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Abstract

Understanding of genotype-phenotype associations is important not only for furthering our knowledge on internal cellular
processes, but also essential for providing the foundation necessary for genetic engineering of microorganisms for
industrial use (e.g., production of bioenergy or biofuels). However, genotype-phenotype associations alone do not provide
enough information to alter an organism’s genome to either suppress or exhibit a phenotype. It is important to look at the
phenotype-related genes in the context of the genome-scale network to understand how the genes interact with other
genes in the organism. Identification of metabolic subsystems involved in the expression of the phenotype is one way of
placing the phenotype-related genes in the context of the entire network. A metabolic system refers to a metabolic
network subgraph; nodes are compounds and edges labels are the enzymes that catalyze the reaction. The metabolic
subsystem could be part of a single metabolic pathway or span parts of multiple pathways. Arguably, comparative
genome-scale metabolic network analysis is a promising strategy to identify these phenotype-related metabolic
subsystems. Network Instance-Based Biased Subgraph Search (NIBBS) is a graph-theoretic method for genome-scale
metabolic network comparative analysis that can identify metabolic systems that are statistically biased toward phenotype-
expressing organismal networks. We set up experiments with target phenotypes like hydrogen production, TCA
expression, and acid-tolerance. We show via extensive literature search that some of the resulting metabolic subsystems
are indeed phenotype-related and formulate hypotheses for other systems in terms of their role in phenotype expression.
NIBBS is also orders of magnitude faster than MULE, one of the most efficient maximal frequent subgraph mining
algorithms that could be adjusted for this problem. Also, the set of phenotype-biased metabolic systems output by NIBBS
comes very close to the set of phenotype-biased subgraphs output by an exact maximally-biased subgraph enumeration
algorithm ( MBS-Enum ). The code (NIBBS and the module to visualize the identified subsystems) is available at http://
freescience.org/cs/NIBBS.
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Introduction

Certain industrial processes, such as the production of hydrogen

and ethanol, benefit from using prokaryotic or eukaryotic organ-

isms to produce, reduce, and convert important chemical com-

pounds [1,2]. Bioengineers search for ways to modify phenotypic

traits, or phenotypes, of these organisms to improve the overall pro-

cess efficiency [3]. Modifications to the organism’s phenotype are

made through modifications to its genome. In order to obtain the

desired changes in the organism’s phenotype, engineers require a

deciphering of which genes are related to the expression of the

given phenotype, also known as genotype-phenotype associations [4,5].

Unfortunately, such an understanding has not kept pace with the

rate at which genes are discovered [6].

Uncovering genotype-phenotype associations could be greatly

improved if organism’s metabolic systems involved in the phenotype

expression were understood [7]. These systems involve multiple

metabolic reactions that are grouped into functionally-distinct

modules called metabolic pathways [8]. Changes to the enzymes in

these modules can affect the expression of the phenotype of interest.

Thus, it is imperative to be able to identify all of the enzymes that

make up a phenotype-related metabolic system.
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The task of identifying a phenotype-related metabolic system

consists of two main subtasks: determining the metabolic system

and establishing that it is phenotype-related.

Understanding how a system has been evolutionarily conserved

has been used as an approach to accomplish both tasks. If a set of

interacting metabolic reactions are important for expressing the

target phenotype, then there likely exists an evolutionary pressure

to conserve the set as a whole, or to have them co-present together,

in multiple organisms [9]. The assumed reason for this evolution-

ary pressure is that the set forms a metabolic system whose

function is required by the organism and by its descendants [9].

This is the motivation behind network alignment and phyloge-

netic profiling approaches proposed to-date. The former [9–13]

look for subgraphs that exist in metabolic networks of multiple

organisms. The latter [4,5,14] seek to find genes or enzymes that

are more likely to be present in phenotype-expressing organisms

than in phenotype-non-expressing organisms due to an evolution-

ary pressure to conserve the phenotype-related enzymes [14].

However, neither network alignment nor phylogenetic profiling

approaches can alone identify phenotype-related metabolic sys-

tems. Network alignment algorithms can identify metabolic sys-

tems present in all or most of a given set of organisms; such a set is

typically small, e.g., less than 10 networks. However, even if the set

of organisms exhibit a common phenotype, current network

alignment approaches cannot distinguish phenotype-related met-

abolic systems from other common metabolic systems. Addition-

ally, network alignment approaches would likely not identify a

metabolic system if it is only common to a subset of the organisms

being compared.

Phylogenetic profiling approaches can identify phenotype-

related enzymes that are specific to phenotype-expressing organ-

isms. However, it is possible that enzymes that are part of a

phenotype-related metabolic system will not be specific to

phenotype-expressing organisms; therefore, these approaches will

likely miss them. Additionally, it would be computationally intrac-

table to compare the presence of every possible set of enzymes to

the presence of the phenotype.

In order to address these and other limitations of existing

methods, in this paper, we introduce the Network Instance-Based

Biased Subgraph Search ( NIBBS-Search ) algorithm (Figure 1)

that enables in silico, fast, and accurate prediction of phenotype-

related metabolic systems. The predictions arise from comparative

analysis of multiple genome-scale metabolic networks. The

approach is capable of predicting phenotype-related metabolic

systems that are unlikely to be found by current in silico methods.

These include but are not limited to metabolic systems that are

specific to a subset of the phenotype-expressing organisms that

may exhibit a sub-phenotype of the target phenotype (e.g., dark

fermentative, light fermentative or bio-photolytic sub-phenotypes

of biohydrogen production phenotype).

A network structure–a maximally-&-phenotypically-biased subgraph

( MPBS )–is introduced to model phenotype-related metabolic

systems in a set of metabolic networks derived for dozens or even

hundreds of organisms. To assess NIBBS-SEARCH ’s accuracy, we

first present the Maximally-Biased Subgraph Enumeration ( MBS-

Enum ) method that exactly enumerates all MPBS s in a given set

of networks; these subgraphs are then used for comparison with

the NIBBS-SEARCH results. To overcome MBS-ENUM’s computa-

tional complexity, NIBBS-SEARCH heuristically approximates the

set of MPBS s in the set of networks. NIBBS-SEARCH runs orders of

magnitude faster than MBS-Enum , while identifying with high

sensitivity subgraphs that are statistically significant approxima-

tions of the set of MPBS s. Also, the NIBBS-SEARCH -predicted

systems contain known phenotype-related enzymes and pathways,

including those that only exist in a subset of the phenotype-

expressing organisms.

Results

Overview of NIBBS
The NIBBS algorithm identifies phenotypically-biased edges from a

metabolic map called the seeds and then expands each seed into a

maximally, phenotypically-biased metabolic system. The method

requires a set of organisms that express the phenotype of interest

and ones that do not. A phenotype-profile vector is built for the

organism set (see Figure 1). This organism phylogenetic profile

vector and the organism-specific metabolic maps from the KEGG

database [15–17] are provided as input to NIBBS. The organism-

specific metabolic map is a graph, each edge corresponding to a

metabolic reaction, substrates and products as its vertices at the

two ends of the edge, and the edge label is the enzyme that

catalyses the reaction. NIBBS as its first step identifies the

phenotypically-biased edges called seeds. Informally, an edge is

phenotypically-biased if it is present in a larger number of

phenotype expressing organisms when compared to phenotype

non-expressing organisms. The seed edges are then expanded into

maximally, phenotypically-biased metabolic subsystems by the addition

of other edges from the genome-scale metabolic map. The details

are discussed in the Methods section.

Materials
We identified both phenotype-expressing and phenotype non-

expressing organisms via literature search. We primarily analyzed

six main phenotypes, aerobic respiration, anaerobic respiration,

TCA (citrate cycle) expression, rTCA (reverse TCA) expression,

hydrogen production, and acid-tolerance. We also looked at three

sub-phenotypes of hydrogen production: dark fermentation, light

fermentation, and bio-photolysis. The summary of the organisms

used for each experiment is listed in Table 1. We used the

metabolic networks and enzyme lists available in the KEGG

database [15–17]. The results for all the experiments are available

as supplemental files in the website mentioned in the abstract.

Organism selection process. For this study, we selected sets

of completely sequenced genomes representative of both pheno-

type and phenotype non-expressing microorganisms. Genomic

Author Summary

Genetic engineers often seek to modify the physical traits
of microorganisms used in industrial processes in order to
improve the efficiency of the overall process. The genes
targeted for modification in these cases are typically
identified by searching for genes whose presence in an
organism is correlated with the presence of the physical
trait. In the last few years, however, it has become
understood that the physical traits of an organism are
often the result of a coordinated set of interactions
between multiple genes that make up a biological
subsystem. This gives rise to a computational tractability
problem, since the number of possible sets of genes is
exponentially larger than the number of genes in an
organism. Here, we use biological networks to limit the
search space to sets of genes known to interact. The
presence of the biological subsystems identified by this
approach are shown to be significantly correlated to the
presence of the phenotype. The results show that this
framework can provide potential genetic targets for
modifying the expression of a given phenotype.

NIBBS-Search

PLoS Computational Biology | www.ploscompbiol.org 2 May 2012 | Volume 8 | Issue 5 | e1002490



information for each organism within the dataset was obtained

from the KEGG database and then incorporated into the NIBBS

Search algorithm. For each phenotype, an extensive literature

review of published papers and microbial databases was conducted

to identify representative microorganisms. Examples of microbial

databases searched include the Department of Energy’s (DOE’s)

Joint Genome Institute (JGI) and the National Center for

Biotechnology Information (NCBI) database. To ensure our

results captured biochemical processes related to the phenotype

in question and not of a specific genus, each data set contained a

diverse group of microorganisms representative of various taxa.

The only exception is the acid-tolerant phenotype. In this case, the

organism list consisted mainly of Firmicutes. The entire list of

organisms used in the various experiments is available in Table S1.

In the following sections, we demonstrate the applicability of the

NIBBS-SEARCH algorithm to identify phenotype-related metabolic

processes involved in the production of biological hydrogen. In

addition to hydrogen production, we included the acid-tolerant

phenotype to our studies to identify potential acid-tolerant

response systems. For hydrogen producers, the presence of these

systems is important in respect to acidogenesis. During acidogen-

esis, organic acids e.g., butyrate and acetate are produced,

resulting in the lowering of pH within the environment [18].

