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Abstract
GATA factors play central roles in the programming of blood and cardiac cells

during embryonic development. Using the experimentally accessible Xenopus and

zebrafish models, we report observations regarding the roles of GATA-2 in the

development of blood stem cells and GATA-4, -5, and -6 in cardiac development.

We show that blood stem cells develop from the dorsal lateral plate mesoderm and

GATA-2 is required at multiple stages. Firstly, GATA-2 is required to make the

cells responsive to VEGF-A signalling by driving the synthesis of its receptor,

FLK-1/KDR. This leads to differentiation into the endothelial cells that form the

dorsal aorta. GATA-2 is again required for the endothelial-to-haematopoietic tran-

sition that takes place later in the floor of the dorsal aorta. GATA-2 expression is

dependent on BMP signalling for each of these inputs into blood stem cell programming.

GATA-4, -5, and -6 work together to ensure the specification of cardiac cells during

development.We have demonstrated redundancywithin the family and also some evolu-

tion of the functions of the different family members. Interestingly, one of the features

that varies in evolution is the timing of expression relative to other key regulators such as

Nkx2.5 and BMP. We show that the GATA factors, Nkx2.5 and BMP regulate each

other and it would appear that what is critical is the mutually supportive network of

expression rather than the order of expression of each of the component genes. In

Xenopus and zebrafish, the cardiac mesoderm is adjacent to an anterior population of

cells giving rise to blood and endothelium. This population is not present in mammals

andwe have shown that, like the cardiac population, the blood and endothelial precursors

require GATA-4, -5, and -6 for their development. Later, blood-specific or cardiac-

specific regulators determine the ultimate fate of the cells, and we show that these regula-

tors act cross-antagonistically. Fibroblast growth factor (FGF) signalling drives the car-

diac fate, and we propose that the anterior extension of the FGF signalling field during
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evolution led to the recruitment of the blood and endothelial precursors into the heart

field ultimately resulting in a larger four chambered heart. Zebrafish are able to success-

fully regenerate their hearts after injury. To understand the pathways involved, with a

view to determining why humans cannot do this, we profiled gene expression in the

cardiomyocytes before and after injury, and compared those proximal to the injury with

those more distal. We were able to identify an enhancement of the expression of regula-

tors of the canonical Wnt pathway proximal to the injury, suggesting that changes in

Wnt signalling are responsible for the repair response to injury.
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1 | BLOOD

GATA factors were first discovered in the erythroid cells of
the blood, specifically the first three members of the family.1

We have been interested in the development of the blood
stem cell, in part with a view to generating these cells
in vitro for transplantation into humans in the clinic. The
GATA factor of particular interest in the formation of blood
stem cells is GATA-2.

Blood or haematopoietic stem cells (HSCs) are found in the
bone marrow of mammals, including humans. However, they
are made during embryonic development outside the bone mar-
row and subsequently migrate to it. Therefore to understand
how to make HSCs, it is necessary to study their generation in
the embryo. This is quite difficult to do for obvious reasons in
human embryos. We therefore use the experimentally accessi-
ble amphibian (Xenopus) and zebrafish embryos, and the
mechanisms discovered there have been shown to be applica-
ble to mammals including humans where tested.2,3 Blood is
generated multiple times in vertebrate embryos, resulting in the
production of predominantly red blood cells early during devel-
opment to facilitate gaseous exchange. These cells are derived
directly from mesoderm and not from a blood stem cell. The
stem cell is made later in the dorsal aorta by a process known as
the endothelial to haematopoietic transition (EHT).4–7 By
labelling cells in the very early embryo and following their fate,
we were able to show that the HSC lineage is distinct from the
earlier blood lineages.8 This was an important discovery
because it meant that the HSC lineage would be programmed
independently of the earlier blood lineages, receiving signals
from distinct surrounding tissues at different times.

Our lineage analysis showed that the HSCs are derived
from the most dorsal lateral plate (DLP) mesoderm, which is
located immediately adjacent to the forming somites. Pro-
gramming of these cells involves signals from the somites.
The cells then migrate under the somites towards the midline
of the embryo where they form a cord of cells that lumenises

and forms the dorsal aorta (DA).9,10 Under the influence of
local signals, the floor of the DA is induced to become
haemogenic endothelium, which undergoes EHT and gener-
ates HSCs, that are found associated with the floor of the
DA.11,12 Thus, the dorsal lateral plate mesoderm gives rise
to both blood (HSCs) and endothelium and as such we have
referred to the cells as haemangioblasts. To distinguish them
from the haemangioblasts derived from more ventral meso-
derm that gives rise to the primitive blood populations, we
have called them definitive haemangioblasts (DHs). Gene
expression profiling of definitive and primitive haemangioblasts
revealed that while the primitive programme is dominated by
blood-associated genes, the definitive programme is dominated
by endothelial associated genes.13 This likely reflects the imme-
diate fate of the cells with the definitive cells forming endothe-
lium first and blood (HSCs) only later, while the primitive cells
make blood immediately.

