sequences, such as SAVs. These minor sequence changes cannot
be well-represented by spiked-in proteins. Moreover, existing
studies have only evaluated different FDR estimation methods in
label-free experiments, but many cancer proteogenomic studies
involve isobaric labeling”1%12. The conclusions from the label-
free studies may not be generalizable to isobaric labeling-based
experiments because of sample multiplexing. In addition, variant
peptide validation tools introduced more recently were not
included in these evaluation studies. Thus, despite the wide
application of these approaches, there remains a lack of evidence-
based consensus on the best bioinformatics strategy for control-
ling the quality of variant peptide identifications. A key challenge
is the lack of an appropriate metric for systematic and unbiased
performance evaluation.

Peptide retention time (RT) in a liquid chromatography tan-
dem mass spectrometry (LC-MS/MS) experiment, i.e., the time
points when peptides elute from the LC column as recorded by
the instrument, is an intrinsic feature of a peptide. Recent studies
have demonstrated the potential of predicting peptide RT on the
basis of peptide sequence?6-31, If the RT can be predicted with
high accuracy for all peptides, the predicted RT of the peptide in
each PSM can be compared with the observed RT associated with
the spectrum to determine the quality of the PSMs. Although
several studies have shown the value of integrating RT informa-
tion into the proteomics data analysis workflow?®32-35, RT is
typically not used in peptide identification and is independent of
the FDR estimation. Therefore, the difference between predicted
and observed RTs can serve as an effective and unbiased quan-
titative metric for evaluating the quality of PSMs reported by
different variant peptide identification methods.

In this study, we leverage the power of automated deep
learning and transfer learning to develop AutoRT, a peptide
sequence-based RT prediction tool that can predict RT with high
accuracy. We use the predicted RT to systematically compare
different quality control strategies for variant peptide identifica-
tion in three large-scale experimental data sets generated on label-
free, tandem mass tag (TMT), and isobaric tags for relative and
absolute quantification (iTRAQ) platforms. Our systematic eva-
luation based on the analysis of 57 million spectra generated on
three popular MS platforms using three search engines provides
insights and practical information to guide method selection for
future proteogenomic studies. We further implement the
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Fig. 1 An overview of the study design. The left panel shows the overall study design including data sets, customized database construction, search
engines used, different quality control strategies, and the variant peptide identification evaluation method. The right panel shows the development and

application of the peptide retention time (RT) prediction models.

recommended bioinformatics strategy into NeoFlow, a stream-
lined computational workflow that integrates WES and MS/MS
proteomics data for neoantigen prioritization to facilitate cancer
immunotherapy.

Results

An overview of the study. Figure 1 provides a general overview of
our study design. In order to systematically evaluate quality
control strategies in proteogenomics, we used three large-scale
data sets from the Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC) colon cancer!® and breast cancer studies’,
including one label-free data set, one TMT data set, and one
iTRAQ data set. The label-free data set includes 90 colon tumor
samples and a total of 16,804,000 MS/MS spectra. The TMT data
set includes 21 TMT 10-plex experiments on 94 colon tumor
samples from the same cohort as the label-free data set and a total
of 9,097,679 MS/MS spectra. The iTRAQ data set includes 36
iTRAQ 4-plex experiments on 103 breast tumor samples and a
total of 31,231,980 MS/MS spectra. Matched WES data of the
tumor samples were used for customized database construction.
For the label-free study, we built one customized database for
each tumor sample. For the TMT and iTRAQ studies, we built
one customized database for each TMT or iTRAQ experiment
based on WES data of all individual tumor samples in the TMT

10-plex or iTRAQ 4-plex. For the purpose of method evaluation,
we included both germline and somatic variants in the customized
databases. We used three popular search engines, MS-GF+, X!
Tandem, and Comet, for database searching, and FDR estimation
was performed at the peptide level using three FDR estimation
methods: global FDR, separate FDR, and two-stage FDR, all with a
threshold of 1%. PepQuery was included as an optional step to
validate the variant peptides that passed the FDR threshold.
Variant peptides reported by different quality control strategies
were evaluated based on the difference between observed RT and
predicted RT, which was calculated using the AutoRT deep
learning models as described below.

Retention time prediction. In order to establish a systematic and
unbiased metric for evaluating the quality of the variant peptide
identifications, we developed a peptide sequence-based RT pre-
diction tool named AutoRT using automatic deep learning and
transfer learning techniques. The workflow of AutoRT is shown
in the right panel of Fig. 1 and described in detail in the Methods
section. In brief, a large public data set containing 174,182 pep-
tides was employed for automatic deep neural network archi-
tecture search using a genetic algorithm. Based on validation
mean squared error (MSE), the top 10 best neural architectures
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Fig. 2 Peptide retention time prediction performance evaluation. a Benchmarking AutoRT against three deep learning-based retention time (RT)
prediction tools (Prosit, GuanMCP2019, and DeepMass) and one traditional machine learning-based tool GPTime based on median absolute errors
(MAEs) of the predicted peptide RTs in three data sets. b-d MAE distribution for the CPTAC label-free b, TMT ¢, and iTRAQ d data sets, respectively. Each
data point in the scatter plots represents a single LC-MS/MS run, and the numbers are the median MAEs (minute) across all runs in a data set. The
boxplots on the top show the size distribution of training data, whereas the boxplots on the right show the MAE distribution. Dashed lines are fitted lines
using LOESS model. Source data are provided as a Source Data file. For boxplots, centerline indicates the median, box limits indicate upper and lower
quartiles, whiskers indicate the 1.5 interquartile range and points indicate outliers.

were selected, and from which 10 models were trained as the basis
for transfer learning.