Without a response system, microorganisms will shift their

metabolic routes from the production of acids and hydrogen to

the production of solvents [19].

To further validate the NIBBS-SEARCH algorithm’s ability to

predict phenotype-related metabolic processes (e.g., enzymes and

Figure 1. NIBBS methodology overview; The generic metabolic map is taken and converted into organism specific metabolic map,
using the enzyme information of each organism. These networks along with the other algorithm parameters are used to first construct seed
sets. These seed sets are then expanded into the final metabolic subsystem that is output by the algorithm. The details are provided in the Methods
section.
doi:10.1371/journal.pcbi.1002490.g001

Table 1. Number of organisms per phenotype.

Phenotype
Phenotype
Expressing

Phenotype Non-
expressing

Aerobic 33 54

Anaerobic 54 33

TCA 15 6

rTCA 6 15

Hydrogen Production 17 11

Dark Fermentation 8 11

Light Fermentation 5 11

Bio-photolysis 4 11

doi:10.1371/journal.pcbi.1002490.t001

NIBBS-Search
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subpathways), we selected the aerobic, anaerobic, TCA, and

rTCA expressing phenotypes. The aerobic and anaerobic

phenotypes are both well-characterized, thus we can validate

through literature known phenotype-related biochemical process-

es. The TCA and rTCA expressing phenoyptes were selected to

demonstrate the ability of the NIBBS-SEARCH algorithm to identify

phenotype-related enzymes within pathways that contain common

enzymes. While these two studies do not directly relate to

hydrogen production, they do serve to demonstrate the sensitivity

of the algorithm.

Bio-hydrogen Production
Hydrogen-production phenotype overview. Production of

biological hydrogen is a potentially important sustainable tech-

nology for generation of alternative energy and fuels. The

continuously growing number of naturally occurring microorgan-

isms able to utilize various metabolic processes and organic

substrates to generate hydrogen gas makes bio-hydrogen produc-

tion a feasible option for development of bio-energy technolo-

gies[20–22]. One such technology of particular interest is the

utilization of wastewater and waste materials for bio-hydrogen

production[21,23]. In these systems waste materials, such as food

waste, contain numerous organic compounds that can be utilized

by hydrogen producers for microbial growth and production of

hydrogen gas [21].

Hydrogen-production types: Dark, Light, and Bio-

photolysis. To generate hydrogen gas, hydrogen producers

utilize one of three main metabolic processes. They are light

fermentation, dark fermentation of organic matter, and decom-

position of water by photosynthesizing microorganisms (bio-

photolysis) [18,20,24]. A summary of these metabolic processes

is provided below since they have been outlined in detail elsewhere

[23,25,26]. Bio-photolysis, photosynthetic organisms can break-

down water molecules into hydrogen gas and oxygen

[18,20,27,28]. Production of hydrogen through this process can

be carried out either directly by exposure to solar radiation or

indirectly under dark (fermenting) conditions [29]. In light

fermentation, organisms utilize simple organic compounds as a

carbon source (e.g., glucose and sucrose) and a light source (e.g.,

sunlight) to generate hydrogen [18,28,30]. Dark fermentative

bacteria differ from the previous two hydrogen-producing

methods in that hydrogen evolving reactions are carried out

without light energy by a number of heterotrophic bacteria

[20,31]. In this process, hydrogen is produced from dark

fermentation reactions when organic substrates are utilized by

heterotrophic bacteria as both the carbon and energy source for

heterotrophic growth [20,31]. Of the hydrogen-producing organ-

isms associated with wastewater and waste materials, a majority

appear to utilize dark fermentation metabolic processes to produce

hydrogen. As such, in this paper, we focus on dark fermentative

hydrogen production. The NIBBS results are available in Tables

S2, S3, S4, S5, S6, S7, S8, S9, S10, S11.

Dark fermentation. Using Clostridium acetobutylicum as a

model organism for dark fermenting hydrogen producers, the

key metabolic pathways for hydrogen production, shown in

Figure 2, were examined for the presence or absence of enzymes

involved in each pathway. Analysis was conducted using predicted

enzymes by the NIBBS method using the seed set generation

process and the knowledge priors provided by the Student’s T-

Test. The two pathways, acetate and butanoate (i.e., butyrate),

were selected as specific pathways for hydrogen production based

on their potential hydrogen yield.

Table 2 shows that within the acetate pathway, NIBBS

identified all of the constituent enzymes, pyruvate formate lyase

(E.C. 2.3.1.54), acetate kinase (E.C. 2.7.2.1), and phosphotransa-

cetylase (E.C. 2.3.1.8), as present within C. acetobutylicum. Whereas

the T-Test only identified E.C. 2.3.1.8, all seven enzymes active in

the butyrate pathway were found by the NIBBS method. The

component enzymes for this pathway are butyryl-CoA dehydro-

genase (E.C. 1.3.99.2), phosphate butyryltransferase (E.C.

2.3.1.19), butyrate kinase (E.C. 2.7.2.7), 3-hydroxybutyryl-CoA

dehydrogenase (E.C. 1.1.1.157), acetyl-CoA C-acetyltransferase

(E.C. 2.3.1.9), pyruvate formate lyase (E.C. 2.3.1.54), and

crotonase (E.C. 4.2.1.55). Among these, only three were found

by the T-Test.

In addition to the above pathways, the formate pathway was

also reviewed. A general overview of formate production is shown

in Figure 3. While it is not reported in the literature that C.

acetobutylicum utilizes a formate pathway, it is possible that

C.acetobutylicum may contain genes encoding some enzymes

necessary for formate production. Of the three key enzymes

described in Figure 3, NIBBS was able to identify only two of

them. These are pyruvate formate lyase (E.C. 2.3.1.54) and

formate dehydrogenase (E.C. 1.12.1.2). The second enzyme that

along with formate dehydrogenase forms the formate hydrogen

lyase complex is ferredoxin hydrogenase (E.C. 1.12.7.2) [32]. This

enzyme is common in many organisms and is not phenotype-

specific toward dark fermentation.

Other enzymes identified using the NIBBS algorithm, include

those involved in glycolysis and nitrogen fixation. In this study, a

large number of enzymes involved in glycolysis were predicted as

conserved across hydrogen producing organisms but not con-

served across hydrogen non-producing organisms [33]. This is

mostly a result of the ability of the dark fermentative organisms to

utilize organic compounds, such as glucose, for their carbon source.

In terms of hydrogen production, glycolysis is a preliminary

step needed for acetate or butyrate production as was depicted

previously in Figure 2. In addition, glycolysis provides the energy

sources necessary for biological hydrogen production to occur.

Pathways related to dark fermentative hydrogen

production. From analysis of the enzymes identified in the

previous section, the NIBBS algorithm was able to identify the

most relevant metabolic pathways for dark fermentative hydrogen

production. While these pathways are important for hydrogen

production, additional metabolic pathways present within organ-

isms may also play an important role in impacting hydrogen yields.

Using NIBBS, the following pathways were identified as top

ranking metabolic pathways (p{valueƒ0:05) for C. acetobutylicum

(Table S12) with respect to dark fermentative hydrogen produc-

tion using the hypergeometric test (described in the Method

section). They are: fatty acid biosynthesis (KEGG pathway ID

ec00061), purine metabolism (KEGG pathway ID ec00230),

arginine and proline metabolism (KEGG pathway ID ec00330),

and cysteine and methionine metabolism (KEGG pathway ID

ec00270). An overview of these pathways and their relation to

hydrogen production is presented in the following sections. A

complete listing of the pathways with their rankings is presented in

Table 3.

Fatty Acid Biosynthesis: Fatty acids are methylene carbon chains

with a carboxyl group that are generally associated with the

formation of structural membranes and maintenance of the

membrane’s fluidity [34]. Within bacteria fatty acids may be

present in different forms such as branched, long chain, short

chain fatty acids, volatile, or hydroxylated [34]. Formation or

synthesis of fatty acids is generally initiated through the carboxyl-

ation of the acetyl-CoA [35]. In dark fermentative bacteria, such as

C. acetobutylicum, acetyl-CoA is an important intermediary that leads

to formation of acetate, butyrate, solvents, and fatty acids. As such,

NIBBS-Search
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redirection of metabolic pathways away from fatty acid formation

and towards acidogenesis (e.g., acetate formation) is vital for

enhanced hydrogen production.

Analysis of results showed that fatty acid biosynthesis was the

highest ranking metabolic pathway for C. acetobutylicum in both the

phenotype and its sub-phenotype–hydrogen producing organisms

and dark fermentative hydrogen producing organisms, respec-

tively. The presence of this pathway in both categories suggests

that fatty acid biosynthesis may play a key role in regulating

metabolic routes for hydrogen formation, specifically, in dark

fermentation. Findings in this study are similar to previous

reports on the role of fatty acids in acetate and butyrate

formation. In a study by Huang et al. [36], the presence of short-

chained fatty acids during acidogenesis was linked to initiation of

solventogenesis to form butanol and acetone in fermenting

bacteria [36]. This is a resultant of fatty acid build-up within the

cells. As the short chain fatty acids accumulate, bacterial cells

form a transmembrane pH gradient leading to induction of

solvent production [36].

Purine Metabolism: Purines are nucleotide bases that can be found

either in free forms or attached to ribose 5-phosphate to form

nucleotides and nucleic acids [34]. Organisms may synthesize

purine nucleotides for use in the structural make-up of nucleic

acids or use in ATP metabolism [37]. During purine synthesis,

amino acid donors are utilized to form purine rings and other

purine structural components. Examples of amino acid donors

include glutamine and aspartic acid [34]. In free form, purine

nucleotide bases are harmful and toxic to the organisms, so they

must be removed or transformed to non-toxic compounds. As

such, many organisms have mechanisms to anaerobically degrade

purine compounds through fermentation of xanthine into inter-

mediates, which could potentially form acetate and formate [38].

One such organism capable of purine degradation is Clostridium

ljungdahlii [39]. In C. ljungdahlii, purine compounds are degraded to

form intermediates, such as glycine and betaine. These interme-

diates in turn are reduced, resulting in acetate formation by the

enzyme acetate kinase [39,40].

Depending on the respiration requirement of the organisms

(e.g., aerobic versus anaerobic), the degradation pathway used by

microorganisms will vary. In our study, we selected dark fer-

mentative hydrogen producers and within this phenotype, we

include both facultative anaerobic and anaerobic bacteria. As

such, an extensive review of metabolic reactions is necessary to

determine which degradation pathways, if any are utilized.