2 | THE GENE REGULATORY
NETWORK CONTROLLING
DEFINITIVE HAEMANGIOBLAST
PROGRAMMING

VEGF-A is the inducing signal affecting the DLP/DH and its
expression in the somites is positively regulated by the ETS
factor, ETV-6.9 Interestingly, an early response within the
DLP/DHs is the expression of ETV-6 and therefore VEGF-A,
potentially making the cells independent of the somites. In
order to respond to VEGF-A signalling, the DLP/DHs need to
express the VEGF-A receptor, KDR/FLK-1. This we have
shown is dependent on the ETS transcription factor, FLI-1,
and the GATA factor, GATA-2. FLI-1 and GATA-2 are also
required for the expression of the key haematopoietic tran-
scription factor, SCL/TAL-1, and its partner LMO-2.14 Thus,
clearly the control of FLI-1 and GATA-2 expression is key to
understanding the programming of the mesoderm giving rise to
HSCs. Insights into how FLI-1 is regulated came from work we
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were doing with micro-RNAs. We found that FLI-1 expression
is dependent on the presence of miR-142 that acts by inhibiting
the expression of a TGF-β receptor.15 Thus FLI-1 expression
depends on the down regulation of TGF-β signalling.

In the case of GATA-2, we speculated that BMP signal-
ling would be involved because both blood development
and GATA factor expression have many connections with
BMP signalling in the literature. However, BMP is required
for the whole of lateral plate mesoderm formation and gen-
eral patterning of the early embryo. Therefore, to test the
specific role around the time when GATA-2 expression was
turned on in the DLP/DHs, we had to make use of condi-
tional inhibition of BMP signalling.16 We therefore obtained
a transgenic Xenopus line expressing the BMP inhibitor,
Noggin, from a heat shock-inducible promoter, and sepa-
rately a chemical inhibitor of BMP signalling that could be
added to the water housing the experimental embryos. Suc-
cess of the BMP inhibition in each case was monitored by
the presence of phosphorylated SMAD-1, 5 or 8, the down-
stream mediators of BMP signalling. We found that BMP
input is required at three points during the development of
the HSCs: firstly, for the initial expression of GATA-2 in
the DLP/DHs, later for the expression of KDR/FLK-1
required for the response to VEGF-A signalling, and thirdly
for the expression of GATA-2 in the DA.16

3 | THE REGULATION OF GATA-2
EXPRESSION

Evidence published by others17 has identified a key role for
GATA-2b in HSC emergence from the DA in zebrafish.
Zebrafish underwent a whole genome duplication 100 MY
ago and, while some of the duplicates have been lost, many
genes still retain duplicated copies. GATA-2 is one of these.
To understand the control of GATA-2 expression in more
detail, we decided to exploit the two copies of GATA-2 in
zebrafish to sub-functionalise that control.18 We searched
the two zebrafish GATA-2 loci for the mouse GATA-2
enhancer identified by the Engel and Bresnick groups.19,20

As well as sequence alignment, we carried out ATAC-seq
on purified endothelial cells isolated by FACS from a
KDRL-GFP transgenic fish line. A correlate of the mouse
gene enhancer was found only in GATA-2a but not in
GATA-2b. The function of this putative enhancer was tested
by cloning it upstream of a fluorescent reporter gene, and it
was found that all endothelial cells were labelled, thus reca-
pitulating the activity seen in the mouse. We also deleted
this putative enhancer from the endogenous GATA-2a gene
and found that endothelial expression was significantly
reduced. We therefore conclude that the GATA-2a enhancer
is, as for the mouse GATA-2 gene, a significant regulator of
the endothelial expression of zebrafish GATA-2a. When we

monitored expression of the blood stem cell marker, RUNX-
1, in the fish line expressing a fluorescent reporter under the
control of this GATA-2a enhancer, we found that a subset of
the fluorescent cells in the DA were positive for RUNX-1.
This confirmed that GATA-2a is indeed expressed in the
cells destined to become HSCs. By counting cells positive
for RUNX-1 in the mutant line missing the GATA-2a
enhancer, we were able to show that GATA-2a expression is
indeed required for the formation of RUNX-1 expressing
cells in the DA. In other words, the earlier expression of
GATA-2a in the endothelial cells of the DA, as well as the
later expression of GATA-2b in the floor of the DA, is
required for the normal formation of HSCs in the DA. To
better understand the relationship between GATA-2a and b,
we looked at GATA-2b expression in the GATA-2a
enhancer mutants. We found that GATA-2b expression was
reduced. Furthermore, GATA-2b expression driven by the
GATA-2a enhancer could rescue expression of downstream
RUNX-1 expression. Therefore GATA-2a is upstream of
GATA-2b and RUNX-1 in the gene regulatory cascade lead-
ing to HSC development in the DA.18