To evaluate the performance of AutoRT, we compared
AutoRT with four recently published tools, including three
deep learning-based RT prediction tools (Prosit?’, Deep-
Mass3®, and GuanMCP201937) and one traditional machine
learning-based tool (GPTime3?), on three large public data sets
(see Methods). For all three data sets, AutoRT outperformed all
other three deep learning tools in terms of median absolute
error (MAE) in the independent test data, and all deep learning
tools outperformed GPTime to a large extent (Fig. 2a and
Supplementary Fig. 1). We also compared the performance of
the ensemble model of AutoRT with that of 10 individual
models. On average, the MAE of ensemble model decreased by
25, 18, and 18% compared with individual models on the three
data sets, respectively (Supplementary Fig. 2).

Next, we evaluated the performance of AutoRT on the three
CPTAC data sets and compared the performance of AutoRT with
GPTime on these data sets. The label-free data set included 540
LC/MS-MS runs. AutoRT outperformed GPTime across all 540
runs with a wide range of training data sizes (Fig. 2b). The
median MAE in the independent test data was 0.57 min for
AutoRT, which was 76% lower than the median MAE of 2.42 min
for GPTime. Both AutoRT and GPTime benefited from increased
training data size, but the performance of AutoRT was more
stable across different data sizes.

The TMT and iTRAQ data sets included 252 and 900 LC-MS/
MS runs, respectively, and the performance evaluation results

were similar to those observed in the label-free data set (Fig. 2¢, d).
Specifically, the median MAE for AutoRT in the TMT data set was
0.68 min, which was 66% lower than that for GPTime (2.02 min).
The median MAE for AutoRT in the TMT data set was 0.63 min,
which was 71% lower than that for GPTime (2.18 min). AutoRT
outperformed GPTime across the entire range of data sizes in both
data sets. In the iTRAQ data set, GPTime performed better for the
runs with smaller data sizes compared to other runs. Peptides in
these runs eluted very early from the LC column and may reflect
unbound material that contain unique sequence features for easy
prediction.

The training sample size is relatively small in these CPTAC runs,
thus, overfitting is a major concern because it may lead to poor
generalization capability and significant degradation in model
performance in independent testing data. To evaluate the level of
overfitting, we selected three runs from each of the three data sets
and compared the prediction errors on the training and independent
testing data. The prediction error distributions were comparable
between the training and testing data, and only a slight increase of
the median was observed in the testing data (Supplementary Fig. 3).
Therefore, overfitting is not a major issue here.

Together, our results demonstrate the clear superiority of deep
learning over traditional machine learning for RT prediction, and
AutoRT further outperformed previously published deep learning
tools. The highly accurate RT predictions made by AutoRT in the
label-free, TMT, and iTRAQ experiments enabled the use of
predicted RT in the evaluation of the quality of variant peptide
identifications.
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Fig. 3 Sensitivity of variant peptide identification. a VVariant peptide identification for each label-free sample. b Median numbers of identified variant
peptides in label-free samples. ¢ Variant peptide identification for each TMT sample. d Median numbers of identified variant peptides in TMT samples.
e Variant peptide identification for each iTRAQ sample. f Median numbers of identified variant peptides in iTRAQ samples. The percentage numbers above
the bars in the bar plots are the ratios compared with the most sensitive methods in each plot. The numbers on the bars are the numbers of variant
peptides. Source data are provided as a Source Data file. Solid lines indicate the identified variant peptides without filtering using PepQuery and dashed

lines indicate the identified variant peptides passed PepQuery validation.

Sensitivity of variant peptide identification. To investigate the
impact of different quality control strategies on the sensitivity of
variant peptide identification, we analyzed the label-free data of
the 90 tumor samples, the TMT data of the 21 TMT 10-plex
experiments, and the iTRAQ data of the 36 iTRAQ 4-plex
experiments. All identified variant peptides are listed in Supple-
mentary Data 1-3.

The numbers of variant peptides identified for individual label-
free samples using different search engines and quality control
strategies are shown in Fig. 3a. Results from all three search engines
showed similar trends across samples. On average, global FDR
identified more variant peptides than the other two FDR estimation
methods for all three search engines, both with and without
PepQuery validation, and separate FDR identified more variant
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Fig. 4 Variant peptide identification quality evaluation. Absolute retention time (RT) error distributions for variant peptide identifications in the label-free
data set a, the TMT data set b and the iTRAQ data set €. Numbers in the first rows of the boxplots are the median absolute RT error values. Numbers in the
second rows are the number of identified variant peptides summed across all samples in each group. ns: p>0.05; *: p < 0.05; **: p <0.01; ***: p < 0.007;

Kok Kk

:p <0.0001 (Wilcoxon rank sum test). Source data are provided as a Source Data file. For boxplots, centerline indicates the median, box limits indicate

upper and lower quartiles, whiskers indicate the 1.5 interquartile range and points indicate outliers. The Y axis was limited to up to 15.

peptides than two-stage FDR (Fig. 3b). These results are consistent
with our understanding of the different levels of stringency of the
three FDR estimation methods. Across the three search engines, an
average of 8-14% variant peptides identified by global FDR failed
PepQuery validation, and the failure rates were 5-12% for separate
FDR and 3-8% for two-stage FDR. Using the numbers of variant
peptides reported by global FDR without PepQuery validation, the
strategy with the highest sensitivity, as 100%, the other quality
control strategies reported 56-94% variant peptide identifications.
We repeated the analyses on the 21 TMT and 36 iTRAQ
experiments, respectively (Fig. 3c—f). Similar to our observation in
the label-free data set, global FDR identified more variant
peptides than the other two FDR estimation methods for all
three search engines, both with and without PepQuery validation,
and separate FDR identified more variant peptides than two-stage
FDR. Although the label-free and TMT experiments were
performed on the same cohort of colon tumor specimens, we
identified three- to fourfold more variant peptides in individual
TMT experiments compared to individual label-free samples
across all settings. This was expected because each TMT
experiment included multiplexed samples, increasing the diversity
of variants. For the TMT data, an average of 7-11% variant
peptides identified by global FDR failed PepQuery validation
across the three search engines, and the failure rates were 4-7%
for separate FDR and 2-4% for two-stage FDR (Fig. 3d). Using
the numbers of variant peptides reported by global FDR without
PepQuery validation as 100%, the other methods reported
42-93% variant peptide identifications. For the iTRAQ data, an
average of 6-8% variant peptides identified by global FDR failed
PepQuery validation across the three search engines, and the
failure rates were 3-5% for separate FDR and 1-2% for two-stage
FDR (Fig. 3f). Using the numbers of variant peptides reported by

6

global FDR without PepQuery validation as 100%, other methods
reported 59-94% variant peptide identifications. Together, these
data showed that applying different quality control strategies to
the same data set may lead to substantially different numbers of
identified variant peptides.