However, based on the high ranking of this pathway in our study

for C. acetobutylicum, we can predict that purine metabolism

(degradation and synthesis) plays a minor role in generation of

acetate in dark fermentative bacteria.

Figure 2. Schematic of key metabolic pathways for hydrogen production in Clostridium acetobutylicum. Arrows with larger width indicate
a series of reactions. Arrows with narrow width indicate individual reactions. Enzymes: 1, glycolytic enzymes; 2, pyruvate ferredoxin oxidoreductase
(E.C. 1.2.7.1); 3, hydrogenase (E.C.1.12.7.2); 4, phosphotransacetylase (E.C. 2.3.1.8); 5, acetate kinase (E.C. 2.7.2.1); 6, acetyl-CoA acetyltransferase
(thiolase) (E.C. 2.3.1.9); 7, b-hydroxybutyryl-CoA dehydrogenase (E.C. 1.1.1.157); 8, crotonase (E.C. 4.2.1.55); 9, butyryl-CoA dehydrogenase (E.C.
1.3.99.2); 10, phosphotransbutyrylase (E.C.2.3.1.19); 11, butyrate kinase (E.C. 2.7.2.7). Abbreviations: Ferredoxin (Fd); Coenzyme A (CoASH).
doi:10.1371/journal.pcbi.1002490.g002

NIBBS-Search
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Arginine and Proline Metabolism: L-Proline and L-arginine are two

amino acids commonly found within both eukaryotic and

prokaryotic organisms [41,42]. In bacterial cells, L-proline is

synthesized from L-glutamate by glutamate kinase [42,43]. In

addition to biosynthesis of proline, some bacteria have been

reported to take up and utilize proline as either a carbon or

nitrogen source for metabolic growth [44]. In Escherichia coli,

proline and proline betaine have been linked to increased

osmotolerance and protection in cells [45]. Such protection would

be beneficial in dark fermentation species for microbial response to

induce water stress.

L-arginine is also an important precursor in nitrogen metabo-

lism and protein synthesis in bacterial cells [41]. It can be

metabolized by cells to produce other amino acids, including

proline, or utilized by the cell as either a carbon or nitrogen

source. In addition, L-arginine may serve as an energy source for

anaerobic bacteria. This is done through ATP production from L-

arginine in the arginine deiminase pathway [41]. L-arginine

biosynthesis occurs similar to L-proline in requiring L-glutamate as

a precursor to biosynthesis. In this process, L-glutamate is

deaminated through the enzyme glutamate dehydrogenase.

In this study, arginine and proline metabolism was identified as

a potentially important pathway for C. acetobutylicum with respect to

both hydrogen producing organisms and the sub-phenotype, dark

fermentative hydrogen production. In addition to identifying

arginine and proline metabolism in individual species, evaluation

of hydrogen production related enzymes shows that this pathway is

significant and likely related to hydrogen production.

Cysteine and Methionine Metabolism: Methionine is a sulfur-

containing amino acid that is used for biosynthesis of cysteine

[46]. In general, most organisms can either take-up methionine or

synthesize it to form other amino acids and help initiate protein

synthesis [47]. Cysteine is another sulfur-containing amino acid

important for the production of glutathione, a compound that aids

in protecting the cell from oxidative stress [47,48]. In hydrogen

producing organisms, cysteine ligands and residues play an

important role in the structure of [Fe-S] clusters and hydrogenase

enzymes [47,49,50]. Additionally, cysteine ligands aid in the

binding of [Fe-S] clusters together with nitrogenase enzymes [51].

Nitrogenase enzymes are typically found in nitrogen fixing

bacteria and are considered key enzymes to hydrogen production

in light fermentative bacteria [52]. However, studies on nitrogen

fixation have found that many dark fermentative species, such as

Clostridium, are capable of utilizing nitrogenase enzymes [53].

However, in this study we do not consider hydrogen production

through nitrogenase as a key metabolic route. This is mainly due

to the energy expense needed for nitrogen-fixation by organisms

such as C. acetobutylicum.

The role of cysteine and methionine in formation of [Fe-S]

clusters for both hydrogenase and nitrogenase activity demon-

strates the relationship of this cysteine and methionine metabolism

in hydrogen producing organisms. From the analysis, this KEGG

pathway was predicted as a significant metabolic route in both the

C. acetobutylicum and in the set of organisms expressing the

phenotype hydrogen production (see Table 3).

Acid-tolerance
In order to predict enzymes related to a microorganism’s

ability to tolerate low pH conditions, ten acid-tolerant organ-

isms and eight alkaliphiles were analyzed using the NIBBS

algorithm (Table S13). Analysis of the NIBBS enzymes shows

that 73% acid-tolerant enzymes were recalled, when acid-

tolerant organisms were used as positive instance. NIBBS

enzymes predicted 164 enzymes, while the Student’s T-Test

identified only 17 as phenotype-related. Enzymes identified by

the Student’s T-Test and missed by NIBBS included enzymes

involved in central metabolism, amino acid metabolism, and

lactic acid metabolism.

Acid-tolerant enzymes. To identify acid-tolerant enzymes,

C. acetobutylicum was used as our model organism. In many

fermentative, hydrogen producing experiments and in natural

systems, acetogenic Clostridium species are often present. Review of

the literature indicated that C. acetobutylicum and many other

hydrogen producing species can tolerate and maintain hydrogen

production in acidic pH ranging from 4.5 to 6 [36]. To survive,

these organisms have developed metabolic and cellular acid-

tolerance response (ATR) systems to protect themselves when

exposed to acid environments [54]. While a few acid-tolerant or

resistant systems have been described in organisms such as

Lactobacilli, the little is known about metabolic pathways involved

in acid-tolerance, particularly in Clostridium species.

Analysis of the predicted enzymes for C. acetobutylicum did not

reveal a distinct acid resistance metabolic system. However, review

of the predicted enzymes across other hydrogen producers

revealed the potential of an acid resistance system. Identified

enzymes included glutamate decarboxylase (E.C. 4.1.1.15; Gad), a

known enzyme involved in acid-resistance in some microorgan-

isms including Clostridium perfringens, a known hydrogen producer.

In Escherichia coli, C. perfringens, and some Lactobacilli the internal pH

can be neutralized by a decarboxylase system–glutamate and

arginine decarboxylase [54–56]. In Lactobacilli, glutamate decar-

boxylase converts glutamate to c-amino butyric acid (GABA),

which is quickly removed and replaced by another glutamate

molecule [54]. While glutamate decarboxylase plays a vital role in

this decarboxylase system, other proteins and antiporters are

required for neutralization of the internal pH to occur.

Glutamate decarboxylase was only present in three of our ten

acid-tolerant organisms (Table S14). They are Lactobacillus

plantarum JDM1, Lactobacillus plantarum WCFS1, and Clostridium

perfringens ATCC 13124. Prediction of glutamate decarboxylase by

Table 2. Hydrogen-related enzymes detected by different
methods.

Pathway
Name

EC
Number Enzyme Name t M N

Acetate 2.7.2.1 acetate kinase z

2.3.1.8 phosphotransacetylase z z

4.2.1.55 crotonase z z

2.3.1.54 butyryl-CoA dehydrogenase z

Butyrate 1.3.99.2 butyryl-CoA dehydrogenase z

1.3.99.2 butyryl-CoA dehydrogenase z z

2.7.2.7 butyrate kinase z

1.1.1.157 3-hydroxybutyryl-CoA dehydrogenase z z

2.3.1.19 phosphate butyryltransferase z

2.3.1.9 acetyl-CoA C-acetyl-transferase z

2.3.1.54 pyruvate formate lyase z z

Formate 1.12.1.2 formate dehydrogenase z z

1.2.7.1 pyruvate formate lyase z

1.12.7.2 ferrodoxin hydrogenase

t: Students’ t-test; M : Mutual Information; N : NIBBS-Search .
doi:10.1371/journal.pcbi.1002490.t002
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NIBBS was due to the presence of the enzyme in a small subset of

organisms within our dataset and the absence of the enzyme in

phenotype non-expressing organisms. Based on the absence of

glutamate decarboxylase in many of our organisms, including

hydrogen producing C. acetobutylicum and C. beijerinckii, we can

classify glutamate decarboxylase as not specific for, but rather

related to acid-tolerance. The presence in C. perfringens and absence

within other Clostridium species do not necessarily indicate that C.

acetobutylicum is not capable of similar mechanisms. In fact,

incorporation of a decarboxylase system similar to that of C.

perfringens and L. plantarum into hydrogen producers, such as C.

acetobutylicum may be necessary to maintain hydrogen production

and acidogenesis.

Acid-tolerant pathways. Metabolic pathways related to

expression of acid-tolerance, vary across organisms and sub-sets

of organisms, as shown by analysis of phenotype-related enzymes.

This is particularly true between Gram negative and Gram

positive organisms [54], which contain different response mech-

anisms for acid exposure. In this study, acid-tolerant organisms

selected consisted mainly of Gram positive, acid-tolerant bacteria

from the phylum Firmicutes. As such, results reflect metabolic

pathways present to a small group of bacteria capable of acid-

tolerance rather than across a diverse set of organisms capable of

expressing the acid-tolerant phenotype.

Using the NIBBS-SEARCH algorithm, seven enriched pathways

(p-valueƒ0.05) (Table S15) were identified using the hypergeo-

metric test (described in the Method section). Of these pathways,

the following metabolic pathways were predicted as top ranking

with respect to acid-tolerance based on enzyme enrichment. They

are purine metabolism (KEGG pathway ID ec00230) and arginine

and proline metabolism (KEGG pathway ID ec00330). A list of

pathways and their enrichment scores are presented in Table 4.

Since the basic role of purine metabolism and arginine and proline

metabolism was described in detail in the previous section, we will

focus mainly on the relationship of the pathway with respect to

acid-tolerance.

Purine Metabolism: NIBBS-SEARCH algorithm predicted purine

metabolism as a potentially significant pathway for organisms

expressing acid-tolerance.

Purine metabolism encompasses biosynthesis, degradation,

and salvage of purines within microorganisms. Together these

pathways are necessary for survival and growth of organisms.

