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Objectives: The beam output of a double scattering proton system varies for each
combination of beam option, range, and modulation and therefore is difficult to be
accurately modeled by the treatment planning system (TPS). This study aims to design
an empirical method using the analytical and machine learning (ML) models to estimate
proton output in a double scattering proton system.

Materials and Methods: Three analytical models using polynomial, linear, and
logarithm–polynomial equations were generated on a training dataset consisting of
1,544 clinical measurements to estimate proton output for each option. Meanwhile,
three ML models using Gaussian process regression (GPR) with exponential kernel,
squared exponential kernel, and rational quadratic kernel were also created for all options
combined. The accuracy of each model was validated against 241 additional clinical
measurements as the testing dataset. Two most robust models were selected, and the
minimum number of samples needed for either model to achieve sufficient accuracy ( ±
3%) was determined by evaluating the mean average percentage error (MAPE) with
increasing sample number. The differences between the estimated outputs using the two
models were also compared for 1,000 proton beams with a randomly generated range,
and modulation for each option.

Results: The polynomial model and the ML GPR model with exponential kernel yielded
the most accurate estimations with less than 3% deviation from the measured outputs. At
least 20 samples of each option were needed to build the polynomial model with less than
1% MAPE, whereas at least a total of 400 samples were needed for all beam options to
build the ML GPR model with exponential kernel to achieve comparable accuracy. The
two independent models agreed with less than 2% deviation using the testing dataset.
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Conclusion: The polynomial model and the ML GPR model with exponential kernel were
built for proton output estimation with less than 3% deviations from the measurements.
They can be used as an independent output prediction tool for a double scattering proton
beam and a secondary output check tool for a cross check between themselves.
Keywords: output model, analytical model, machine learning, Gaussian process regression, double scattering
proton system
INTRODUCTION

Proton therapy is rapidly becoming one of the primary cancer
treatment modalities in the recent decade. The utilization of the
Bragg peak plays a pivotal role in delivering the prescription dose
to the target, while sparing the normal tissues by stopping the
proton beam at the distal end of the target (1–4). In order to
cover the entire target with a desired dose, the pristine Bragg
peak has to be modulated to the spread-out Bragg peak (SOBP)
in terms of target size and depth (5–7). Due to the complexity of
proton beamline to form various SOBPs in a double scattering
proton machine, it is hard to model the output accurately.
Therefore, most proton centers with a double scattering beam
system have to measure the output of patient-specific proton
beams in a water phantom to determine the required machine
output, mostly in terms of monitor unit (MU).

In order to obtain the output of a proton beam conveniently
and verify the output measurement, Kooy et al. proposed a semi-
empirical analytical method to estimate the output as a function
of r = (R - M)/M, where R and M denote the beam range and
modulation, respectively (8, 9). This formula implements a basic
model as a function of r and also corrects for the effective source
position based on the inverse square law. However, this model
was sensitive to the definition of range and modulation (10). A
variation of 18% in output was observed at beam data with small
modulation (10, 11). Therefore, Lin et al. proposed a
parameterized linear quadratic model which defined r with a
limited length of modulation (11). With this correction, the
relative errors of predicted outputs compared to measured values
were less than 3%. Besides, the basic model of output in Kooy’s
method was also fitted by the fourth-order Taylor polynomial
multiplied by a range-related factor, which was close to unity
(12). In terms of a comparison between Kooy’s original method
and the Taylor series approach, the predicted values from the
Taylor series approach were closer to the measurements. Sahoo
et al. comprehensively analyzed the determination of output
from the proton machine beamline, where the relative output
factor, SOBP factor, and range shifter factor were the primary
factors to determine the output (13). The result also showed a
good agreement to the measurement within 2% for 99% of those
fields. However, this method required a large amount of
measurements to verify the conversion from the SOBP factor
and range shifter factor to the output, which was time-
consuming and complicated. Machine learning (ML) models
have also been used in output prediction (14). Sun et al.
compared the accuracy of output from machine learning and
2

Kooy’s method (10). Up to 7.7% of relative error from Kooy’s
method was reduced to 3.17% by machine learning.