Retention time-based quality evaluation. To evaluate the quality
of the variant peptide identifications, we calculated the difference
between predicted RT and observed RT for all peptides identified
in each label-free sample or each multiplexed sample. Because
PepQuery invalidated a subset of identified variant peptides for all
FDR estimation methods and search engines considered, we first
asked whether peptides that passed PepQuery validation had
better quality compared with those that failed. For all three data
sets, variant peptides failing PepQuery validation showed sig-
nificantly higher absolute RT error compared with the ones
passing PepQuery validation in all comparisons (p <0.01, Wil-
coxon rank sum test, Fig. 4). For variant peptides failing Pep-
Query validation, the ones identified by global FDR had clearly
higher median absolute RT errors compared with those identified
by separate FDR or two-stage FDR. In contrast, variant peptides
passing PepQuery validation showed similar median absolute RT
errors independent of the FDR estimation methods, and the
RT errors were comparable to those for reference peptides
(Fig. 2b-d). These data showed that PepQuery was highly effec-
tive in removing low quality variant peptide identifications, and
that variant peptides passing PepQuery validation were of high
quality for all FDR estimation methods.

Among all variant peptides passing PepQuery validation,
almost all reported by the separate FDR and two-stage FDR
methods were also reported by global FDR (Fig. 5a, d, g). This
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Fig. 5 Comparison of variant peptide identifications with different levels of support. a-b Venn diagrams of variant peptides identified by different
methods that passed a or failed b PepQuery validation in the label-free data set. ¢ Absolute retention time (RT) error distributions for variant peptide
identifications with different levels of support in the label-free data set. d-e Venn diagrams of variant peptides identified by different methods that
passed d or failed e PepQuery validation in the TMT data set. f Absolute RT error distributions for variant peptide identifications with different levels of
support in the TMT data set. g-h Venn diagrams of variant peptides identified by different methods that passed g or failed h PepQuery validation in the
iTRAQ data set. i Absolute RT error distributions for variant peptide identifications with different levels of support in the iTRAQ data set. F represents all
variant peptides failing PepQuery validation, P1 represents PepQeury-validated variant peptides uniquely reported by global FDR, and P2 represents
PepQuery-validated variant peptides reported by global FDR and at least one of the other two methods. Numbers in the first rows of the boxplots are the
median absolute RT error values. Numbers in the second rows are the number of variant peptides in each group. ns: p>0.05; *: p<0.05; **: p<0.01;
***: p<0.001; ****: p < 0.0001 (one-sided Wilcoxon rank sum test). Source data are provided as a Source Data file. For boxplots, centerline indicates
the median, box limits indicate upper and lower quartiles, whiskers indicate the 1.5 interquartile range and points indicate outliers. For boxplots, the
Y axis was limited to up to 18.

was also true for variant peptides that failed PepQuery validation sided Wilcoxon rank sum test). In contrast, there was no

(Fig. 5b, e, h). We further compared the quality of all variant
peptides failing PepQuery validation (F), PepQeury-validated
variant peptides uniquely reported by global FDR (P1), and
PepQuery-validated variant peptides reported by global FDR
and at least one of the other two methods (P2). As shown in
Fig. 5¢, f, i, P1 peptides showed significantly lower absolute RT
error than F peptides in all comparisons (p <0.0001, one-

statistically significant difference between P1 peptides and P2
peptides for eight out of the nine comparisons. These data suggest
that variant peptides uniquely reported by global FDR were of
high quality as long as they passed PepQuery validation. Thus,
global FDR control followed by PepQuery validation offered the
highest sensitivity without compromising the quality of variant
peptide identifications.
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Fig. 6 Comparison of somatic mutations supported by variant peptide identifications. \Venn diagrams of somatic mutations supported by variant
peptides identified by different methods in the label-free data a, the TMT data b, and the iTRAQ data ¢. Source data are provided as a Source Data file.

In addition to PepQuery, other tools such as SAVControl and
SpectrumAI have also been developed for variant peptide
validation. We tried to apply these tools to validate all variant
peptides passing global FDR control in the iTRAQ data set, in
which the largest number of variant peptides were identified.
Because the three search engines we used in this study could not
generate SAVControl-compatible data formats, we were not able
to apply SVAControl to our search results. SpectrumAl validated
28,852, 30,689, and 28,863 variant peptides (peptide sample pairs)
for the search results from Comet, MS-GF+, and X!Tandem,
respectively. These numbers were 6%, 4%, and 7% lower than
those validated by PepQuery, with 96, 94, and 95% overlap. As
shown in Supplementary Fig. 4, variant peptides uniquely
validated by PepQuery (P1) showed similar quality compared
with the ones validated by both PepQuery and SpectrumAI (P2);
however, those uniquely validated by SpectrumAI (P3) showed
obviously higher RT errors. These results suggest that Spectru-
mAI will unlikely provide significant added value beyond
PepQuery for variant peptide validation.

