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Integrative Network Analysis of 
Differentially Methylated and 
Expressed Genes for Biomarker 
Identification in Leukemia
Robersy Sanchez   1 & Sally A. Mackenzie1,2

Genome-wide DNA methylation and gene expression are commonly altered in pediatric acute 
lymphoblastic leukemia (PALL). Integrated network analysis of cytosine methylation and expression 
datasets has the potential to provide deeper insights into the complex disease states and their causes 
than individual disconnected analyses. With the purpose of identifying reliable cancer-associated 
methylation signal in gene regions from leukemia patients, we present an integrative network analysis 
of differentially methylated (DMGs) and differentially expressed genes (DEGs). The application of a 
novel signal detection-machine learning approach to methylation analysis of whole genome bisulfite 
sequencing (WGBS) data permitted a high level of methylation signal resolution in cancer-associated 
genes and pathways. This integrative network analysis approach revealed that gene expression and 
methylation consistently targeted the same gene pathways relevant to cancer: Pathways in cancer, 
Ras signaling pathway, PI3K-Akt signaling pathway, and Rap1 signaling pathway, among others. 
Detected gene hubs and hub sub-networks were integrated by signature loci associated with cancer 
that include, for example, NOTCH1, RAC1, PIK3CD, BCL2, and EGFR. Statistical analysis disclosed 
a stochastic deterministic relationship between methylation and gene expression within the set of 
genes simultaneously identified as DEGs and DMGs, where larger values of gene expression changes 
were probabilistically associated with larger values of methylation changes. Concordance analysis of 
the overlap between enriched pathways in DEG and DMG datasets revealed statistically significant 
agreement between gene expression and methylation changes. These results support the potential 
identification of reliable and stable methylation biomarkers at genes for cancer diagnosis and prognosis.

Network-based modeling approaches have the potential to integrate and improve the perception of complex dis-
ease states and their root causes. To date, network analysis provides reliable and cost effective approaches for early 
disease detection, prediction of co-occurring diseases and interactions, and drug design1. Although integrated 
genomic analysis of methylation and gene expression in leukemia has been reported2–5, meaningful assimilation 
of network analysis is still lacking.

Our study investigates protein-protein interaction networks (PPI), which are exclusively focused on 
protein-protein associations and resulting cell activities. A PPI network can be defined as a (un)directed graph/
network holding vertices as proteins (or protein-coding genes) and edges as the interactions/association between 
them. Associations are meant to be specific and biologically meaningful, i.e., two proteins are connected by an 
edge if jointly contributing to a shared function, which does not necessarily reflect a physical binding interaction.

Within the network, some proteins denote hubs interacting with numerous partners. Biologically, hubs are key 
elements on which functionality of the cellular process modeled by the network depends. A significant report on 
the vulnerability of network hubs from p53 protein interaction network, which plays a critical role in the progres-
sion of several cancer types, was made by Dartnell et al.6. Although inherently robust to random knockouts of its 
proteins, this network is vulnerable to the loss of its hubs, which leads to the disruption of cell cycle and apoptosis 
systems. Numerous studies on protein networks show that deleting a highly connected protein node (hub) is more 
likely to be lethal to an organism than deleting a low connection node (non-hub)6–8. This observation reflects the 
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centrality–lethality rule, where high-degree proteins or hubs tend to be more essential than low-degree proteins. 
Consequently, it is reasonable to assume that a biomarker suitable to define specific disease states would likely 
be a hub or a hub regulator within a relevant network. Frequently, more than one interacting network model is 
possible, with each model carrying a different uncertainty level for the biological process under study. Integration 
of more than one network model can help to reduce the implicit uncertainty associated to each model prediction6.

Integrative network analysis of cytosine DNA methylation and gene expression data in patients with cancer 
has resulted in several published reports9–13, typically with data from The Cancer Genome Atlas (TCGA). Yet, 
studies have not capitalized on whole genome bisulfite sequence (WGBS) data, which offers greater resolution. 
Here we focus on Leukemia.