Purines, along with pyrimidines, make-up vital components of

nucleic acids (e.g., DNA and RNA), and are involved in synthesis

of many vitamins and coenzymes (e.g., ATP) [34]. As such, the

high ranking of purine metabolism is likely a result of its role in

nucleic acid synthesis (and growth) rather than specificity to the

acid-tolerant phenotype. However individual enzymes present

within purine metabolism may play a role in maintaining purine

and nucleic acids during periods of acid stress. In fact, studies

evaluating acid resistance, have realized the potential of purine

genes, deoB and guaA, that encode for phosphopentomutase and

Figure 3. General overview of hydrogen production through the formate pathway.
doi:10.1371/journal.pcbi.1002490.g003
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GMP synthase, respectively, in assisting with acid-tolerance [54].

Proteins associated with these genes are involved in the salvage

pathway. In some Lactobacillus species, organisms can utilize

nucleobases, such as guanine and adenine, generated during

DNA and RNA degradation to synthesize nucleotides [57]. The

salvage of these purine nucleobases is particularly important

during dark fermentative hydrogen production when organic acid

(e.g., butyrate) accumulation lowers pH in the medium. If

the internal pH value is not regulated and decreases, DNA

and purine bases present are subject to degradation [56]. The

presence of salvage pathway enzymes, such as adenosine

deaminase, allows organisms to utilize the degraded bases to

regenerate nucleotides and nucleic acids. Therefore, we predict

that sub-pathways within the purine salvage are related to

expression of acid-tolerance and resistance. Experimental analysis

is needed to determine the exact role of purine salvage in

bacterial response to low pH.

Arginine and Proline Metabolism: In hydrogen producing organisms,

decarboxylation and deamination of amino acids (e.g., arginine)

have been linked to osmotolerance and protection of cells in the

presence of environmental stress [54]. One amino acid in

particular is arginine. While arginine can be an important source

of nitrogen and energy for bacteria, it is also considered an alkaline

amino acid, thus making it an important component in combating

acid stress. One mechanism involving arginine is decarboxylation

of glutamate and arginine in Lactobacilli. In this process, arginine is

decarboxylated, then the decarboxylated product is removed and

another arginine product is transported into the cell [54]. Another

mechanism is the arginine deiminase pathway (ADI). This

pathway is responsible for the conversion of arginine to orthine,

ammonium, and carbon dioxide. The ammonium produced is

then used to increase the internal pH [54].

From the predicted NIBBS results, the presence of the ADI or

decarboxylation pathways was not predicted in our model

organism, C. acetobutylicum. However, key enzymes involved in these

pathways for C. perfringens were shown as present, thus suggesting

these pathways may be utilized by this organism in response to acid

stress. For the first pathway, the NIBBS algorithm was only able to

predict the presence of glutamate decarboxylase (E.C.4.1.1.15) and

did not identify arginine decarboxylase. This suggests that C.

perfringens may not utilize this route for acid-tolerance.

For the ADI pathway, only two of the three essential enzymes

associated with this pathway were identified. They are arginine

deiminase (E.C. 3.5.3.6) and ornithine transcarbamylase (E.C.

2.1.3.3). In addition, we noted the presence of agmatine deiminase

(E.C 3.5.3.12), an enzyme responsible for conversion of agmatine

to N-carbamoylputrescine and ammonia. Based on the presence of

agmatine deiminase, we predict that C. pefringens may utilize this

enzyme in arginine metabolism in response to acid stress. While it

does not appear that C. acetobutylicum utilizes these two pathways,

there have been reports suggesting that it is capable of utilizing

similar mechanisms through activation of homologous genes [56].

However, review of these types of genes has not been well

characterized to date. As such, analysis of genes present in the

hydrogen producing C. pefringens can be used to provide clues to

expression of acid-tolerance.

Methodology Validation
Two experiments were performed to measure the ability of the

NIBBS algorithm to identify enzymes and potential subpathways

related to organisms capable of expressing specific pathways.

In order to assess the ability of both approaches to identify

phenotype-related enzymes, 36 aerobic organisms and 36 anaer-

obic organisms were selected. Analysis of the NIBBS enzymes

shows 86% and 75% recall, respectively, when one or the other

are used as positive instances. The results showed that NIBBS

enzymes for aerobic respiration contained 261 enzymes and for

anaerobic respiration contained 93 enzymes, while the Student’s

T-Test identified 131 enzymes for aerobic respiration and 64

enzymes for anaerobic respiration.

Examination of the enzymes found by the Student’s T-Test but

missed by NIBBS-SEARCH shows that they are typically present in

Table 3. List of top ranking pathways and their enrichment
score for the phenotype dark fermentative hydrogen
production.

Pathway ID Pathway Name p”value

cac00061 Fatty acid biosynthesis 1:54e{33

cac00230 Purine metabolism 2:64e{17

cac00330 Arginine and proline metabolism 6:28e{12

cac00520 Amino sugar and nucleotide sugar metabolism 3:00e{11

cac00270 Cysteine and methionine metabolism 5:58e{11

cac00030 Pentose phosphate pathway 1:67e{09

cac00040 Pentose and glucuronate interconversions 1:48e{08

cac00400 Phenylalanine, tyrosine and tryptophan biosynthesis 4:26e{08

cac00051 Fructose and mannose metabolism 1:81e{07

cac00260 Glycine, serine and threonine metabolism 1:59e{06

cac00860 Porphyrin and chlorophyll metabolism 4:51e{06

cac00250 Alanine, aspartate and glutamate metabolism 1:13e{05

cac00920 Sulfur metabolism 2:15e{05

cac00500 Starch and sucrose metabolism 2:51e{05

cac00480 Glutathione metabolism 3:69e{05

cac00300 Lysine biosynthesis 2:58e{04

cac00910 Nitrogen metabolism 8:31e{04

cac00010 Glycolysis & Gluconeogenesis 1:19e{03

cac00052 Galactose metabolism 1:43e{03

doi:10.1371/journal.pcbi.1002490.t003

Table 4. List of top ranking pathways and their enrichment
score for the phenotype acid-tolerance.

Pathway ID Pathway Name p”value

cac00230 Purine metabolism 2:56e{14

cac00330 Arginine and proline metabolism 1:75e{11

cac00520 Amino sugar and nucleotide sugar metabolism 1:02e{10

cac00260 Glycine, serine and threonine metabolism 3:43e{10

cac00270 Cysteine and methionine metabolism 1:27e{09

cac00400 Phenylalanine, tyrosine and tryptophan biosynthesis 1:77e{09

cac00240 Pyrimidine metabolism 1:90e{08

cac00860 Porphyrin and chlorophyll metabolism 1:99e{06

cac00760 Nicotinate and nicotinamide metabolism 7:82e{06

cac00500 Starch and sucrose metabolism 1:02e{05

cac00040 Pentose and glucuronate interconversions 1:67e{05

cac00561 Glycerolipid metabolism 5:57e{05

cac00051 Fructose and mannose metabolism 6:38e{05

doi:10.1371/journal.pcbi.1002490.t004

NIBBS-Search

PLoS Computational Biology | www.ploscompbiol.org 8 May 2012 | Volume 8 | Issue 5 | e1002490



most of the phenotype-expressing and non-expressing organisms.

The reason some enzymes are identified as phenotype-related by

the statistical analysis is due to the fact that they typically have a

higher copy number in phenotype-expressing organisms. Since

NIBBS-SEARCH uses binary data (i.e., whether at least one copy of

the enzyme is present in the organism), these enzymes are not

identified by NIBBS-SEARCH as biased. In addition, because the

NIBBS algorithm does not rely on the enzyme distributions across

entire sets of organisms, it is capable of identifying subgroups of

organisms among the list of given species. As such, it is not

expected that NIBBS will contain identical sets of enzymes as those

identified with the Student’s T-Test approach.

Enzymes predicted by NIBSS for aerobic and anaerobic

organisms. Evaluation of phenotype-related enzymes identified

for aerobic organisms show that the NIBBS algorithm was able to

discover a small set of known enzymes associated with pathways

commonly associated with the phenotypes of aerobic and auto-

trophic carbon fixation. In Table 5, enzymes typically associated

with aerobic organisms consisted of enzymes that make up

components of the TCA cycle and the glyoxylate bypass.

Other enzymes identified as phenotype-related are present due

to phenotype associations with sub-groups of organisms in our

dataset. These include organisms with similar fatty acid metab-

olism, amino acid metabolism, and photosynthetic organisms.

Enzymes predicted as related to anaerobic organisms included 2-

oxoglutarate synthase and ATP-dependent citrate lyase, which are

related to the reductive TCA (rTCA) cycle (Table S16). The

enzyme results associated with the anaerobic organisms are

counter intuitive since rTCA is an autotrophic carbon fixation

pathway and not associated with the anaerobic phenotype. The

finding of rTCA-related enzymes is likely related to a subset of

organisms or subphenotype present in the dataset.

TCA vs. rTCA Pathway
Due to the ability of the NIBBS-SEARCH algorithm to predict

phenotype-related enzymes through the prediction of phenotype-

related metabolic systems, the algorithm is capable of distinguishing

between pathways that contain common enzymes. To demonstrate

this feature of NIBBS-SEARCH, two experiments were conducted

comparing the two well-characterized metabolic networks, tricar-

boxylic acid (TCA) cycle and the reverse TCA (rTCA) cycle.

Sets of organisms known to utilize the TCA and rTCA cycle

were selected and analyzed (Table S16). Selection of the two

metabolic systems was due to the ability of these pathways to

utilize the same set of metabolites and have common enzymes.

Using sixteen organisms that utilize the TCA cycle and six

organisms that utilize the rTCA cycle, NIBBS algorithm was able

to identify all but one TCA enzyme, malate dehydrogenase (EC

1.1.1.37), among the top ranking systems (Table S17). Malate

dehydrogenase is part of another system which also includes seven

of the eight TCA enzymes (isocitrate dehydrogenase is not

included). All eight of the TCA enzymes are, therefore, part of

at least one statistically significant system identified in the TCA

experiment. To ensure the sensitivity of the algorithm to iden-

tifying key enzymes characteristic for each pathway, we reviewed

the results to determine if key rTCA enzymes were present in any

of the positive instances. In this study, we did not identify any of

the three key enzymes unique to rTCA and this suggests that the

NIBBS algorithm was able to properly predict the TCA pathway

for phenotype-expressing organisms.