Neoantigen prioritization. Our method evaluation included both
germline and somatic variants, but only somatic mutations pro-
duce neoantigens. We compared the numbers of somatic muta-
tions supported by PepQuery-validated peptides identified by
different search engines with different FDR estimation methods
(Fig. 6, Supplementary Data 4-6). For the label-free data set

8 | (2020)11:1759 | https://doi.org,/10.10

(Fig. 6a), global FDR reported peptide evidence for 95, 109, and
102 somatic mutations using Comet, MS-GF+, and X!Tandem,
respectively, and these numbers were 70, 79, and 75 for the TMT
data set (Fig. 6b), and 85, 92, and 91 for the iTRAQ data set
(Fig. 6¢). On average, separate FDR and two-stage FDR only
provided evidence for 88% and 63% of somatic mutations that
were supported by global FDR.

For neoantigen prediction, we further predicted MHC-I bind-
ing affinity for all peptides of 8-11 amino acids in length that
contained one of the somatic mutations supported by at least one
PepQuery-validated peptide. Only mutant peptides with high
predicted binding affinity (< 150 nm) to MHC-I were considered
putative neoantigens (Supplementary Data 7-9). As shown in
Fig. 7a—c, different search engines and FDR estimation methods
reported very different numbers of putative neoantigen-encoding
mutations from the same data set. Combining global FDR results
from the three search engines resulted in the identification of
putative neoantigens for 27 (30%), 25 (27%), and 25 (24%) tumor
samples for the label-free, TMT, and iTRAQ data sets,
respectively. These numbers represent an average increase of
11% from those reported by MS-GF with global FDR control, the
best single search engine setting tested, and an average increase of
151% from those reported by X!Tandem with two-stage FDR
control, the worst tested setting.

Across all three data sets, putative neoantigens identified by
different search engines using different FDR estimation methods
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Fig. 7 Neoantigen prediction comparison and proteogenomics workflow. a-c Neoantigen prediction result for each sample in the label-free data a, the
TMT data b, and the iTRAQ data c. Each column represents a sample and each row represents the neoantigen prediction result using a specific method.
The color of each cell represents the number of somatic mutations with predicted neoantigens. Only putative neoantigens encoded by proteomic-

supported somatic mutations were considered. d Overview of NeoFlow pipeline for the proteogenomics-based neoantigen prioritization. Source data are

provided as a Source Data file.

in combination with PepQuery filtering showed an average
median absolute RT error of 0.64 min (Supplementary Fig. 5,
Supplementary Data 7-9), which was comparable to those for
reference peptides (Fig. 2b, d). Despite the overall high quality of
these putative neoantigen identifications, there were some clear
outliers (Supplementary Fig. 5). On average, 7% of these
identifications showed an RT error higher than 5 min and may
thus require more critical evaluation.

To make the proteogenomics-based neoantigen prioritization
method directly available to the cancer research community, we
have implemented it in NeoFlow, which includes four modules as
shown in Fig. 7d: (1) variant annotation and customized database
construction; (2) variant peptide identification including MS/MS
searching, FDR estimation, PepQuery validation, and optional
RT-based validation; (3) human leukocyte antigen (HLA) typing;
and (4) MHC-binding prediction and neoantigen prioritization.
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These modules are described in detail in the Method section.
NeoFlow is available at https://github.com/bzhanglab/neoflow.
To further demonstrate the utility of NeoFlow in the analysis
of immunopeptidomics data, we applied the workflow to a
published immunopeptidomics study®®. The RT prediction
models trained for this data set showed similar performance to
those trained on the CPTAC data sets (Supplementary Fig. 6).
NeoFlow identified nine out of the 11 somatic variant peptides
reported in the original study and four additional somatic variant
peptides (Supplementary Data 10). The two somatic variant
peptides reported in the original paper but not identified by
NeoFlow showed obviously higher absolute RT errors, suggesting
the possibility of false positives. Among the four newly identified
somatic variant peptides, two have been reported in a recently
published reanalysis of the same data set®®. These results
demonstrate the sensitivity and specificity of NeoFlow in
analyzing immunopeptidomics data and the value of RT-based
validation as an additional filter to reduce false positives.

Discussion

Applying three search engines to three cancer data sets generated on
three popular MS platforms and a total of 287 tumor samples, our
systematic analysis showed that substantially different numbers of
variant peptides and putative neoantigens are identified depending
on the quality control strategy used. Using the difference between
accurately predicted peptide RT and observed RT as a quantitative
metric, we demonstrated that among all quality control strategies
investigated, global FDR control followed by PepQuery validation
offered the highest sensitivity while identifying high quality variant
peptides. We thus recommend this quality control strategy for
variant peptide identification and neoantigen prioritization in future
proteogenomic studies. There is a large variation in the numbers of
putative neoantigens reported by the three search engines; com-
bining results from multiple search engines can effectively maximize
putative neoantigen identifications. Moreover, RT-based validation
provides an additional filter to reduce false positives. We imple-
mented this recommended strategy in a computational workflow to
support sensitive and reliable proteogenomics-based neoantigen
prioritization.

A major contribution of this study is the development of
AutoRT, a deep learning-based RT prediction algorithm, because
accurately predicted RT opens the door to systematic evaluation of
variant peptide identifications. Training a deep learning model
without using hand-crafted features typically requires a large
amount of data to achieve good performance. In most deep pro-
teomics studies, multidimensional liquid chromatographic tech-
nologies are used. Each sample is separated into multiple fractions
and each fraction of peptides is injected into a mass spectrometer
for data acquisition. In our study, the number of identified peptides
for a single run ranged from 700 to 10,000 (Fig. 2b-d), which in
general is not large enough to train a peptide sequence-based high-
performance deep learning model from scratch. Thus, we devel-
oped base models using a large public data set and then used the
transfer learning strategy to address the limitation of the small size
of the run-specific training data. Combining data from multiple
experiment types for training may be able to create a single model
that can handle experiment-specific parameters; however, this
cannot replace transfer learning because nonlinear RT shift
between different runs occurs frequently even when the same LC
system is used for all runs in a study (Supplementary Fig. 7).
Another challenge is the design of the neural network architecture
because the optimal architecture is not known a priori. We
addressed this challenge by using evolutionary computation to
automatically search for an optimal architecture.