We propose three analytical models and three machine
learning algorithms for output estimation. The analytical
models include a polynomial fitting model, a linear fitting
model, and a logarithm–polynomial fitting model, all with
different equations for different options. The machine learning
algorithms utilize the Gaussian process regression (GPR) model
with different kernels to test the accuracy of output estimations,
with one single model for all options. The definition of R and M
is consistent with the machine vendor’s definition, and the data
are from our clinical beam measurement. The comparison
between predicted and measured outputs was performed. In
addition, the minimum number of beam data measurements
needed for building a robust model is discussed, which can
provide some insights for clinical implementation.
MATERIALS AND METHODS

Introduction of the Proton Machine
Mevion (Mevion Medical Systems, Inc., Littleton, MA) S250
utilizes a double scatter system to broaden the pencil beam and
creates a uniform dose distribution with a beam shaping system.
The beam shaping system includes primary and secondary
scatters, one absorber, and one range modulator, which spread
out the Bragg peak. There are two types of nozzles on the inner
gantry, a large applicator (maximum 25 cm in diameter) and a
small applicator (maximum 14 cm in diameter), respectively. A
brass aperture mounted on the applicator shapes the proton
beam to cover the target. A compensator mounted at the end of
the applicator modulates the distal end of the proton beam.
There are 24 options with different beam ranges, beam
modulations, and field sizes, as listed in Table 1. The first 12
options are large options to be used with the large applicator. The
other 12 options are deep/small options to be used with the
small applicator.
Output Measurement
Due to the complexity of the proton beamline in a double
scattering system, the Varian Eclipse treatment planning
system (TPS) (Varian Medical Systems, Palo Alto, CA) does
not provide MU directly for a proton beam. Instead, the output
has to be determined manually for each clinical proton beam.
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To determine the MU for a clinical proton beam, a
verification plan was generated by copying the original clinical
proton beam to a water phantom with the same proton energy
fluence. Regardless of the setup in the original clinical plan, a
consistent setup with SSD = 190 cm was used in the verification
plan. The compensator in the original clinical plan was removed
in the verification plan to reduce measurement uncertainty. A
reference point was added to determine the dose at the mid-
SOBP of the beam, and the output measurements were
conducted in the water phantom at the mid-SOBP of the same
proton beam with a Farmer chamber (IBA Dosimetry America
Inc., Memphis, TN) at SSD = 190 cm. Attention was paid to the
in-plane location of the reference point to ensure lateral charge
particle equilibrium for accurate dose prediction. Sun et al. and
Sahoo et al. demonstrated that the field size effect is negligible
with a field opening of at least 5-cm diameter (10, 13). If the
verification point was blocked, it was shifted. The same setup was
then applied in a water phantom for absolute dose measurement.
The absolute point dose at the verification point of 100 MU was
measured following the IAEA TRS398 protocol (15). The output
was essentially d/MU, where d was the absolute point dose
measured, and MU was 100. Given the outputs were the same
for both clinical beam and verification beam, the MU of the
patient-specific beam would be calculated by taking the ratio of
the verification point dose from TPS to the measured output.

Analytical Model-Based Output Estimation
In order to validate and verify and eventually replace the manual
measurement, output models were built based on previous
measurements. Analytical models using an empirical formula
to convert from range/modulation to output were built for each
Frontiers in Oncology | www.frontiersin.org 3
option, based on 1,785 proton clinical field measurements. 1,544
clinical proton fields from 2015 to 2019 were categorized as
training dataset and the rest (241 fields) as the testing dataset.
Three analytical models were employed to estimate the output
and compared to the measurement as reference. The specific
workflow of data modeling and accuracy verification is shown
in Figure 1.

Polynomial Fitting Model
The polynomial fitting model is an adaptation of Kooy’s
empirical formula. A simple demonstration is shown for better
understanding. In Kooy’s formula (9), output is a function of r =
(R - M)/M. According to the vendor definition, R is defined as
the depth at distal 90% of the normalized percent depth dose and
M is defined as the length between proximal 95% and the distal
90% of the normalized percent depth dose. The basic model of
Kooy’s formula is expressed in Ferguson et al. (12) as

d=MU(r(R,M))

=
CF � yc � Dc

100=(1 + a0ra1)
� ½s0 + s1(R − RL)�

� ESAD(r) − Dzp
ESAD(r) − Dzp − Dz

 !2

(1)

The first term of Eq. 1 is the basic output prediction; the
second term corrects the variation of output related to the virtual
source position; and the third term is inverse square related.

A polynomial equation of each option was fitted to replace the
basic model in Eq. 2 (12):
TABLE 1 | The statistics of all options.