Despite the significant reduction in RUNX-1 expressing
cells in the DA in the GATA-2a enhancer mutants at
26 hours post fertilisation (hpf), we found that the number
of derivatives of the HSC found at 48 hpf in the caudal
haematopoietic tissue (CHT) and the thymus was unaf-
fected.18 Furthermore, we found a significant increase in
infections and heart oedemas in adult mutant fish compared
to wild type, which correlated with reduced cellularity in the
kidney marrow, the homologous site to the mammalian bone
marrow. This is reminiscent of the human condition caused
by GATA-2 haploinsufficiency21 and this line may facilitate
the study of this condition.

4 | GATA-4, -5, AND -6 IN CARDIAC
DEVELOPMENT AND
REGENERATION

4.1 | Development

GATA-4, -5, and -6 are all expressed in the developing myo-
cardium but knockout of individual GATA factors in the
mouse has in general failed to abolish myocardial
specification,22–26 raising the possibility that they may have
redundant activities during this process, a concept made
more likely by the observation that they all bind to the same
GATA-binding sites with high affinity. To test for redun-
dancy, we set out to knock down each of the genes individu-
ally and in combination27 using antisense morpholinos
(MOs). To avoid individual quirks of either Xenopus or
zebrafish, this was carried out in both species. Each of the
MOs was validated for specificity in at least one context. To
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quantitate the effects, we counted the number of embryos in
different knock down levels for cardiac marker genes such
as myosin light chain, ranging from no reduction of in situ
hybridisation signal to complete absence. For both species,
knock down of GATA-4 had very little effect, as did
GATA-5 knock down in Xenopus. However, in both species
GATA-6 knock down had a clear effect that was further
enhanced by knocking down GATA-4 or -5 in the same
embryos. Likewise, even though knock down of GATA-4 or
-5 individually had little effect in Xenopus, a clear pheno-
type was seen when they were both knocked down. Thus,
we have been able to generate clear evidence for redundancy
within the cardiac GATA family: a factor such as GATA-4,
which has little effect on its own, can clearly lead to a more
severe phenotype when one of the other members of the
family is also knocked down.

As mentioned above, knock down of GATA-5 in Xenopus
had little effect on its own.27 However, knock down of
GATA-5 on its own in zebrafish had a major effect.27,28 This
highlights changes in use of the GATA factors during evolu-
tion. A possible explanation may derive from the earlier
expression of GATA-5 in zebrafish, reflecting its more impor-
tant role in specifying cardiac tissue. Interestingly, this means
that GATA-5 is expressed before the critical cardiac specify-
ing gene NKX-2.5, which is active before GATA factors in
Xenopus. These two factors positively regulate each other in
both species, suggesting that once either is expressed the other
will follow. Apparently, the establishment of this mutually
supportive circuit is more important than the order in which
the two component genes become active. This concept could
be widened further when we looked at the key signalling mol-
ecule, bone morphogenetic protein (BMP), which is active
before either GATA or NKX factors in zebrafish, whereas
NKX is active before BMP in Xenopus. We conclude that the
setting up of the mutually supportive circuit is more important
than the order in which the component genes become active.
Such a circuit is also present in Drosophila, starting with
BMP (known as DPP in Drosophila).27,29 Davidson and
Erwin have called such vital core gene regulatory circuits,
kernels.30

Cardiac tissue derives from the anterior lateral plate meso-
derm (ALPM) where GATA-4, -5, and -6 are co-expressed.31

In both Xenopus and zebrafish embryos, the cardiac meso-
derm is adjacent to mesoderm giving rise to early blood and
endothelial populations. We have therefore referred to this
adjacent ALPM as the anterior haemangioblast. Such a popu-
lation of haemangioblasts is not thought to be present in
mammals but rather the whole ALPM contributes to the heart.
This made us wonder if the anterior haemangioblast meso-
derm had been recruited into the heart field during evolution,
giving rise to the larger four chambered heart. Consistent
with a close relationship between these two mesodermal

populations we showed that GATA-4, -5, and -6 are required
for the programming of the anterior haemangioblast, as seen
for the cardiac mesoderm.31 We went on to show that cardiac
determinants such as NKX-2.5 are only expressed in the car-
diac ALPM whereas blood determinants such as SCL/TAL-1
are expressed only in the haemangioblast ALPM.32 Further-
more we were able to show that these determinants have a
cross-antagonistic relationship whereby NKX-2.5 suppresses
the blood phenotype and SCL/TAL-1 suppresses the cardiac
phenotype. We also showed that fibroblast growth factor
(FGF) favours the cardiac phenotype over the haemangioblast
phenotype. FGF patterns the embryo along the antero-
posterior axis and we therefore proposed that this evolution-
ary recruitment of anterior haemangioblast mesoderm into the
cardiac field could have been achieved by extending the ante-
rior boundary of FGF expression.