We report on integrative network analysis of DMGs, DEGs and DEG-DMGs, where the identification 
of DMGs was accomplished with the application of a novel signal detection-machine learning approach, 
Methyl-IT14, on WGBS data. We show that integrating Methyl-IT results with gene expression analysis in a net-
work context permits greater resolution for cancer-associated genes and pathways than observed previously.

We address the hypothesis that disease-induced DNA methylation changes can serve as a source of reliable 
and stable biomarkers for cancer. Toward that aim, aberrant DNA methylation of key genes was reported in Acute 
Lymphoblastic Leukemia (ALL)15, and we have tested a reproducible approach to integrating network analysis of 
DMGs, DEGs and DEG-DMGs within datasets from patients with pediatric ALL (PALL). This data integration 
may provide the basis for robust identification of reliable and stable biomarkers.

Results
The flow chart presented in Fig. 1 summarizes the relevant steps of the procedure followed in our study. While the 
general workflow is consistent with current developments in network analysis, enhanced resolution is pursued 
with the application of Methyl-IT analysis.

General methylation features of the study.  The distribution of methylation changes at DMPs along the 
chromosome revealed genome-wide methylation repatterning dominated by hypermethylation in PALL patients 
(Supplementary Fig. S1). Hypomethylated sites are visible in the genome browser after zooming (tracks available 
in the Supplementary File S1). Consistent with natural methylation variability in the population of healthy indi-
viduals, DMPs were observed in the control group as well.

Methyl-IT analysis yielded a total of 4795 DMGs, including protein-coding regions (3338) and non-coding 
RNA genes (Supplementary Table S1). 1774 genes from the set of 2360 (B cell) DEGs reported in the origi-
nal study18 were DMGs here as well (75.2%, Supplementary Table S2). The methylation signal detected with 
Methyl-IT was much greater than reported in the earlier PALL study18. A given gene may not be a DMG based 
on limits established in the generalized linear regression model used to identify DMGs (see Methods), but can 
still carry relevant DMPs. Therefore, Supplementary File S1 contains wig files with tracks for the group means of 
differential methylation levels between each group and the reference.

Gene-body methylation signal detected in PALL patients coincided with a significant number of genes from 
the list of cancer consensus genes (723) from the COSMIC database19: 254 DMGs, 126 DEGs, and from these, 
112 DEG-DMGs.

Figure 1.  Flow chart of the analyses used in the current study. Initial data are from RNAseq and BS-seq 
experiments. Methyl-IT14 facilitates integrative analysis of methylation and gene expression data. Once 
DMGs, DEGs and DEG-DMGs are identified, different analytical/algorithmic approaches (i.e., cluster analysis 
or Bayesian networks11) can be applied to objectively extract biologically meaningful subsets of genes for 
STRING PPI-network identification16. Network enrichment analyses are performed on the PPI networks and 
subnetworks. The latter are generally detected with clustering approaches based on network centrality measures. 
Multivariate statistical analyses can be accomplished with DMGs, DEGs and DEG-DMGs at any step. For 
example, direct interaction between PIK3R and EGFR, detected in our analyses, and the role of PIK3R in cancer 
are validated in the BioGRID17 database (https://thebiogrid.org/).
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Network analysis on a set of differentially methylated genes (DMGs).  The preliminary applica-
tion of network-based enrichment analysis (NBEA20) and network enrichment analysis test (NEAT21) on the set 
of DMGs permitted selection of 285 network-related DMGs (Supplementary Tables S1 and S1). Similar analy-
sis led to selection of 326 network-related DEGs (Supplementary Table S2B, 2360 DEGs from B cells reported 
in Supplementary Table 3 from the original study18). These subsets were used to build the corresponding 
protein-protein interaction (PPI) networks with the STRING app of Cytoscape16. To bypass possible bias intro-
duced by the heuristic used to subset the whole set of genes (NBEA20 and NEAT21), sub-clusters of hubs where 
retrieved by applying the MCODE Cytoscape app on the entire set of DMGs. Other than the gene list, all PPI net-
works analyzed in this study were built entirely based on external information retrieved from STRING database16.