Consistent with previous studies?!242>, we found that two-
stage FDR control was more stringent than separate FDR control,
which was in turn more stringent than global FDR control.
Interestingly, our results showed that even the most stringent two-
stage FDR control still benefited from PepQuery validation. One
of the most important features of PepQuery is competitive filtering
based on unrestricted modification searching in which >1000
modifications are considered, which effectively addresses the
common limitation of all FDR estimation methods. As expected,
global FDR control benefited the most from PepQuery validation
because it underestimates FDR for variant peptide identifications.
Nevertheless, its combination with PepQuery validation provided
the highest sensitivity without compromising reliability.

The RT errors of variant peptides that passed PepQuery vali-
dation were comparable to those of reference peptides in corre-
sponding data sets; however, some variant peptides had high RT
errors. This may be explained by different reasons such as inac-
curate RT prediction and wide elution time range for some
peptides, and false-variant peptide identification is also a possible
explanation. Therefore, the RT errors included in the final report
of NeoFlow provide orthogonal information that facilitates can-
didate prioritization for experimental validation. Rather than
using RT errors as an optional feature to filter PSMs, a more-
effective approach to improve peptide identification is to incor-
porate AutoRT-derived delta RT as a feature into PSM scoring in
combination with other features. However, such implementation
will require graphics processing units (GPUs) for PSM scoring,
and thus will be more useful when GPUs are widely accessible in
proteomics laboratories.

Although the primary goal of the study was to compare dif-
ferent quality control strategies, our results also revealed the
performance difference of different search engines in proteoge-
nomics search. Among the three search engines investigated, MS-
GF+ showed the highest sensitivity in variant peptide identifi-
cation both before and after PepQuery validation (Fig. 3).
Meanwhile, MS-GF+ also identified higher percentages of variant
peptides that failed PepQuery validation, suggesting higher risk in
bringing in more false positives when used without PepQuery
validation. X!Tandem showed the lowest sensitivity among the
three, and we would not recommend using this search engine by
itself in proteogenomics search. However, when used together
with other search engines, it may still add unique variant iden-
tifications to improve the overall sensitivity (Fig. 7).

The customized database approach has been widely implemented
in proteogenomic studies since its introduction in 201240. However,
the potential value of identified mutant peptides as cancer bio-
markers is diminished by the fact that individual mutant peptides
are shared by few tumors. Therefore, the clinical utility of this
proteogenomic analysis remains unclear. Here, we showed a
potential clinical application of this approach by identifying and
selecting neoantigens for personalized vaccine development, which
does not require recurrent identification of the mutant peptides.
Combining the customized database approach with MHC-I binding
prediction, we predicted personalized neoantigens for 30, 27, and
24% of the patients in the label-free, TMT, and iTRAQ data sets,
respectively. Although proteomic sequence coverage remains lim-
iting, proteomics data can nevertheless enhance DNA and RNA
sequencing-driven target selection pipelines!>!® and enable more-
effective prioritization for patients with proteomics-supported
neoantigens. The value of this approach will continue to grow as
the sensitivity of MS increases.

NeoFlow can be applied to both global proteomics data from
tumor tissues and immunopeptidomics data. Immunopeptidomics
data provide direct evidence of both expression and presentation of
somatic variant peptides, but when immunopeptidomics data is not
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available, global proteomics data from tumor tissues can provide
expression evidence for somatic variants. A limitation of this study is
that only somatic SNVs and INDELs were considered for neoanti-
gen identification. It has been reported that gene fusions?! and
cancer-specific intron retention events*? are also potential sources of
cancer neoantigens. Another limitation is that variant peptide vali-
dation by PepQuery in immunopeptidomics data requires an
external tool to generate reference peptide candidates to constrain
the search space for no-enzyme search. In the future, we will expand
NeoFlow to support the identification of peptides generated by
different types of mutational events and to improve PepQuery for
the analysis of immunopeptidome data. These efforts will enable
more-comprehensive proteogenomics-based neoantigen prioritiza-
tion or detection.

Methods

Data sets. Three large-scale proteomics data sets from a colon cancer study'? and
a breast cancer study’ were downloaded from the CPTAC data portal, including a
colon cancer label-free data set (https://cptac-data-portal.georgetown.edu/cptac/s/
S037), a colon cancer TMT data set (https://cptac-data-portal.georgetown.edu/
cptac/s/S037), and a breast cancer iTRAQ data set (https://cptac-data-portal.
georgetown.edu/cptac/s/S015). Samples for both colon cancer data sets came from
a common patient cohort. The label-free data set was generated on a Q-Exactive
mass spectrometer at the Vanderbilt University Medical Center. It included 90
colon tumor samples, 540 LC-MS/MS runs, and a total of 16,804,000 MS/MS
spectra. The TMT data set was generated on a Q-Exactive Plus mass spectrometer
at the Pacific Northwest National Laboratory. It included 94 tumor samples, 21
TMT 10-plex samples, 252 LC-MS/MS runs, and a total of 9,097,679 MS/MS
spectra. The iTRAQ data set was generated on a Q-Exactive mass spectrometer at
Broad institute. It included 103 tumor samples, 36 iTRAQ 4-plex samples, 900 LC-
MS/MS runs, and a total of 31,231,980 MS/MS spectra. Somatic variants and
germline variants for colon cancer samples were from the original publication!?.
Somatic variants and germline variants for breast cancer samples were downloaded
from the genomic data commons (GDC, https://portal.gdc.cancer.gov/).