Similar results are obtained in the rTCA experiment (Table S18),

when rTCA-utilizing organisms are used as positive instances. A top

ranking system identified in the rTCA experiment contains seven of

the eight rTCA enzymes, including all the five enzymes that the

rTCA cycle shares with the TCA cycle (Table S16). The rTCA-

related enzyme, fumarate reductase (EC 1.3.1.6) was not indicated

as present in any system identified in the rTCA experiment.

In the rTCA experiment, systems identified by NIBBS include

two enzymes, citrate synthase (EC 2.3.3.1) and succinate

dehydrogenase (EC 1.3.99.1) that are typically associated with

the TCA pathway [58]. This is because these two enzymes are not

only present in all of the rTCA expressing organisms in the

experiment but also in most, if not all, of the TCA expressing

organisms in the experiment. This makes them likely to be

included in the set of expansion edges, since they do not decrease

the–value of the system.

The presence of these TCA-related enzymes in rTCA related

systems does not indicate an additional functionality, but rather

that succinate dehydrogenase found by KEGG might actually be

acting as a fumarate reductase. Being that the two enzymes are

evolutionarily related to each other, fumarate reductase and

succinate dehydrogenase are difficult to distinguish based on

sequence alone [59].

Comparison with Related Methods
Comparison with Slonim et al [4] method. To assess the

ability of NIBBS algorithm to identity phenotype-related enzymes

Table 5. Known aerobic related enzymes that make up the TCA cycle and the glyoxylate bypass that are present (+) or absent (2)
in the data set identified by the NIBBS algorithm and T-Test approach.

EC Number Enzyme Name Pathway NIBBS T-Test

2.3.3.1 citrate (Si)-synthase TCA, glyoxylate bypass z z

1.2.4.2 oxoglutarate dehydrogenase (succinyl-transferring) TCA z z

1.3.99.1 succinate dehydrogenase TCA z z

1.1.1.37 malate dehydrogenase TCA, glyoxylate bypass z z

4.1.3.1 isocitrate lyase glyoxylate bypass z z

2.3.3.9 malate synthase glyoxylate bypass z z

6.2.1.5 succinate–CoA ligase (ADP-forming) TCA z {

4.2.1.2 fumarate hydratase TCA z {

1.1.1.42 isocitrate dehydrogenase (NADP+) TCA z {

4.2.1.3 aconitate hydratase TCA, glyoxylate bypass z {

doi:10.1371/journal.pcbi.1002490.t005
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and pathways, we compared NIBB’s seed generation to the

Mutual Information method described by [4] (Table 2). Using

seed enzymes presented for hydrogen production versus hydrogen

non-production, we find that Mutual Information only identified

three of the 127 NIBBS seed enzymes. The ones identified by

NIBBS were involved in fermentation pathways associated with

hydrogen production. Examples of these are: pyruvate synthase

(E.C. 1.2.7.1), formate C-acetyltransferase (E.C. 2.3.1.54), and

lactate dehydrogenase (E.C. 1.1.1.27).

Pyruvate Synthase and Formate C-acetyltransferase: Pyruvate synthase,

which is also known as pyruvate: ferredoxin oxidoreductase

(PFOR), is the key enzyme for acetyl-CoA formation in many

sulfate-reducing, methanogenic, dark fermentative hydrogen-

producing bacteria [60]. In strict anaerobic organisms, such as

C. acetobutylicum, acetyl-CoA pathway is the main route for acetate

and hydrogen production. In this pathway, glucose or other sugar

molecule is transformed through a series of reactions to generate

pyruvate. Pyruvate generated can then be converted to acetyl-CoA

by PFOR for synthesis of acetate [4,35,61]. In facultative

anaerobic bacteria, formate C-acetyltransferase or pyruvate

formate lyase (PFL) is utilized to generate formate and acetyl

coenzyme A (Acetyl-CoA) [62].

In our study, PFOR was identified by NIBBS as a hydrogen-

related enzyme but was missed by Mutual Information. Lack of

identification by Mutual Information may be due partly to the fact

that two different routes can be utilized by hydrogen producing

bacteria. In our experiment, hydrogen producing bacteria were

representative of both anaerobic and facultative anaerobic

respiration. As such, the presence of multiple phenotypes being

expressed may have resulted in inaccuracies by Mutual Informa-

tion. However, the NIBBS algorithm was able to distinguish the

importance of these two enzymes, thus predicting the role of

PFOR and PFL in acetate and hydrogen formation.

Lactate Dehydrogenase: While identification of enzymes and

pathways involved in production of hydrogen is important, one

must also understand which pathways may greatly reduce

hydrogen yields. One such pathway is the formation of lactate

from pyruvate by the enzyme lactate dehydrogenase [32,61]. In

hydrogen production, generation of lactate by bacteria results in

decreased hydrogen yields since pyruvate is being directed towards

lactate fermentation rather than acetate and butyrate formation

[32]. As such, down regulation of lactate dehydrogenase through

environmental stressors or genetic manipulation is essential for

enhancing bio-hydrogen production.

NIBBS seed generation vs. other seed generation

algorithms. NIBBS as its first step identifies seeds using its seed

generation algorithm, which are then expanded to phenotype-biased

metabolic systems. However, NIBBS can also take as input, seeds

obtained using other methods like literature search and statistical

tests (T-Test and mutual information [4]). We set up three

experiments, dark fermentation organisms vs. light fermentation

organisms, dark fermentation organisms vs. hydrogen non-

producing organisms and dark fermentation organisms vs. bio-

photolysis organisms, to compare the seed sets identified by

NIBBS, T-Test, and mutual information (Table S19).

Mutual information (MI) [4] between the phylogenetic profile of

each enzyme and the phenotype profile is considered an indicator

of phenotype-bias. An enzyme is considered significantly biased

towards a phenotype, if its MI score with the phenotype profile lies

above a threshold. The threshold is calculated by shuffling each

enzyme vector and calculating its mutual information with the

phenotype profile vector. The highest MI value obtained by this

process is taken as the threshold. From Figure 4, we can see that

mutual information identifies a lot fewer enzymes than NIBBS

seed generation algorithm. Additionally, from Table 2, we see that

in comparison to NIBBS, mutual information misses all enzymes

from the acetate, butyrate and formate pathways that are known

to be related to the dark fermentation phenotype. One reason for

the low predictive power could be that the filtering mechanism

used to identify the significant enzymes is too stringent. Allowing

an error margin could improve the predictive power. Another

reason could be the fact that mutual information is affected by the

size of the vectors used in the calculation, incorporating too many

or too few organisms affects the mutual information score.

T-Test is another statistical method that can identify phenotype-

related enzymes. Each enzyme’s phylogenetic profile is used to

calculate the p-value quantifying its association with the target

phenotype. From Figure 4, we can see that T-Test once again

identifies a lot fewer enzymes than NIBBS. Additionally, from

Table 2, we see that in comparison to NIBBS, T-Test misses some

key enzymes from the acetate, butyrate and formate pathways that

are known to be related to the dark fermentation phenotype.

Systematic Validation
In this method we desribe an experiment that evaluates the

accuracy of our method using some specialized metabolic pathway

information. For this experiment we chose a group of 13

specialized metabolic pathways (Text S1) to act as an artificial

phenotype. We then selected around 130 organims that have all

these pathways (Text S1). We divided the organisms into two

groups, one group was called the ‘‘P’’ and the second group was

called the ‘‘N.’’ From the metabolic networks of the organisms

belonging to the ‘‘N’’ group, we removed the enzymes that overlap

with the chosen metabolic pathways, thus creating an artificial

bias. If NIBBS-SEARCH can truely identify phenotype-related

subsystems, then it should be able to identify the subsystems

related to these metabolic pathways as significant. In fact, we

found that all the 13 pathways were significantly present in the

discovered subsystems.

Parameter Evaluation
There are three parameters that the NIBBS algorithm takes as

input: (i) the percentage of the positive organisms the resulting

subsystem (expanded seed set) should be be present (a), (2) the

maximum bias (maximum w), and (3) the maximum size of the seed set

(k). All these parameters have been analyzed using the same

artificial dataset created using the 13 specialized metabolic

pathways discussed in the Systematic Validation section.

The a paramater is utilized while performing seed-expansion to

control in how many phenotype expressing organisms the resulting

expanded seed set should be present. a~1:0 is the most stringent

value and would require that the resulting subsystem be present in

all of the organisms the seed-set was present in. We utilized this

value as default to make sure that only the strongest signals are

recorded. However, for this experiment we varied the a value

between 0:1 and 1:0 at 0:1 step intervals to analyze the effect.

We found that for smaller values of a, the number of subsystems

output are fewer when compared to the larger value of a.

However, for small a values the subsystem sizes are larger. This

effect is due to the fact that more edges get added during the seed-

expansion stage because of the lenient (small a) threshold. When

we looked at the corresponding phenotype-bias values for the

identified subsystems, we found that for a a~1:0, 72% of the

systems have phenotype-bias value of less than 0:05, this number

steadily decreases until a~0:1 where only 38:9% of the subsystems

have significant phenotype-bias.

The k parameter is the maximum seed set size in a NIBBS run.

A k~1 would mean that every candidate seed with a w less than

NIBBS-Search
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the maximum w becomes its own seed set and then seed expansion

is run on each singleton seed set. We utilized the value k~4 for

our experiments. However, we analyzed the effects of k by varying

the value between 1 and 10 at 1 step intervals. We foound that

except for k~10, NIBBS identified the 13 specialized metabolic

pathways to be signficant for all the other values.

The maximum bias (maximum w) value is chosen to provide an

upper bound for the bias value of the enumerated subsystems. We

varied the maximum bias value between 0:1 and 1:0 in 0:1 step

intervals. Fro example, setting the maximum bias value as 0:5 will

enumerate all the subsystems with final bias value of ƒ0:5. We

found that the number of subsystems produced for a maximum

bias value x is greater than or equal to the number of subsystems

produced for maximum bias value of x{0:1. The analysis and

data related to this section are available in Text S2.

Runtime Performance
In order to display the dramatic improvement in the runtime of

the NIBBS-SEARCH algorithm over exact algorithms, such as MBS-

Enum , 98 organism-specific networks are constructed using the

global metabolic reference map from the KEGG database [15–

17], which contains 1,348 vertices and 1,476 edges: 50 metabolic

networks from aerobic organisms and 48 metabolic networks from

anaerobic ones.