Max range (cm) Min range (cm) Max modulation (cm) Training field Testing field

Option 1 25.0 22.6 20.0 55 8
Option 2 22.5 20.9 20.0 40 8
Option 3 20.8 18.8 20.0 76 20
Option 4 18.7 16.8 18.7 99 22
Option 5 16.7 14.9 16.7 68 18
Option 6 14.8 13.2 14.8 81 13
Option 7 13.1 11.5 13.1 90 20
Option 8 11.4 10.0 11.4 98 22
Option 9 9.9 8.6 9.9 90 19
Option 10 8.5 7.3 8.5 86 9
Option 11 7.2 6.1 7.2 45 3
Option 12 6.0 5.0 6.0 21 2
Option 13 32.0 29.6 10.0 3 0
Option 14 29.5 27.1 10.0 12 0
Option 15 27.0 24.6 10.0 37 8
Option 16 24.5 22.1 10.0 49 2
Option 17 22.0 20.1 10.0 7 1
Option 18 20.0 17.8 20.0 19 5
Option 19 17.7 15.4 17.7 52 6
Option 20 15.3 13.3 15.3 105 14
Option 21 13.2 11.2 13.2 173 11
Option 22 11.1 9.1 11.1 123 12
Option 23 9.0 7.0 9.0 65 9
Option 24 6.9 5.0 6.9 50 7
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d=MU(r(R,M))

= (p0 + p1r + p2r
2 + p3r

3 + p4r
4)� ½s2 + s3(R − RL)�

� ESAD(r) − Dzp
ESAD(r) − Dzp − Dz

 !2

(2)

where s2 and s3 are the option-specific fitting parameters.
In terms of the fitting data, Ferguson et al. listed the values of

s0 and s2 in different options and those are very close to unity
(12). s1 and s3 were found to be much less than s0 and s2;
therefore, the variation of second terms from unity could be
negligible. The third term is only to correct the measurement
position if the effective source is not located at the middle SOBP.

To simplify the calculation of output, we replaced the SAD
setup with the SSD setup in our method, in which Dz is always
zero and the third term equals unity.

Therefore, the equation of output estimation can be
approximated by a quadratic Taylor polynomial in Eq. 3.

d
MU= = a� r2 + b� r + c, (3)

where r = (R – M)/M, d/MU denotes the output and a, b, and c
are the fitting parameters.
Linear Fitting Model
The linear fitting model estimates output as the function of the
logarithm of R/M (Eq. 4). The rationale of choosing this model
was to space out data points clustered in the low R/M region, as
observed from the polynomial model. From the polynomial
fitting graph, it was observed that the output variations in the
low R/M region (full modulation) were larger, with a lot more
data points than the high R/M region (Figure 2). This finding is
consistent with what Sun et al. and Kim et al. reported (10, 16).
This model can be expressed as

log d
MU=

� �
= k� log R

M=
� �

+ b (4)
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where d/MU, R, and M are the variables, and k and b are the
fitting parameters.

Logarithm–Polynomial Fitting Model
The logarithm–polynomial fitting algorithm is an independent
model from the previous two models, since the variables in
previous models are both related to R/M. To build a model with a
different variable, while still keeping the model accurate, different
approaches were made and the most accurate one was selected.
In this model, the output is the function of logarithm(R)/
logarithm(M) in Eq. 5.

d
MU= = a 0 �r 02 +b� r 0 +c 0, (5)

where r′ = log(R)/log(M), and a′, b′, and c′ are the
fitting parameters.

Machine Learning-Based
Output Estimation
Different from analytical methods, machine learning (ML)
methods do not need to model option by option. Instead, they
use option number, beam range, and modulation to predict the
output. To test the efficacy and accuracy of ML modeling, three
ML GPR models with different kernels, including exponential
kernel, squared exponential kernel, and rational quadratic kernel,
were used for the output calculation (17). The model is shown in
Eq. 6.

y = h(x)b + f (x) (6)

where h(x) is a set of basic functions that transform the original
feature vector x into a new feature vector h(x), and f(x) models
the uncertainties from the system.

GPR is a non-parametric Bayesian approach toward
regression problems that can be utilized in exploration and
exploitation scenarios (17, 18). It predicts the output data by
incorporating prior knowledge and fit a function to the data. The
Gaussian process is a set of random variables, such that any finite
number of them has a joint Gaussian distribution. The mean
FIGURE 1 | Workflow of model fitting and testing for analytical/ML models.
January 2022 | Volume 11 | Article 756503
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function of f(x) is 0, and the covariance function is k(x, x′), that
is, f(x)~GP(0, k(x, x′)).