The PPI network built on the set of 285 DMGs is presented in Supplementary Fig. S2. Analysis with availa-
ble tools in Cytoscape22 led to identification of the main hubs from the PPI network (Fig. 2A,C). Sizes of nodes 
and labels, as well as their colors, are used for rapid visual identification of network hubs, such that the size of 
each node is proportional to its value of betweenness-centrality and the label font size is proportional to its node 
degree23.

The main hub subnetworks in Fig. 2A,C were identified with the application of K-means clustering on the 
main networks shown in Supplementary Figs. S2 and S3, respectively, with network centralities measuring 
Degree, Betweeness-Centrality, Closeness-Centrality, Clustering-Coefficient, and Average-Shortest-Path. The boot-
strap value of the mean Jaccard similarity supported the partition of DMGs into three clusters with values 0.83, 
0.94, and 0.84. Generally, a valid, stable cluster should yield a mean Jaccard similarity value of 0.75 or more. Pillai 
statistic from MANOVA test for the three-group comparison, as well as the F statistic for the pairwise compari-
sons, were highly statistically significant, i.e., the differences between the three clusters of DMGs in terms of their 
network-centrality indicators were statistically significant. Network enrichment analysis of the subnetwork of 
hubs identified KEGG pathways involved in cancer development (Fig. 2B,D), further supporting our findings.

Figure 2.  PPI subnetworks of hubs derived from subsets of network-related DMGs. (A) Main subnetwork of 
hubs obtained with the application of K-means clustering on the set of 285 network-related DMGs identified 
with NBEA20 and NEAT21 tests. The size of each node is proportional to its value of betweenness centrality and 
the label font size is proportional to its node degree. Node colors from light-green to red maps the discrete scale 
of logarithm base 2 of fold changes in DMP numbers for the corresponding gene: light-green: [1, 2], cyan: [2, 3], 
blue: [3, 4], and red: 5 or more. Edge color is based on co-expression index from white (0.042) to red (0.842). (B) 
Enrichment analysis with Cytoscape11 on KEGG pathway sets on network in (A). (C) Main subnetwork of hubs 
obtained with the application of MCODE Cytoscape app and K-means clustering. (D) Enrichment analysis with 
Cytoscape11 on KEGG pathway sets on the network in C.
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K-means clustering split the network of 285 DMGs (Supplementary Fig. S2) into three clusters: (i) the main 
subnetwork of hubs (46 DMGs, shown in Fig. 2A, Supplementary Table S1), (ii) a subnetwork with minor hubs 
(101 DMGs, Supplementary Fig. S4, Table S1), and (iii) a cluster integrated by two subnetworks (139 DMGs, 
Supplementary Fig. S4, Table S1). Results with MCODE Cytoscape app and K-means were consistent with those 
obtained by subsetting the entire set of DMGs via NBEA and NEAT20,21 (Supplementary Fig. S3 and Table S2), 
with a notable enrichment of KEGG pathways associated with cancer development (Supplementary Fig. S5).

The scatter plots of network centrality measures (Fig. 3) suggest that the main subnetwork of hubs includes 
the most relevant network nodes/genes (in red) with the highest network centrality measurements. We noted 
a transition from a non-linear behavior, in clusters iii (nodes in blue) and ii (node in green), to a linear trend 
observed in cluster i (red points, Fig. 3). These observations suggest that the subnetwork of hubs shown in Fig. 2C 
also involves genes with methylation signal that have a role in PALL development24.

Results of network enrichment analysis of DMG and DEG PPI networks built with STRING (Cytoscape) are 
shown in Fig. 4 (Supplementary Tables S1 and S2). The analyses indicate that DMG and DEG datasets targeted 
many of the same pathways with overlap of 80% (Fig. 4C). Pathways linked to cancer development and apoptosis 
are notable, and KEGG pathways in cancer (hsa05200) showed pronounced enrichment, with more than 50 and 
40 genes from the DMG and DEG datasets, respectively.

In the case of PALL patients, enrichment for PI3K-Akt signaling pathway, MAPK signaling pathway, JAK-STAT 
signaling pathway, Wnt signaling pathway, and Focal adhesion (all included in KEGG pathways in cancer) was 
statistically significant for both DMG and DEG subsets. The Venn diagram shown in Fig. 4C implies a high level 
of concordance between the enriched KEGG pathways identified in PPI networks from DEGs and from DMGs.