The MULE algorithm of Koyutürk et al. [63] is used to

enumerate maximal frequent subgraphs for all support count

thresholds between 1 and the number of positive instances

required by MBS-Enum . MULE is selected because both MBS-

Enum and NIBBS-SEARCH leverage its network instance model.

Such a model allows MULE to enumerate maximal frequent

subgraphs by enumerating maximal frequent edge sets, which

makes it one of the most efficient methods for enumerating

maximal frequent subgraphs [63]. The MBS-Enum is not a

wrapper around the MULE algorithm.

Even using the efficient MULE algorithm, the runtime of MBS-

Enum is intractable for the large-scale networks in this experiment.

Figure 5 (Table S20) depicts the MULE runtime for the various

thresholds used by MBS-Enum . This runtime grows exponen-

tially, eventually reaching 57 days to enumerate the maximal

frequent subgraphs given a support count threshold of 35. In

contrast, the total time required by the NIBBS-SEARCH to

approximate the set of maximally-biased subgraphs is 31 seconds

(the dotted line).

Approximation Accuracy
The results in this section describe the typical correspondence

between the set of subgraphs output by the NIBBS-SEARCH and

the complete set of maximally-biased subgraphs produced by

MBS-Enum (Table S21). To cope with computational intracta-

bility of MBS-Enum, only small-size network maps are considered.

Specifically, the 33 experiments correspond to the 33 metabolic

pathway maps from KEGG that satisfy the two requirements: (1)

all of their maximally-biased subgraphs can be enumerated by

MBS-Enum within 24 hours; (2) a completely random subgraph

can be generated by a randomization algorithm at a rate of at least

one per second. For each of these 33 network maps, a set of 87

network instances are created. These 87 network instances are

divided between 33 positive instances for aerobic organisms and

54 negative instances for anaerobic organisms. Each experiment is

labeled with the KEGG pathway identifier (mapXXXXX) of the

network map used to create the network instances.

An approximation score D(M,B) is used to measure the degree

to which a set of NIBBS-SEARCH ’s subgraphs B approximates a set

of all maximally-biased subgraphs M. The approximation score is

Figure 4. Comparison between NIBBS, T-Test and Mututal Information [4].
doi:10.1371/journal.pcbi.1002490.g004
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calculated by first computing the value d for each maximally-

biased subgraph in M. The value d(mi,B) is equal to the

maximum Jaccard index (Equation 1) between a maximally-biased

subgraph mi[M and any subgraph bj[B (Equation 2). The

appoximation score D(M,B) is then calculated as the normalized

Euclidean distance between the scores d(mi,B) computed for the

set of NIBBS-SEARCH ’s subgraphs and the optimal d(mi,M).

J(mi[M,bj[B)~
DE(mi)\E(bj)D
DE(mi)|E(bj)D

, ð1Þ

d(mi[M)~ max
bj[B

J(mi,bj), ð2Þ

D(M,B)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
mi[M (1{d(mi,B))2

DM D

s
: ð3Þ

Two empirical p-values are calculated to determine the

statistical significance of the approximation scores. Both p-values

are calculated as the empirically-determined probability that a set

of randomly generated subgraphs R would generate a value

D(M,R) that is less than or equal to the value of D(M,B). Each

randomly generated set of subgraphs R contains the same number

of random subgraphs as the set B. The random subgraphs used to

calculate the p-value, pr, are randomly selected from the set of

connected subgraphs in the network map associated with the

experiment. For the p{valueps, the random subgraph ri of the set

R is required to be of the same size as the NIBBS-SEARCH’s

subgraph bi from the set B. By ensuring that the random

subgraphs are of the same size as the NIBBS-SEARCH’s subgraphs,

the calculation of ps addresses some of the noise that might arise in

the p-value when the random subgraphs are of a different scale

than the NIBBS-SEARCH ’s subgraphs. The negative-logs of the

empirical values of pr and ps are shown for each of the 33

experiments in Figure 6.

As can be seen in Figure 6, 100 percent of the experiments had

a pr{valuev10{2. In addition, 88% of the experiments had a

ps{valuev10{2. These results give strong support to the claim

that NIBBS-SEARCH identifies subgraphs that are typically close

approximations of the set of maximally-biased subgraphs. Thus, if

maximally-biased subgraphs are a good model of phenotype-

related metabolic systems, NIBBS-SEARCH should be able to

identify them as models of phenotype-related metabolic systems.

Discussion

In summary, the NIBBS Search algorithm was able to identify

phenotype-related metabolic pathways and sub-networks across

Figure 5. MULE vs. NIBBS runtime comparison. Runtimes (y-axis), with trendline, of the MULE algorithm for the various support count
thresholds (x-axis) used by the MBS-Enum algorithm. Total runtime required by the NIBBS-SEARCH algorithm drawn as horizontal dotted line.
doi:10.1371/journal.pcbi.1002490.g005
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sets of phenotype-expressing microorganisms. Specifically, through

co-development and application of the NIBBS algorithm, both

pathways specific to and those related to dark fermentative,

hydrogen production and acid-tolerance were presented. From

those identified pathways, scientists are able to gain insight into the

potential role some pathways, such as fatty acid metabolism, have

on metabolic shifts between hydrogen production and solvent

formation.

In addition, through comparison of multiple phenotypes

deemed important for hydrogen production in wastewater,

pathways responsible for expression of more than one phenotype

were identified. Specifically, pathways for purine metabolism and

the pathways for proline and arginine metabolism were predicted

as related to dark fermentative hydrogen production and acid-

tolerance. Due the continued presence of these two pathways,

engineers and scientists can experimentally test the role of the

pathways as survival mechanisms for acid response and hydrogen

production. Identification of these shared pathways for the two

phenotypes is due to the ability of the multiple organisms to

express multiple phenotypes. For example, Clostridium acetobutylicum

ATCC 824 and Clostridium perfringens ATCC 13124 are both dark

fermenting organisms but they also share other common

phenotypes like anaerobicity and tolerance to acid. These

phenotypes if analyzed as a group, may provide us more in-

formation about the phenotype systems in these two organisms

than looking at each phenotype one by one.

Implications for Microbial Metabolic Engineering
Application of the NIBBS-SEARCH algorithm to the hydrogen

producing and acid-tolerant phenotypes resulted in the prediction

of potentially important enzymes, metabolic pathways, and key

regulators involved in maintaining or enhancing the production of

hydrogen in individual microorganisms. Such predictions include

pathways, such as fatty acid biosynthesis, which may help

hydrogen producers respond to pH changes both internally and

externally. The response to both the formation and uptake of fatty

acids present in the surrounding environment suggests that fatty

acid biosynthesis could potentially act as a key regulator in

metabolic shifts in microorganisms, such as C. acetobuylicum. Other

examples provided by NIBBS included the presence or absence of

acid tolerant systems and enzymes within specific Clostridium

species. In this study, results indicate that C. perfringens contains

potentially important enzymes involved in the acid-tolerant ADI

pathway. The identified enzymes may then suggest clues necessary

for development of gene expression and molecular validation

studies.

Identification of Potential Metabolic Pathway Cross-talks
In addition to identifying conserved metabolic pathways,

results from the NIBBS algorithm suggest that this method can

potentially identify metabolites common to different metabolic

pathways. One example of such a metabolite is acetyl-CoA.

Acetyl-CoA is generated from pyruvate during glycolysis and can

be utilized by differing pathways, including the aerobic TCA cycle

and anaerobic formate hydrogen lyase pathway. In the aerobic

TCA pathway, the enzyme, pyruvate dehydrogenase, catalyzes the

decarboxylation of pyruvate to CO2 (g) and acetyl-CoA. Acetyl-

CoA generated using this process can then be incorporated into

the TCA cycle to produce important biosynthetic precursors for

other metabolic pathways and energy for microorganisms [34,64].

In the anaerobic pathway, pyruvate formate lyase is used to

convert pyruvate into acetyl-CoA and formate. Formate produced

can then be oxidized by formate hydrogen lyase (FHL) to form

CO2 (g) and H2 (g). In the hydrogen studies, the NIBBS algorithm

predicts the presence of both pyruvate formate lyase (E.C.

1.1.99.3) and pyruvate dehydrogenase (E.C. 1.2.4.1) when dark

fermentative hydrogen producing organisms are compared to

hydrogen non-producing organisms. The presence of both

Figure 6. Approximation Accuracy: The negative log of the statistical significance of the approximation scores has been plotted.
The p{values for D(M,B). Gray: pr{values; black: ps{values.
doi:10.1371/journal.pcbi.1002490.g006

NIBBS-Search

PLoS Computational Biology | www.ploscompbiol.org 13 May 2012 | Volume 8 | Issue 5 | e1002490



pathways may be due to the fact that some dark fermentative

microorganisms are capable of utilizing both pathways and the

degree to which they utilize each pathway may be dependent on

the ‘‘cross-talk’’ between both pathways. However, depending on

environmental conditions, the bacteria are grown under, the

organism may be more prone to express one phenotype over

the other. To understand the role of these pathways, further

experimental analysis is required.

Identification of common metabolites and potential cross-talk

between metabolic pathways is a key step towards understanding

metabolic processes, networks, and regulation of phenotype expres-

sion in organisms, such as hydrogen producing organisms. While

numerous genetic and experimental studies have been conducted to

understand the metabolic processes involved in hydrogen produc-

tion, there is still little understanding of the cross-talk between key

hydrogen producing pathways. To help close this gap, biologist could

potentially use the NIBBS algorithm to complement hypothesis-

driven studies. One way would be to identify phenotype related-

pathways, such as the two pathways for acetyl-CoA production, and

then conduct molecular studies to review these pathways in

organisms shown positive for both pathways.

Multiple Phenotypes vs. Single Phenotype
The idea of identifying phenotype-related systems has always

been of interest to scientists for many years now and almost all

existing methodologies look at phenotypes one at a time. The only

method that looks at more than one phenotype, to the best of our

knowledge, is the one presented by Liu et al, [65] but even here,

the authors primarily look at one phenotype at a time and then use

the Pfam-phenotype relationship discovered to identify groups of

related phenotypes. Liu et al [65], however, also do not analyze the

effects of multiple phenotypes simultaneously. Clostridium acetobu-

tylicum and Clostridium perfringens have both dark fermenting

organisms, but they also share other common phenotypes like

anaerobicity and tolerance to acid. These phenotypes, if analyzed

as a group, may provide us more information about the phenotype

systems in these two organisms than if they were looked at

individually. A future improvement could be for NIBBS to analyze

multiple phenotypes together.