The probability distribution of y is

P(yi f (xi), xi) ∼ N(yij jh(xi)Tb + f (xi),s
2) (7)

which can be written in matrix form as

P(y f ,X) ∼ N(yij jHb + f ,s 2I) (8)

where

X =

xT1

⋮

xTn

0
BB@

1
CCA, y =

y1

⋮

yn

0
BB@

1
CCA,H =

h(xT1 )

⋮

h(xTn )

0
BB@

1
CCA, f =

f (x1)

⋮

f (xn)

0
BB@

1
CCA (9)

Then,

P(f X) ∼ N(fj j0,K(X,X)) (10)

K is the covariance matrix

K =

k(x1, x1) ⋯ k(x1, xn)

⋮ ⋱ ⋮

k(xn, x1) ⋯ k(xn, xn)

0
BB@

1
CCA, (11)

where k is the kennel function.
The kernels play very significant roles in the regression

modeling and can map the features from the original values to
the featuring spaces by involving the latent variables. In this
model, three kernel functions were used, including exponential
kernel, squared exponential kernel, and rational quadratic kernel.

After the training process, 5-fold cross-validation was
performed to prevent overfitting. Then, the obtained models
were evaluated using the parameters from the testing sets.
Frontiers in Oncology | www.frontiersin.org 5
Robustness of Models Related to
Sampling Numbers
The robustness of output models could be impacted by the
number of data fed into the model. The evaluation of
minimum number of data necessary for a robust model was
conducted by comparing different model outputs with increasing
number of inputs. Models were built with different sampling
numbers, randomly selected from the original training dataset.
The sampling numbers ranged from 10 to the number of training
datasets. Each time a new model was generated, and the mean
average percentage error (MAPE) was calculated to evaluate the
differences between predicted outputs and the corresponding
measurements. The comparisons were performed per option for
polynomial models.
Difference Between Analytical and ML
Models
Analytical fitting models and ML models play independently in
output estimation, as can be seen in Figure 1. Although both
polynomial model and ML GPR model with exponential kernel
may be robust and accurate enough to be within clinical
tolerance, the predicted output from the two models can be
different. Also, a cross check of output is essential to verify the
accuracy and effectiveness of the two methods. To assess the
difference between the two models, 1,000 random points within
the range and modulation of each option were generated to
estimate output by using these two models, and the MAPE of
predicted outputs and the corresponding measurements for the
two models were calculated for each point. The estimated output
with different combinations of range and modulation were
compared between these two models and also to the
measured output.
A B C

FIGURE 2 | Model-based fitting curves for Option 5, including the polynomial fitting curve (A), the linear fitting curve (B), and the log-polynomial fitting curve (C). 3%
confidence level in red dashed line. Number of data points n = 68.
January 2022 | Volume 11 | Article 756503
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RESULTS

The total clinical fields including training data and testing data
were categorized into 24 options (Table 1). In this table, Options
4, 6, 7, 8, 9, 10, 20, 21, and 22 were mostly used in clinic with
sample numbers larger than 80.
Accuracy Analysis of Output Estimation
A deviation of 3% was used as tolerance in clinical output
estimation. The analytical fitting curve of Option 5 is
presented as an example in Figure 2 to show the absolute
error of modeling output relative to the measured value. The
output is plotted as a function of R and M, with polynomial fit in
Figure 2A, linear fit in Figure 2B, and logarithm–polynomial fit
in Figure 2C. The red dashed line represents ±3% from the
predicted output. The blue scattered marks representing the real
measurements are all within ±3% of the predicted value in
Option 5, indicating accurate prediction for three models. The
coefficient of determination of each fitting curve is provided
on Figure 2.