4.2 | Regeneration

A common cause of heart failure in humans is the inability
of cardiomyocytes (CMs) to proliferate and regenerate the
lost myocardium after myocardial infarction (MI). We there-
fore carried out RNA sequencing (RNA-seq) analysis of
injury-reactivated CMs in the zebrafish, where regeneration
of the heart occurs, to identify spatially distinct gene expres-
sion profiles within injured ventricles. Importantly, we found
that canonical Wnt antagonists were enriched in proliferating
CMs proximal to the injury zone, suggesting a potential role
in governing CM proliferation during heart regeneration.

To study this, the Tg(gata4:EGFP) zebrafish model was
employed.33 This transgenic (Tg) line expresses EGFP in a sub-
population of CMs after cardiac injury and lineage tracing
showed that these cells proliferate to regenerate the injured
area.33We quantified gata4:EGFP+CMs following injury using
FACS analysis at 5 hours postinjury (hpi) and 4 days postinjury
(dpi). A dramatic increase in the number of gata4:EGFP+ cells
in the injury-proximal region was observed, whereas the number
was unchanged in the distal region. This observation strongly
suggests that injury-proximal gata4:EGFP+ CM cells expand
by proliferation and indicates spatio-temporal heterogeneity
within CMs after injury. To identify molecular changes
underlying reactivation of CM proliferation following injury, we
performed an RNA-seq experiment on injury-activated gata4:
EGFP+ CMs at 4dpi. To understand the selective induction of
proliferation in proximal gata4:EGFP+ CMs, we carried out
two-way comparisons of RNA-seq transcriptome data. Firstly,
the transcriptome of FACS sorted gata4:EGFP+ CMs from
whole ventricles at 4 dpi was compared to that of myl7:EGFP+
CMs fromwhole ventricles of sham-operated animals. This iden-
tified 967 genes that are upregulated in the gata4:EGFP+ CMs.
Secondly, ventricles of 4dpi Tg(gata4:EGFP) fish were cut
into two, to separate the injury-proximal and -distal regions
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before FACS isolation of gata4:EGFP+ CMs for spatial com-
parison within the injured heart. This analysis identified
956 genes upregulated in the injury-proximal region. By inter-
secting these data sets, we identified 808 genes specifically
upregulated in the injury-proximal signature of gata4:EGFP+
CMs, 820 genes in the distal signature and 149 injury-activated
genes that are shared between both regions.

Comparing gene expression profiles of the injury-proximal
and -distal regions suggested injury induced, spatially resolved
molecular responses. Gene ontology (GO)-term analysis indi-
cated that CMs in the injured zone were enriched for cell divi-
sion, angiogenesis, wound healing, and amino acid metabolism,
consistent with their active role in proliferation and regenerating
myocardium. In contrast, CMs in the distal myocardium were
enriched for genes associated with heart and skeletal devel-
opment, cell differentiation, and organ morphogenesis.
The GO-terms enriched within the proximal data set were
also characterised by regulators of growth such as Wnt sig-
nalling. Interestingly, we found that positive and negative
regulators of canonical Wnt signalling were enriched in the
proximal signature,34–36 and known target genes of Wnt sig-
nalling were differentially expressed in CMs from the
injury-proximal region. We therefore hypothesize that, fol-
lowing injury, the homeostasis of Wnt signalling is required
to attain a progenitor-like state and subsequently prolifera-
tion. Recently, Wu et al developed tomo-seq, a method pro-
viding spatially resolved genome-wide expression profiles
in whole heart ventricle of zebrafish following cryoinjury, and
found that proximal to the injury area there are two regions
(injury and border zone) with distinct gene expression signa-
tures in the cryoinjured heart.37 We have compared our expres-
sion data with the tomo-seq study and found that some Wnt
antagonists were enriched in both zones, whereas others were
enriched in the border zone relative to injury.37 This compari-
son strongly suggests cell-to-cell variation in the injury
response and molecular differences underlying cellular hetero-
geneity in the CM subpopulation within the injured ventricle.
Overall, our RNA-seq data suggest that canonical Wnt signal-
ling might be reactivated in CMs following injury and required
for the proliferative response.
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