Figure 5 supports strong concordance between the enriched KEGG pathways identified in PPI networks from 
DEGs and from DMGs. Bootstrap Bayesian estimation of the Lin’s concordance correlation coefficient ρ( )cc  
yielded a value of ρ = .0 71cc  with a confidence interval (C.I.) ρ. ≤ ≤ .0 52 0 84cc , and a Kendall coefficient of con-
cordance ρ = .0 81KC  (permutation p-value <0.001). The linear regression analysis presented in Fig. 5A indicates 
a statistically significant linear relationship between the pathway score (PDMG) of enriched KEGG pathways in 
DMG PPI network (see definition at Eq. (1)) and pathway score (P )DEG  of enriched KEGG pathways in DMG PPI 
network. The proximity of most of the regression points (pairs of pathways scores) around the identity line 
(dashed line in blue) suggests significant agreement between methylation and gene expression regulatory systems, 
also indicated by a regression slope of 0.9. This concordance between gene expression and methylation was graph-
ically corroborated by a Bland-Altman plot26, where almost all the points are located between the mean − 2σ and 
mean + 2σ horizontal lines (Fig. 5B).

Figure 3.  Scatter plots of network centralities measures. A general non-linear trend is notable for genes/
nodes from clusters iii to ii, while the linear trend in cluster i can be visualized. The highest values of network 
centralities, degree, betweenness, centroid, stress, and radiality, are found in cluster i, which correspond to the 
main subnetwork of hubs presented in Fig. 2B (consistent with the lowest values of average-shortest-path-
length). Networks from clusters i, ii, and iii are shown in Supplementary Fig. S4.
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DEG-DMG network analysis.  Three clusters were detected by applying K-means clustering on PPI-network 
of 191 DEG-DMGs (selection described in Methods section), and two of them integrated the subnetworks of hubs 
shown in Fig. 6B,D while the third cluster gave rise to several subsets of subnetworks (Supplementary Table S2). 
The bootstrap value of mean Jaccard similarity supported the partition of DMGs into three clusters with values 
0.86, 0.96, and 0.853. Pillai statistic from MANOVA test for the three-group comparison, as well as the F statistic 
for the pairwise comparisons, were highly statistically significant, i.e., the differences between the three clusters of 
DEG-DMGs in their network-centrality indicators were statistically significant.

Figure 4.  Network-based enrichment analysis of protein-protein interaction (PPI) networks independently 
derived from DMGs and DEGs estimated in patients with PALL. (A) PPI enriched network of DEGs with 15 or 
more genes. (B) PPI enriched network of DMGs with 20 or more genes. (C) Venn diagram with the overlapping 
of all PPI enriched networks of DMGs and DEGs with 7 or more genes. The PPI enriched network analysis was 
performed in STRING app on Cytoscape,22,25 and the analysis is limited to KEGG human pathways.

Figure 5.  Graphical evaluation of the concordance between DEG and DMG enrichments on KEGG pathways. 
(A) scatterplot of pathway ratings (see Eq. 1) from enriched pathways on the set of DMGs P( )DMGs  and DEGs 
P( )DEGs , respectively. Regression analysis shows the linear trend of the relationship > >P versus P0 0DEGs DMGs  

(black dots). The identity dashed line (in blue) helps in gauging the degree of agreement between 
measurements26. Dots in red highlight pathways for which =P 0DEGs  or =P 0DMGs . (B) Bland-Altman plot of 
the agreement, on targeting gene pathways, between responses from gene expression and methylation 
regulatory systems. The agreement between measurements can also be tested by values of the Lin’s concordance 
correlation coefficient (ρCC) and Kendall coefficient of concordance (ρKC).
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6Scientific Reports | (2020) 10:2123 | https://doi.org/10.1038/s41598-020-58123-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Enrichments detected in the main PPI network of 191 DEG-DMGs (Fig. 6A) and subnetworks (Fig. 6C,E. 
Supplementary Table S2) were consistent with previous results (Fig. 4) (i) focused only on the set of DMGs (not 
all of them DEGs, Fig. 4A) and (ii) focused only on the set of DEGs (not all of them DMGs, Fig. 4B).