The histograms of the relative deviation of all 24 options are
categorized in Figure 3. Compared to the other two analytical
models, the polynomial fitting model provided a better
agreement with measurement data, with all deviations within
±3%. In ML GPR models, the exponential kernel showed a more
accurate output estimation than the other two with less than ±2%
deviation from the measurement. The 5-fold cross-validation
results are shown in Figure 4, which showed a similar
performance as the training model. In addition, the testing
data were imported into analytical and ML GPR models to
verify the effectiveness and accuracy of output estimation
(Figure 5). It was observed that the polynomial fitting model
still provided a good output estimation within 3% deviation, and
all the ML models also exhibited deviation within ±3%. To
summarize, the polynomial model and ML GPR model with
exponential kernel showed the best performance among all 6
models, with less than ±3% deviation from all measurement data.
Minimum Number of Fields Needed for
Polynomial Model and ML GPR Model
With Exponential Kernel Model
The trend of MAPE of models compared to measurements is
shown in Figure 6. For the polynomial model, since it is specific
to each option, Option 9 and Option 22 were chosen as the
representatives of the polynomial model because of higher
sample numbers available, as shown in Figure 6A. The trend
of MAPE for the ML GPR model with the exponential kernel is
shown in Figure 6B, with data from all options. As observed in
this figure, the relative error in Options 9 and 22 both converged
to be around 1% or less once 20 data points were used for
building the polynomial model. For the ML GPR model with the
exponential kernel, the convergence of MAPE was reached at
around 400 data points, regardless of the option.
Frontiers in Oncology | www.frontiersin.org 6
Evaluation of Difference Between
Analytical Models and ML Models
Comparisons of output estimation between the polynomial
fitting model and the ML GPR model with the exponential
kernel for Options 8 and 22 are shown in Figure 7. MAPE for
1,000 randomly generated points between the two models are
shown with corresponding R and M. Measurement data are
marked as pink scattered points overlaid on the figure. It is
shown in Figure 7 that the two models agreed well in the regions
where there were measurement data, with MAPE less than 2%.
Considerable differences in the outputs were observed beyond
the measurement region. More intuitive figures are shown in
Figure 7B where the general trend of outputs splits in between
polynomial andMLmodels with the decrease of modulation, and
this split in 3D graphs illustrates the trend of difference between
the two models.
DISCUSSION

Patient-specific output estimation in a double scattering proton
machine has to rely on manual measurement, which can be a
labor-intensive and error-prone process, so it is valuable to build
models to second-check manual measurement, and the ultimate
goal of the study is to build an automatic output estimation and
MU determination process.

The output estimation derived from three analytical fitting
models and three ML GPR models with different kernels was
demonstrated and compared to the measurements. The
polynomial fitting model and ML GPR model with the
exponential kernel with the best performance were chosen. In
terms of the distribution in the histogram, the polynomial fitting
method provided the most accurate output estimation in
analytical methods and the ML GPR model with the
exponential kernel could provide more accurate output
prediction than the other two ML GPR models. Also, the
relative errors between the estimated and measured output for
the polynomial fitting model and ML GPR model with
exponential kernel were always within ±3% in both training
data and testing data. Therefore, it is proof that those two models
could be adopted as the output estimation models. Also, since
they are two independent models, it is suggested that they can be
used as second-check tools for clinical measurement, and also a
cross-check tool for each other.

Compared with other models reported in literature, our
models are more stable and accurate in output estimation. It
has been reported by Kooy et al. (8, 9) that there was a large
deviation between calculated and measured output in full range
and full modulation. Sun et al. (10) also reported an apparent
difference (>3%) even using their MLmodels. Comparatively, the
advantage of our polynomial model and the ML GPR model is
that the difference between the measured and calculated output is
within 3%, which satisfies the clinical requirement and is thereby
reliable for clinical use.
January 2022 | Volume 11 | Article 756503
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A B

D E F

C

FIGURE 3 | Histograms of percent difference between analytical/ML GPR models and measurements using training data.
A B C

FIGURE 4 | Histograms of percent difference between the ML GPR models and measurements using 5-fold cross-validation.
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The polynomial model is an expansion of Kooy’s empirical
formula using Taylor series. This approach is similar to the
equation developed by Ferguson et al. (12) but using a lower
order of polynomials, thus simplifying the equation. As shown in
the results, the performance of our quadratic polynomial model
is comparable to their quartic polynomial model, as both models
can achieve an accuracy of ±3%. The reason for the polynomial
model to outperform the logarithm–polynomial model is
probably because the variable of the polynomial model is r =
(R–M)/M, same as that in Kooy’s empirical model (8), which is a
theoretical equation derived from physical properties of proton
beam lines, while the variable of the logarithm–polynomial
model is r′ = log(R)/log(M). The result of better performance
of the polynomial model proves that the proton output is truly
related to R/M. The intention of building the linear model was to
space out data points clustered in the low R/M region, as
observed from the polynomial model, to avoid overfitting.
Frontiers in Oncology | www.frontiersin.org 8
However, as the results show, the linear curve cannot simulate
the trend of training data, thus resulting in a larger deviation. As
a result, the other two analytical models cannot predict the
output with similar accuracy as the polynomial model.