Phylogenetic Diversity
In any comparative genomics, there is always the question

whether the identified modules are truely related to the phenotype

or they were identified because the organisms are phylogenetically

close to each other. Incorporating a method to identify not only

phenotypically-biased organisms but also subsyetems present across

a phylogenetically diverse group might be one future improvement.

This probably can be done by creating a metric that will use the

pair-wise phylogetic distances among all the organisms the

subsystem is present in. A subsystem present across a phylogenet-

ically diverse group should be scored higher than one that is present

across a phylogenetically similar group of organisms.

The quality of NIBBS results is also dependent on the

underlying data. We discussed one issue in the previous paragraph

about phylogenetic diversity. Another issue is the fact that the

quality of the results is also dependent on high-quality enzyme-

reaction associations. However, databases like KEGG, MetaCyc,

and BioCyc provide fairly standard data that can be utilized for

such an analysis.

Methods

This approach aims to comparatively search the metabolic

network of multiple phenotype-expressing and phenotype-non-

expressing organisms for systems that tend to be present in the

former but not present in the latter. The underlying hypothesis is

that a phenotype-related metabolic system is more likely to be

evolutionarily conserved across phenotype-expressing organisms,

thus it is phenotype-biased. This section explains the NIBBS

methodlogy. Additional details can be found in Matthew C.

Schmidt’s doctoral dissertation [66].

Network Model
The proposed approach requires a metabolic network model

that enables:

1. The definition of organism-specific networks for hundreds or

thousands of organisms.

2. The quick determination if a metabolic system is present in an

organism-specific network.

3. The definition of the set of metabolic systems that could

possibly exist in an organism.

To satisfy these requirements, we adapt the method of modeling

organism-specific networks introduced by Koyutürk et al. [67].

Derived from the KEGG database [15–17], non-organism-

specific, yet biochemically feasible, metabolic networks, or reference

maps, are modeled as networks whose vertices represent chemical

compounds, or metabolites, and whose edges represent reactions

that convert metabolites to products. The reaction set corresponds

to the set of known reactions that can perform such a conversion.

Each reaction is associated with an Enzyme Commission (EC)

number [68] that is also associated with enzymes that can catalyze

the reaction.

While metabolic reference maps capture every known, bio-

chemically feasible metabolic process, organism-specific networks

describe the metabolic network that exists in a given organism.

Specifically, every edge in such a network is associated with an EC

number of the enzyme that is known or predicted to be present in

the organism. We obtain the organism-specific networks from the

reference maps by retaining only those reactions that are catalyzed

by an enzyme present in the organism, i.e, by retaining only those

edges whose edge labels represent enzymes present in the

organism.

A subgraph is said to exist in an organism-specific network, if

the edge lables, i.e., the enzymes are present in the organism.

Thus, we do not solve any subgraph isomorphism problem. In

addition, with this model, the set of all possible metabolic systems

can be defined as the set of subgraphs of the reference map.

Moreover, only connected subgraphs need to be considered,

because metabolic systems are defined as a series of metabolic

reactions, where the product metabolites of one reaction are used

as the substrate metabolites of the next reaction.

Bias Metric
The introduced w-value of a metabolic system measures the

degree of a system’s phenotype-bias. It is based on the hypothesis

that the systems with the greatest degree of bias (i.e., smaller

w{value) will be the systems that are most likely to be phenotype-

related. Thus, the search for phenotype-related metabolic systems

will aim to minimize the w{value.

To calculate the w{value for a given system, the organism-

specific networks are divided into two sets: those for phenotype-

expressing organisms, or a positive set, and those for phenotype-

non-expressing organisms, or a negative set.

Given the number of organism-specific networks (n), the number of positive

networks (m), the number of networks that the system exists in (x), and the

number of positive networks the system exists in (k), the phenotype-bias metric

NIBBS-Search
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w(n,m,k,x) is defined according to the cumulative hypergeometic probability

distribution:

w(n,m,k,x)~
1
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ð4Þ

Because n, m, k, and x can be determined given the system

subgraph S and the set of positive P and negative N networks, the

w(S,P,N) notation will also be used to describe the phenotype-bias

metric.

Maximally-Biased Subgraphs
In order to predict phenotype-related metabolic systems, this

approach searches the set of organism-specific networks for

maximally-biased subgraphs.

A maximally-biased subgraph is a subgraph that satisfies the following two

criteria:

1. It has no subgraph whose w{value is less than its own’s.

2. It has no supergraph whose w{value is less than or equal to its own’s.

The first criterion comes from the assumption that the entire

phenotype-related system is at least as biased as its smaller part.

The second criteria is the one that makes the reported subgraphs

maximal. According to the second criteria, only allowing those

subgraphs that have no larger subgraph with equal or smaller bias

are reported.

Algorithm
This section presents the Maximally-Biased Subgraph Enumer-

ation (MBS-Enum) and the Network Instance Based Biased

Subgraph Search ( NIBBS-SEARCH ) algorithms that respectively

enumerate the exact and the approximate set of maximally-biased

subgraphs as models of phenotype-related metabolic systems.

While being exact, MBS-Enum becomes computationally intrac-

table for genome-scale networks. In contrast, NIBBS-SEARCH is a

fast heuristic, suitable for hundreds of genome-scale networks; yet,

it produces a statistically close approximation of the full set when

empirically tested against MBS-Enum results generated for small-

scale networks.

The MBS-Enum algorithm. Before presenting the MBS-

Enum algorithm for exact enumeration of all maximally-biased

subgraphs, we first define some graph-theoretical terms. A

subgraph S exists in a network if it contains a subgraph that is

isomorphic to S. The number of networks that a subgraph is

present in is called the support count of the subgraph. Given a set of

networks R and a subgraph S, the support count of S is labeled as

s(S,R). A frequent subgraph is any subgraph whose support count is

greater than or equal to a given threshold. A maximal frequent

subgraph is a frequent subgraph that is not a subgraph of any

larger frequent subgraph.

The Maximally-Biased Subgraph Enumeration algorithm

(MBS-Enum) enumerates all maximally-biased subgraphs for a

set of network instances I~(P|N). MBS-Enum first enumerates

all maximal frequent subgraphs for the set of positive networks P

and every threshold 1ƒtƒDPD. It then filters this set by removing

non-maximally-biased subgraphs.

MBS-Enum enumerates all maximally-biased subgraphs if and

only if every maximally-biased subgraph is also a maximal frequent

subgraph for some threshold 1ƒtƒDPD. To prove this theorem,

note that the following two properties of the bias metric are true:

1. If s(X ,P)~s(Y ,P) and s(X ,N)~s(Y ,N), then w(X ,P,N)~
w(Y ,P,N);

2. If s(X ,P)~s(Y ,P) and s(X ,N)vs(Y ,N), then w(X ,P,N)v
w(Y ,P,N),

where X and Y are subgraphs, P and N are the respective positive

and negative sets, and s(X ,P) is the support count of X in P.

Theorem: A maximally-biased subgraph S for given positive P and

negative N sets of networks is a maximal frequent subgraph for the threshold

Proof: Let S be a maximally-biased subgraph. Assume that S is

not a maximal frequent subgraph for the set P and threshold

tS~s(S,P). Then there must exist a subgraph G, such that G is a

frequent subgraph for P and tS and S5G. Since G is a

supergraph of S and G is a frequent subgraph for tS and P,

s(G,P)~s(S,P). The fact that G is a supergraph of S means that

s(G,N)ƒs(S,N). Due to the properties of the bias metric listed

above, w(G,P,N)ƒw(S,P,N). This means that S cannot be a

maximally-biased subgraph, because G is a supergraph and has a

w-value that is less than or equal to that of S, which is a violation of

the second property of maximally-biased subgraphs. Thus, the

original assumption must be incorrect, and S must be a maximal

frequent subgraph for tS .

The NIBBS-SEARCH algorithm. A general overview of the

NIBBS-SEARCH algorithm is given in Algorithm 1 in Text S3. It is

a two-step process that first identifies small seed sets of edges and

then expands those sets into the maximally-biased subgraphs.

Seed set generation. Informally, seed sets correspond to

significant subsets of edges from the network map; they differentiate

between common subgraphs that model phenotype-related systems

and those that model phenotype un-related systems, and they

improve the NIBBS-SEARCH efficiency by determining the subset of

organisms that are predicted to contain the entire phenotype-related

system. The motivation behind seed set generation stems from the

following observation. The phylogenetic profile of a phenotype-

related metabolic system, such as the tricarboxylic acid (TCA) and

reverse TCA (rTCA) cycle is often the same as the phylogenetic

profile of a small subset of its constituent enzymes (Figure 7 and

Table S16). In other words, this subset defines the set of target

organisms that contain the entire system, and thus reduces the set of

network instances that need to be aligned during the expansion

process. In addition, it provides hints to the algorithm that among

the possibly many common subgraphs that are found when the

instances are aligned, only those that contain the seed set should be

predicted to represent phenotype-related systems.

The procedure implemented in the NIBBS-SEARCH algorithm for

growing seed sets is given in Algorithm 2 in Text S3 It begins by

sorting the set of edges in the network map by their w{value (Line

1) Then the edge with the least w-value is used to create a seed set

containing only that edge (Line 3) To avoid redundant seed sets,

that edge is marked, so it cannot be added to any other seed set

(Lines 5 and 10) The GenerateSeedCandidates identifies a set of candidate

edges (Line 6), which are the edges whose addition to the seed set

decreases its w{value. Only unmarked edges are considered as

possible candidate edges. A candidate edge that produces the

greatest decrease to the seed set’s w{value is termed as a ‘‘best’’

candidate. The algorithm follows a greedy approach by adding

these ‘‘best’’ edges to the seed set (Line 8). After an edge is added to

the seed set, the set of candidate edges is updated (Line 11). This

process continues until the w{value of the seed set cannot be

decreased by adding any candidate edge, or until the seed set

reaches a user-defined maximum size (Line 7). The seed set is then

added to the set of seed sets, and a new seed set is generated from the

unmarked edge that has the least w{value. This process continues

until every edge in the network map is part of a seed set.
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Two methods of selecting the candidate edges are defined. The

first ensures that the seed set forms a connected subgraph. The

second does not require that the seed set be connected but ensures

that the seed set be part of a connected subgraph after the expansion

process. The first method is achieved by only considering edges that

are adjacent with one of the edges currently in the seed set. The

second method considers any edge in the network map as a

candidate edge as long as the two edges are connected after the

expansion process. To ensure that the two edges are connected, the

method determines if there exists a path between the edge and one

of the edges in the seed set that is present in every positive network

instance that the new seed set would be present in.