Group means of methylation level differences at each gene-body DMP for genes NOTCH1, CD44, and BCL2L1 
(hubs from the DMG-DEG sub-network from Fig. 6B) are shown in Fig. 7A. NOTCH1 and CD44 have been 
reported to be epigenetically regulated27–30 and, in particular, NOTCH1 has been proposed as a drug target for 
the treatment of T-cell acute lymphoblastic leukemia28. BCL2L1 is known to have roles in apoptosis and has been 
proposed as a drug target for cancer treatment31. Genes within the mitogen-activated protein kinase (MAPK) 
pathway are frequently altered in cancer and have been proposed as drug targets as well32.

Three members of this pathway are found in the DMG-DEG sub-network shown in Fig. 6D and in the DMP 
distribution on MAP3K1 gene-body shown in Fig. 7A. PALL-associated methylation changes were confirmed at 
single cytosine resolution with high classification performance14 (high accuracy, low false positive and false dis-
covery rates, etc.). Methyl-IT based WGBS findings, as shown in Fig. 7A, can be further confirmed with bisulfite 
PCR. In total, 379 identified DEG-DMGs have been reported as cancer-related genes (Fig. 7B).

Differentially methylated enhancer regions (DMERs).  Our initial analysis was limited to the meth-
ylation signal carried on gene-body regions. As suggested in Fig. 6, gene-associated methylation signal can also 
be present on genomic regions upstream and downstream to genes, including transcription enhancer regions33.

The methylation datasets identified 325 differentially methylated enhancer regions (DMERs). Although 
only 51 from the 325 identified DMERs are activators of reported DEGs (Supplementary Table S2), the list of 
DEG-DMG regions covered by DMERs (in at least 500 bp) totaled 159 (Fig. 7B), from which 23 were identified 
oncogenes.

Figure 6.  Enrichment for network-related DEG-DMGs. (A) Bar-plots of the enriched KEGG pathways in 
the PPI-network of 191 DEG-DMGs (Supplementary Fig. S6). (B,D) Subnetworks integrated by gene-hubs 
identified with K-means clustering of the network from panel. (C,E) Bar-plots of the enriched KEGG pathways 
on the networks from panels (B,D) respectively. In the networks, nodes with the same color belong to the 
same cluster obtained with K-Medoids clustering. To facilitate the visual identification of network hubs, node 
and label sizes were set proportional to the corresponding values of betweeness centrality and node degree, 
respectively. Edge color is based on coexpression index from white (0.042) to red (0.938). The PPI network and 
the enrichment analyses were performed in STRING app on Cytoscape22,25.

https://doi.org/10.1038/s41598-020-58123-2
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The top 29 genes with highest density variation for DMP number within enhancer regions are shown in 
Fig. 8. Many of these genes have been reported to be associated with cancer development and found in the sets of 
DMGs or DEGs. One example is the enhancer region influencing gene EPIDERMAL GROWTH FACTOR-LIKE 
DOMAIN 7 (EGFL7) and the micro-RNA MIR-126, both associated with cancer34,35. As shown in Fig. 8B, MIR-
126 resides within an intron of EGFL7 and their enhancer region overlaps.

MIR126 modulates vascular integrity and angiogenesis, and reports state that MIR-126 delivered via exosomes 
from endothelial cells promotes anti-tumor responses36. The hypomethylation pattern observed in the region 
spans a substantial part of gene AGPAT2, which was identified as a DMG and, although over-expressed in mul-
tiple types of cancer, was not reported as a DEG in the earlier PALL study37. AGPAT2 promotes survival and 
etoposide resistance of cancer cells under hypoxia38.

Association between methylation and gene expression.  Results to date suggest the existence of an 
association, or at least statistical inter-dependence, between methylation and gene expression. To investigate this 
association, density variations of the methylation signal were quantitatively expressed by different measurements: 
density of methylation level difference ∆pdensity

, density of total variation difference ∆TVdensity , and ∆HDdensity  
(see Methods). Gene expression was shown as absolute value of the logarithm base 2 of fold change, log FC2 .