The reason to choose the GPR model for the output
prediction is that the kernel functions can be used. Prior
knowledge and specifications about the shape of the model can
be added by selecting different kernel functions. Meanwhile, the
Gaussian process directly captures the model uncertainty. In this
way, the output model can be described as a distribution rather
than approximated values. The exponential kernel was based on
the assumption that the Euclidean distances between different
data points were Laplacian distributed. The squared exponential
kernel used another assumption that the Euclidean distances
were normally distributed. The rational quadratic kernel can be
seen as a scale mixture of squared exponential kernels with
different characteristic length-scales (17). In this paper, the
A B

D E F

C

FIGURE 5 | Histograms of percent difference between analytical/ML models and measurements using testing data.
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distributions of modulations and ranges were close to sparse, so
the Laplacian distribution might be a better option, resulting in
that the exponential kernel exhibited better performance.

The number of data needed for establishing a robust
polynomial model was estimated by the MAPE trend with
increasing data points. Options 9 and 22 were shown as an
example that the MAPE converged once the number of training
data increased to 20. This gives a simple guidance on the number
of data necessary to build an accurate polynomial model for an
option. Among all options, some of them were rarely used,
especially the deep options (option 13 with 3 beams, option 14
with 12 beams, option 15 with 37 beams, option 17 with 7 beams,
and option 18 with 19 beams). This is because clinically we tend
to plan the proton beam to penetrate through a shorter path if
possible, leading to lower usage of deep-ranged options. For
those options with fewer data points, a polynomial-based output
model would not be recommended. Instead, manual
measurement would be required, until enough data points
are accumulated.

For the ML GPR model with exponential kernel, convergence
of MAPE to 1% was observed after the input of 400 fields. This
needs to be clarified that when building the ML models, range
and modulation as well as the option number were inputs to the
model. Sun et al. also estimated the minimum number of fields
needed for the ML cubist model (10). In their study, the mean
absolute error converged to 0.7% after 1,200 data points. Their
learning curves also showed a mean absolute error around 1% at
400 samples. Since the ML model does not discriminate different
options, and some options may have fewer data samples than
others, validation of accuracy of the model in all options is
needed before clinic implementation.

The polynomial fitting model and ML method could be used
as independent secondary check, and eventually the primary
output estimation, replacing measurements. This requires the
Frontiers in Oncology | www.frontiersin.org 9
assessment of the agreement between two models. From
Figure 7, the MAPE between two models was less than 2% if
the data points lay within the region where there existed
measurement data. Beyond this region (e.g., M = 2–6 cm in
Option 4), the two models showed obvious different trends with
increasing differences, which indicated that the user must
evaluate the accuracy of output prediction with extra
measurements; otherwise, the model cannot be used beyond
the region with real measurements. It is suggested that the
models should only be trusted to replace measurements with
judgment that the beamline (R and M) falls within the region
with enough measurement data.

Even though the polynomial fitting model and ML GPR
model with the exponential kernel proved their feasibility for
output estimation, it is still essential to pay attention to MU
determination, as not only is the MU related to output but also its
accuracy is related to the verification point dose. The accurate
selection of the verification point is pivotal in MU determination.
It is recommended to perform a sanity check on the MU of a
clinical plan. A simple sanity check is to compare calculated MU
to the prescription dose multiplied by the field weighting. The
rationale of this sanity check is because the output is always close
to 1. Future work includes automatic MU determination with
Eclipse Scripting, to help get rid of the uncertainty of manual
selection of verification points. Nevertheless, whether the output
is measured or modeled, the MU must be verified prior to
clinical treatment.
CONCLUSIONS

MU determination including output measurement is one of the
most time-consuming and complicated works in patient QA for
double-scattering proton machines. Compared with the output
A B

FIGURE 6 | Mean average percentage error (MAPE) of polynomial model (A) and ML exponential kernel model (B) with the increase in fitting data.
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measurement, analytical fitting models or ML models are more
efficient to provide output estimation. Out of the six models
presented in this paper, the polynomial model and ML GPR
model with the exponential kernel both show accurate
estimation, and the accuracy meets the clinical requirement
(within ±3%). The minimum number of data needed to build a
robust model is provided, although it is suggested that the
validation of accuracy of the model is needed before clinical
implementation. These independent output estimations can
serve as second-check tools for measurements and have
potential to replace the measurement as part of the standard
MU determination procedure. The models exhibit robustness
within the region where there exist measurement data, and the
accuracy beyond the region with real measurements must be
evaluated with extra measurements.
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