Customized database construction. Somatic and germline variants were annotated
using ANNOVAR (v2017Jul17)*3 based on the Hgl19 RefSeq annotation. The RefSeq
annotation was downloaded from the UCSC table browser (03/29/2017). Variants
annotated by ANNOVAR were filtered for protein-altering events including non-
synonymous SNVs, frameshift INDELSs, non-frameshift INDELSs, and stop-loss. For
label-free data, we built a customized database for each individual tumor sample based
on germline and somatic variants from matched WES data. For TMT or iTRAQ data,
we built a customized database for each TMT or iTRAQ multiplexed sample based on
germline and somatic variants from WES data derived from corresponding tumor
samples in the TMT or iTRAQ plex. Customized database construction was per-
formed using our JAVA-based tool, customProDB]. customProDB]J is easier to use
compared with our previously published R-based tool customProDB#4. In addition,
customProDBJ includes a redundancy removal feature that is particularly useful for
constructing non-redundant customized databases in TMT and iTRAQ studies. For
each TMT or iTRAQ sample, customProDBJ takes all ANNOVAR annotated files
associated with the tumor samples in the TMT plex or iTRAQ plex as input. The
same variant from different tumor samples is identified and only one variant protein
sequence for each variant is retained in the customized database for the TMT or
iTRAQ sample. The source code of customProDBJ is available at https://github.com/
bzhanglab/customprodbj.

MS/MS searching. The MS/MS data in mzML format were converted into MGF
files using MSconvert (ProteoWizard, version 3.0.19014)4>. The MS/MS data were
searched using three search engines (X! Tandem v2017.2.1.2, MS-GF +
v2018.10.15, and Comet v2018.01 rev. 4) against protein databases with decoy
protein sequences. For the label-free data set, the following parameters were used
for database searching: Fixed modifications, Carbamidomethyl (C); variable
modifications, Oxidation (M); Precursor ion mass tolerance, 20 ppm; MS/MS mass
tolerance, 0.05 Da; Enzyme specificity, trypsin; maximum missed cleavages, 2. For
the TMT data set, parameters for database searching were set as follows: Fixed
modifications, Carbamidomethyl (C), TMT 10-plex (K) and TMT 10-plex (N-
term); variable modifications, Oxidation (M); Precursor ion mass tolerance,

20 ppm; MS/MS mass tolerance, 0.05 Da; Enzyme specificity, trypsin; maximum
missed cleavages, 2. For the iTRAQ data set, parameters for database searching
were set as follows: Fixed modifications, Carbamidomethyl (C), iTRAQ 4-plex (K)
and iTRAQ 4-plex (N-term); variable modifications, Oxidation (M); Precursor ion
mass tolerance, 20 ppm; MS/MS mass tolerance, 0.05 Da; Enzyme specificity,
trypsin; maximum missed cleavages, 2. For all data sets, only peptides with length
between 7 and 45 were considered.

FDR estimation. We used the target-decoy search strategy!” implemented in
PGA*® (https://github.com/wenbostar/PGA) to estimate FDR. Reversed target
protein sequences were used to build a decoy database. FDR estimation was cal-
culated by dividing the number of decoy hits by the number of target hits above a
score threshold. All the results were filtered with 1% FDR at peptide level. For
peptide level FDR calculation, only the best scoring PSM for each peptide was used.
We compared three FDR estimation methods as described below.

For global FDR estimation, the MS/MS data were searched against customized
databases which contain both reference and variant protein sequences. PSMs
involving both reference and variant peptide sequences were combined together for
FDR estimation. The FDR was estimated according to the following equation:

D
FDR = (1)
Where D is the number of identified decoy peptides with scores above a score
threshold and T is the number of identified target peptides with scores above the
same threshold.

For separate FDR estimation, the MS/MS data were searched against
customized databases, which contain both reference and variant protein sequences.
If an identified peptide could be mapped to the reference protein database, it was
defined as a reference peptide. PSMs involving reference and variant peptide
sequences were separated into two groups, and FDR estimation was calculated for
the two groups separately. The FDR for variant peptides was estimated according
to the following equation!8:

+ 3 Dy
FDR, = =P @)
n

where DT is the number of identified decoy peptides with scores above a score
threshold, T, T is the number of identified variant peptides in the target database
above the score threshold, D,, is the number of matched decoy variant peptides, and
D is the total number of matched decoy peptides. D,,/D is an approximation for the
fraction of variant sequences in the search space.

For two-stage FDR estimation, the MS/MS data were searched against the
reference protein database in the first stage. The confidently identified spectra with
1% FDR were removed. In the second stage, the remaining spectra were searched
against the variant protein sequence databases. The FDR estimation for variant
peptides was based on the search results from the second stage. The equation for
global FDR estimation was used for both stages.

PepQuery validation. The identified variant peptides were further validated using
PepQuery (http://pepquery.org/)?3. For each data set, the database searching
parameters described above were used. Hyperscore was used for PSM scoring,
unrestricted modification searching-based filtering was enabled, and only PSMs
with a p value <0.01 were considered as true identifications.

Spectra annotation. Spectra were annotated using PDV (1.6.0) (http://pdv.zhang-
lab.org/)#7 and all the annotated spectra for variant peptides are available at http://
pdv.zhang-lab.org/data/download/nc_2019_paper/.

Deep learning-based retention time prediction. Using the automatic deep
learning and transfer learning techniques, we developed AutoRT, a peptide
sequence-based RT prediction tool.

Each peptide was encoded into a matrix using one-hot encoding® with a fixed
length. Specifically, each amino acid was represented as a binary vector of all zeros
except for one entry, which was set to one to indicate the category of the amino
acid (one-hot encoding). By default, the fixed length was the length of the longest
identified peptide. Amino acid with modification was encoded as a different
character so that modified peptide can also be included in the prediction.

A genetic algorithm#® was developed to automatically search neural
architectures for RT prediction. The algorithm was specifically designed to search
different convolutional neural networks (CNN)3* combined with bidirectional
gated recurrent unit (GRU) networks®! for regression. CNNs are variants of deep
neural networks (DNNs) that learn high levels of abstractions from multiple layers
of nonlinear transformations. CNNs contain convolution and pooling layers that
extract sequence features at different spatial scales, and a weight-sharing strategy is
used to capture local patterns in protein sequence data. GRU networks are also
variants of DNNs that are capable of capturing long-term dependencies between
amino acids. A dropout layer with different dropout rates was also considered in
the neural architectures to avoid overfitting.