The user chooses a threshold w0 such that only seed sets whose

w{value is less than w0 will be expanded into full subgraphs. This

allows the user to reduce the number of insignificant subgraphs

that are output by the algorithm. Due to the method by which the

seed sets are constructed, every edge in the network map will be

part of at least one seed set.

Seed set expansion. The seed set of edges is unlikely to

represent the entire phenotype-related metabolic system. Seed sets

are typically small, containing between one and five edges and,

depending on the method used to construct them, may form a

disconnected subgraph. A metabolic system is likely to form a

connected subgraph in a metabolic network containing many

more edges [69]. In order to predict the entire set of enzymes

belonging to the metabolic system, the NIBBS-SEARCH algorithm

expands the seed sets. To ensure that the expansion edges belong

to the same metabolic system as the seed edges, the expansion

process requires that the expansion edges be present in most if not

all of the metabolic networks of phenotype-expressing organisms

that also contain the seed edges. The addition of expansion edges

to a seed set to form the subgraphs output by the algorithm is

called the seed expansion process. During the process, an

expansion edge is selected from a set of candidate edges. These

candidate edges are determined by two criteria checked in the

GenerateExpansionCandidates function (Line 1 and Line 5):

1. They are adjacent to a seed edge or an expansion edge is

already in the edge set.

2. If added to the current edge set, the resulting edge set will be

present in at least a percentage of the positive network

instances that the seed set was present in.

The first criterion ensures that the final edge set will form a

connected subgraph. The second criterion allows for noise in the

data, while requiring that the final edge set still be present in most

if not all of the same positive network instances as the seed set. The

algorithm for expanding the seed set to form the final edge sets is

given in Algorithm 3 in Text S3. Expansion edges are selected

from the set of candidate edges, added to the current edge set, and

the set of candidate edges is updated until no candidate edges can

be found. The resulting edge set is then output.

The order in which candidate edges are added to the edge set

will determine the make-up of the output edge set unless a~1:0.

The expansion process determines which candidate edge to add to

the edge set by first considering the number of positive network

instances that the resulting edge set would be present in. It selects

the candidate edge that would maximize the number of positive

instances the resulting edge set is present in. However, multiple

candidate edges may exist that would result in edge sets present in

the same number of phenotype-expressing organisms. In this case,

the expansion process selects from this set the candidate edge that

would produce the greatest decrease in the w{value of the edge

set. If more than one of these candidates produce the same

decrease in the w{value, then a candidate edge is selected at

random from these remaining candidates and added to the edge

set.

Every NIBBS-SEARCH run uses the maximum seed set size k~4,

the maximum w-value for expansion w0~0:5, and the subgraph

expansion parameter a~1:0. Running NIBBS-SEARCH with those

parameters identifies subgraphs that most closely approximate

maximally-biased subgraphs.

Identification of Enriched Pathways
The hypergeometric test is utilized to identify the pathways

enriched by the metabolic subsystems identified by NIBBS for the

hydrogen production, dark fermentation, and acid tolerance

phenotypes. The enriched pathways are identified for Clostridium

acetobutylicum as follows. The edges in all the subsystems are combined

into one list L and the duplicates are removed. For each metabolic

pathway M, the edges in the KEGG reference pathway map form the

population P. The edges in the organism-specific pathway map of M

become successes S in the population. The edges in P\L become

the sample X and S\L are the successes Y in the sample.

Figure 7. TCA and rTCA metabolic pathways. TCA cycle: gray arrows; rTCA: black arrows; EC numbers: white boxes; Pathway specific EC
numbers: TCA-specific (gray), rTCA-specific (black).
doi:10.1371/journal.pcbi.1002490.g007
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Supporting Information

Table S1 Organisms used in the experiments. This file

consists of information regarding the organisms utilized in the

various experiments.

(XLS)

Table S2 NIBBS-SEARCH results for the hydrogen pro-
duction phenotype. This file consists of NIBBS-SEARCH results

for using hydrogren production as target phenotype.

(TXT)

Table S3 NIBBS-SEARCH results for the dark fermentation,
hydrogen production phenotype versus bio-photolysis,
hydrogen production phenotype. This file consists for NIBBS-

SEARCH results when using dark fermentation as target phenotype and

bio-photolysis organisms set was used as the ‘‘negative set.’’

(TXT)

Table S4 NIBBS-SEARCH results for the dark fermenta-
tion, hydrogen production phenotype versus light fer-
mentation, hydrogen production phenotype. This file

consists for NIBBS-SEARCH results when using dark fermentation

as target phenotype and light fermentation organisms set was used

as the ‘‘negative set.’’

(TXT)

Table S5 NIBBS-SEARCH results for the dark fermenta-
tion, hydrogen production phenotype versus hydrogen
non-production organisms. This file consists for NIBBS-

SEARCH results when using dark fermentation as target phenotype

and hydrogen non-producing organisms set was used as the

‘‘negative set.’’

(TXT)

Table S6 NIBBS-SEARCH results for the light fermenta-
tion, hydrogen production phenotype versus bio-photol-
ysis, hydrogen production phenotype. This file consists for

NIBBS-SEARCH results when using light fermentation as target

phenotype and bio-photolysis organisms set was used as the

‘‘negative set.’’

(TXT)

Table S7 NIBBS-SEARCH results for the light fermenta-
tion, hydrogen production phenotype versus dark fer-
mentation, hydrogen production phenotype. This file

consists for NIBBS-SEARCH results when using light fermentation

as target phenotype and dark fermentation organisms set was used

as the ‘‘negative set.’’

(TXT)

Table S8 NIBBS-SEARCH results for the light fermenta-
tion, hydrogen production phenotype versus hydrogen
non-production organisms. This file consists for NIBBS-

SEARCH results when using light fermentation as target phenotype

and hydrogen non-producing organisms set was used as the

‘‘negative set.’’

(TXT)

Table S9 NIBBS-SEARCH results for the bio-photolysis,
hydrogen production phenotype versus dark-fermenta-
tion, hydrogen production phenotype. This file consists for

NIBBS-SEARCH results when using bio-photolysis as target

phenotype and dark fermentation organisms set was used as the

‘‘negative set.’’

(TXT)

Table S10 NIBBS-SEARCH results for the bio-photolysis,
hydrogen production phenotype versus light fermenta-

tion, hydrogen production phenotype. This file consists for

NIBBS-SEARCH results when using bio-photolysis as target

phenotype and light fermentation organisms set was used as the

‘‘negative set.’’

(TXT)

Table S11 NIBBS-SEARCH results for the bio-photolysis,
hydrogen production phenotype versus hydrogen non-
production organisms. This file consists for NIBBS-SEARCH

results when using bio-photolysis as target phenotype and hydrogen

non-producing organisms set was used as the ‘‘negative set.’’

(TXT)

Table S12 Metabolic pathways of Clostridium acetobu-
tylicum enriched by the subsystems identified by
NIBBS-SEARCH for the dark fermentation, hydrogen
production phenotype. This file has the results described in

section Pathways Related to Dark Fermentative Hydrogen Production.

(XLS)

Table S13 NIBBS-SEARCH results for the acid-tolerent
phenotype. This file has the NIBBS-SEARCH results for utlizing

acid-tolerence as target phenotype.

(TXT)

Table S14 Enzymes related to acid-tolerent phenotype.
This file consists of a comparison between enzymes in acid-tolerant

organisms and alkaliphilic (non-acid-tolerant) organisms, in acid-

tolerant experiments. Each row represents enzymes identified by

NIBBS-SEARCH and their corresponding pathways they are present

in. The results are discussed in section Acid-tolerant Enzymes.

(PDF)

Table S15 Metabolic pathways of Clostridium acetobu-
tylicum enriched by the subsystems identified by
NIBBS-SEARCH for the acid-tolerent phenotype. This file

consists of results described in section Acid-tolerant Pathways.

(XLS)

Table S16 Enzymes related to TCA/rTCA expression.
This file consists of a comparison, presence (+) or absence (2) of

enzymes across the set of organisms used in the TCA and rTCA

experiments.

(PDF)

Table S17 NIBBS-SEARCH results for TCA versus rTCA
expression. This file consists for NIBBS-SEARCH results when

using TCA expression as target phenotype and rTCA expressing

organisms set was used as the ‘‘negative set.’’

(TXT)

Table S18 NIBBS-SEARCH results for rTCA versus TCA
expression. This file consists for NIBBS-SEARCH results when

using rTCA expression as target phenotype and TCA expressing

organisms set was used as the ‘‘negative set.’’

(TXT)

Table S19 Comparison of NIBBS-SEARCH seed genera-
tion algorithm to other seed generation algorithms for
the dark fermentation, hydrogen production phenotype.
This file consists a comparative analysis between the enzymes

identified for dark fermenatation, hydrogen production phenotype

by NIBBS to the enzymes identified for the same target phenotype

by T-Test and Mutual information.

(XLS)

Table S20 Runtime comparisons. This file consists of the

results of runtime comparison between NIBBS-SEARCH and other

algorithms.

(XLSX)
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Table S21 Correspondence between outputs of NIBBS-
SEARCH and MBS-Enum. This file consists of the results of the

experiment evaluating the corresspondence of subgraphs output

by NIBBS to the set of complete set of maximally-biased

subgraphs output by MBS-Enum.

(XLSX)

Text S1 Systematic validation. This file contains the result

of the experiments relating to the accuracy evalutaion of NIBBS-

SEARCH.

(BZ2)

Text S2 Parameter evaluation. This file contains the results

of the experiments performed to analyze the effects of input

parameters on the results.

(BZ2)

Text S3 NIBBS-SEARCH Algorithm Pseudocode. This file

contains more details on the NIBBS-SEARCH algorithm.

(PDF)
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