Our genetic algorithm involved constructing an initial generation of individuals
(deep neural networks) and performing genetic operations to allow them to evolve
in a genetic process. Each DNN structure was represented as a fixed-width genome
encoding information about the network’s structure. In our setup, a model
included a number of convolutional layers, a number of dense layers, an optimizer,
and a fixed bidirectional GRU layer with 50 units. The convolutional layers could
be evolved to include varying numbers of feature maps, different activation
functions, varying proportions of dropout, and whether to perform batch
normalization and/or max pooling. The same options were available for the dense
layers with the exception of max pooling. The detailed search space is described in
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Supplementary Data 11. We further defined several standard genetic operations,
i.e., selection, mutation and crossover. The quality of each individual was
determined by its MSE on a validation data set. Throughout the genetic process, we
evaluated each individual (i.e., network structure) by training it from scratch. The
genetic process came to an end after a fixed number of generations. By default, the
generation size was 20, the population size for each generation was 50, and a
maximum of 20 epochs and early stop were used for training.

A large public data set52 (PXD006109) was downloaded from PRIDE®3 and was
used for neural architecture search on three NVIDIA Titan XP GPUs. The top 10 best
neural architectures were selected based on validation MSE. Ten models were trained
based on the top 10 best neural architectures, respectively, with a maximum of 100
epochs and a batch size of 64. The default learning rate was used for each model and
early stop was used in the training and the best trained model was saved for each
architecture based on validation MSE. The top 10 trained models were taken as the
base models for transfer learning. We used the Keras library (v2.2.4, http://keras.io/)
along with Tensorflow (v1.13.1, www.tensorflow.org) for implementation.

The top 10 models trained using the large public data set were fine-tuned
without freezing any layers to train LC-MS/MS run-specific models using known
peptides identified in each run and their RTs with the transfer learning strategy. To
ensure high quality of the training data, only known peptides identified by at least
two out of the three search engines with 1% FDR at both PSM and peptide levels
were included. Known peptides for which the difference between the maximum
observed RT and minimum observed RT was >3 min were removed from the
training data. All remaining identified known peptides were randomly divided into
two parts. The first part contained 90% of the peptides and was used for training.
The second part contained 10% of the peptides and was used for independent
testing. During the training process, 10% of the training data was randomly
selected as validation data. A maximum of 40 epochs was used for training and
early stop was used, and the best model was selected based on the validation data
for each run. The top 10 models were ensembled using averaging with outliers
removed based on the interquartile range (IQR) algorithm. Specifically, the first
quantile (Q1), the third quantile (Q3), and the interquartile range (IQR, i.e.,
Q3-Q1) of the predicted RTs for each peptide were calculated, and predicted RTs
outside of the boundaries of Q1-1.5%IQR and Q3+1.5%xIQR were excluded. Then,
the average was calculated from the remaining predicted RTs to represent the final
predicted RT for each peptide. The ensemble model was used to predict RT for the
variant peptides identified from the same LC-MS/MS run by different methods.

To evaluate the performance of AutoRT, we compared AutoRT with four recently
published RT prediction tools, including three deep learning-based tools (Prosit?”,
DeepMass®, and GuanMCP201937) and one traditional machine learning-based tool,
GPTime(. Three large public data sets were used for evaluation. The first data set was
downloaded from PRIDE with accession number PXD006109, which contains 136,791
peptides and was described in the previous section. The second data set was
downloaded from SWATHAtlas (http://www.swathatlas.org/) with accession number
SAL00031%* and contains 159,345 peptides. The third data set was also downloaded
from SWATHAtlas with accession number SAL00141°° and contains 124,710
peptides. Each data set was divided into two parts. The first part contained 90% of the
peptides and was used for training. During the training process, 10% of the training
data was randomly selected as validation data. The second part contained 10% of the
peptides and was used for independent testing. All the tools compared in this study
were trained from scratch using the same training data used for AutoRT. Because
GPTime cannot handle large training data, we randomly selected 10,000 peptides from
the first part of each data set as training data for GPTime. We used median absolute
error (MAE) according to the following equation to evaluate the performance of RT
prediction models.

MAE = median( ‘RTubsm/zd - RTpredzcted ‘) (3)

Where RTgpserved is the experimental RT for the spectrum that a peptide was identified
from, and RTpredicted 15 the RT predicted by deep learning models for the peptide.

For the three CPTAC data sets, we also compared AutoRT with GPTime using
the same method.

Determining observed RT for a peptide for model training. Each MS/MS (MS2)
spectrum or MS2 scan is associated with a distinct RT. Given that MS2 scans can
sometimes be taken rather early or rather late in the peak elution, the RT of the MS1
peak maximum of the respective precursor ion can better represent the observed
retention time for a peptide. However, the search results from the peptide identifi-
cation tools used in this study (MS-GF+, X!Tandem, and Comet) do not contain the
RT of the MS1 peak maximum of the respective precursor, and it is time consuming
to extract MS1 peak maximum-based RT from the raw data for all experiments. We
considered an alternative option, which is to use the average of RTs from all spectra
identified from the same run with 1% FDR at both PSM and peptide levels for a
peptide to represent observed RT for the peptide. To evaluate the accuracy of this
MS2-based method, we selected identification results from three runs from each of the
three CPTAC data sets and extracted the RT of MS1 peak maximum of the respective
precursor ions of identified peptides using FlashLFQ (v1.0.2)°°. As shown in Sup-
plementary Figs. 8-10, the difference between the RTs estimated based on the MS2
and the MS1 methods was <10 sec for >90, 87, and 95% of the peptides identified in
the label-free, TMT, and iTRAQ data, respectively. Moreover, the accuracies of
AutoRT were similar when the two types of observed RTs were used for the analysis.

Therefore, the average RT for all spectra identified from the same run for a peptide
was used to determine the observed RT for a peptide.

Retention time prediction for variant peptides. Theoretical RT for variant pep-
tides were predicted using the ensemble models trained using the transfer learning
strategy from the experimental runs where the variant peptides were identified.

Quality evaluation for variant peptide identifications. The quality of variant
peptide identifications was evaluated using the absolute RT error of the best PSM
reported from each search engine for each peptide.

Neoantigen prediction. We used Optitype (v1.3.1)%7 to perform HLA genotyping
for each sample based on WXS data. Then we used netMHCpan (v4.0)>3 to predict
HLA-peptide binding affinity for somatic mutation-derived variant peptides with a
length between 8-11 amino acids. The HLA-peptides with ICs, binding affinity
<150 nm were considered to be neoantigens.

NeoFlow implementation. The NeoFlow for neoantigen prediction and prioritiza-
tion includes four modules: (1) variant annotation and customized database con-
struction. Variants in the VCF format are annotated using ANNOVAR, and the
annotated files are used as input to customProDB]J in order to build a customized
protein database; (2) Variant peptide identification including MS/MS searching, FDR
estimation, PepQuery validation, and optional RT-based validation. Three search
engines, MS-GF+, X!Tandem, and Comet, are available in NeoFlow for peptide
identification. FDR estimation is performed based on the global FDR estimation
method. All variant peptides passing the 1% global FDR threshold are further vali-
dated using PepQuery, and only those with PepQuery p value <0.01 are retained. In
addition, if germline variants are considered in the customized database construction,
a somatic variant peptide will be removed if it can be exactly mapped to a germline
variant peptide. For RT-based validation, an RT prediction model is trained for each
single run using all identified reference peptides as training data for AutoRT. The
trained model is then used to predict the RTs of the variant peptides. The difference
between observed RT and predicted RT is taken as an additional quality metric for
each PSM. Because AutoRT requires GPUs that are not available in many proteomics
labs, this feature is optional in NeoFlow; (3) HLA typing. Because HLA-peptide
binding affinity is affected by both peptide sequence and HLA type, HLA type needs
to be specified as an input for binding affinity prediction in step 4. HLA typing in
NeoFlow is performed by Optitype, which uses WXS data in the FASTQ format as
input; (4) MHC-binding prediction and neoantigen prioritization. netMHCpan®® is
used to predict HLA-peptide binding affinity for all somatic mutation-derived variant
peptides with a length between 8-11 amino acids, except for those that can be exactly
matched to a reference protein. Following previous publications!>>%, NeoFlow uses
IC5p binding affinity of 150 nm as a threshold to identify HLA-peptide pairs with
strong binding affinity. This information is combined with variant peptide identifi-
cation information acquired from steps 1-3 for neoantigen prioritization. NeoFlow
was implemented into a workflow using nextflow (https://www.nextflow.io/)? and is
available at https://github.com/bzhanglab/neoflow.

Application of NeoFlow to immunopeptidomics data. A published immuno-
peptidomics data set?® was re-analyzed using NeoFlow. The data set includes paired
exome sequencing and immunopeptidomics data from five tumors samples. The MS/
MS data for the five samples were downloaded from PRIDE with accession number
PXD004894. The raw MS/MS data were converted into MGF files using MSconvert
(ProteoWizard, version 3.0.19014). We directly used the HLA types reported for the
five samples in the original study. The somatic variants of the five samples reported in
the original study were extracted from the Supplementary Data 5 of the publication.
We used NeoFlow to annotate these somatic variants and build a customized protein
database for each sample. The three search engines MS-GF+, X!Tandem, and Comet
were used for MS/MS searching. The search parameters were similar to those used in
the original publication. The search results were filtered with 1% FDR using the global
FDR estimation method. The retained somatic peptides were further validated using
PepQuery. In order to speed up PepQuery-based validation of variant peptides in
immunopeptidomics data, we updated PepQuery to make use of the matched pep-
tides for each spectra identified by Open-pFind®!. Specifically, we searched the MS/
MS data against the reference protein database using Open-pFind with the open
search mode. Then in the steps of competitive filtering based on reference sequences
and competitive filtering based on unrestricted post-translational modification
searching in PepQuery, we directly used the matched peptides for each spectrum from
Open-pFind search as candidates. AutoRT was used to predict RT for identified
variant peptides in order to calculate RT errors for additional PSM filtering.

Data availability

Three large-scale proteomics data sets from a colon cancer study!'® and a breast cancer
study7 were downloaded from the CPTAC data portal, including a colon cancer label-free
data set (https://cptac-data-portal.georgetown.edu/cptac/s/S037), a colon cancer TMT
data set (https://cptac-data-portal.georgetown.edu/cptac/s/S037), and a breast cancer
iTRAQ data set (https://cptac-data-portal.georgetown.edu/cptac/s/S015). Somatic
variants and germline variants for colon cancer samples were from the original
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publication!?. Somatic variants and germline variants for breast cancer samples were
downloaded from the genomic data commons (GDC, https://portal.gdc.cancer.gov/). The
immunopeptidomics data set used in this study was downloaded from PRIDE (https://
www.ebi.ac.uk/pride/) with accession number PXD004894. The somatic variants of the
five samples included in the immunopeptidomics data set reported in the original study
were extracted from the Supplementary Data 5 of the publication. The three large public
data sets used for retention time prediction model training and evaluation were
downloaded from public databases. The first data set was downloaded from PRIDE with
accession number PXD006109. The second data set was downloaded from SWATHAtlas
(http://www.swathatlas.org/) with accession number SAL00031°4, The third data set was
also downloaded from SWATHAtlas with accession number SAL00141%°. The source
data underlying Figs. 2b-d, 4-6, and 7a—c are provided as a Source Data file. All other
data are available from the corresponding author upon reasonable request.

Code availability
The source code of NeoFlow is available at https://github.com/bzhanglab/neoflow.
AutoRT is available at https://github.com/bzhanglab/AutoRT/.
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