The association between methylation and gene expression for the current study of patients with PALL is shown 
in Supplementary Fig. S7. This association was corroborated by a highly significant Spearman’s rank correlation 
rho (p-value lesser than 0.001, Supplementary Fig. S7), and by two-dimensional kernel estimation (2D-KDE) and 
Farlie-Gumbel-Morgenstern (FGM) copula of joint probability distributions for each annotated pair of variables 
in the coordinate axes from the contour-plot plane (Supplementary Fig. S7).

Results indicate that methylation and gene expression show positive dependence. In general, a bivariate distri-
bution can be considered to have a specific positive dependence property if larger values of either random variable 
are probabilistically associated with larger values of the other random variable39. According to Lai40, the FGM 
copulas shown in Supplementary Fig. S7 indicate CDM and gene expression to be positively quadrant dependent 
and positively regression dependent. Thus, if X  is the density of methylation level difference, the regression 

| =E Y X x( ) is linear in x40. The regression of the conditional expected value of gene expression with respect to 
density variations of methylation signal X is linear in x (possible values of X). This linear trend is noticed with 
high joint probability in the outlined contour-plot red regions (Supplementary Fig. S7).

PC-score of DEG-DMGs.  The identification of genes playing fundamental roles in a particular pheno-
type is limited by the range of protein-protein interaction information in a database (STRING, in the current 
case). Consequently, results are mostly populated with genes from networks that are associated with diseases. To 

Figure 7.  DEG-DMGs reported as cancer related gene lists. (A) Group mean of methylation level differences 
at each cytosine identified differentially methylated genes (DMGs). BCL2L1, CD44, MAP3K1 and NOTCH1 
are linked to leukemia and other types of cancers. The genes were identified as PPI network hubs (Fig. 5B,D). 
Irregular distribution of methylation signal, hyper- and hypo- methylated, can be seen. Traditional DMR-based 
approaches fail to detect these types of variation. Methylation level differences were computed for control and 
treatment individuals with respect to normal CD19+ methylome from four independent blood donors used 
as reference. This approach provides an estimation of the natural variability of methylation changes existing in 
the control population. (B) Overlap (≥500 bp) between differentially methylated enhancer regions (DMERs) 
and DEG-DMGs. Although only 51 enhancers (DMERs) are activators of reported DEGs, the DMERs overlap 
with 159 DEG-DMG regions, of which 23 are reported oncogenes (see Methods). A total of 379 DEG-DMGs are 
reported oncogenes.
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circumvent these possible biases, principal component analysis (PCA) was applied to score genes according to 
their discriminatory power to discern the disease state from healthy.

The first principal component (PC1) was used to build the PC-scores for DMGs, since it carried 85% of the 
sample variance with eigenvalues greater than 1 (Guttman-Kaiser criterion41, see Methods). A list of the first 11 
genes with top PPI-network PC-scores is presented in Table 1, again reflecting genes associated with cancer devel-
opment and supporting our interpretation that, regardless of approach, DEG-DMG datasets intersect pathways 
for cancer origin and progression.

Figure 8.  DEGs with differentially methylated enhancer regions. (A) Top 29 genes with highest density 
variation of DMP number (>1.7 DMPs/kb) in the enhancer region. Dark blue denotes genes that have been 
reported associated with cancer development. (B) Group mean of methylation level differences at each cytosine 
identified in differentially methylated enhancer regions corresponding to the genes SMARCA4, EGRL7, 
MIR126, NUDT1, and CDK9.

Density of meth. level differences Density of Hellinger divergence

Gene
PC-
score

Signal density 
variation† Gene

PC-
score

Signal density 
variation

COX8C 53.23 23.30 COX8C 55.10 23.30

MSC 27.02 10.50 MSC 22.14 10.50

MPEG1 16.11 8.87 MPEG1 17.36 8.87

P2RY1 15.47 5.80 BLACE 12.97 6.37

CLEC11A 15.20 6.60 CTGF 11.96 3.75

BLACE 13.20 6.37 UHRF1 11.26 5.26

UHRF1 12.08 5.26 P2RY1 11.02 5.80

EGFL7 11.95 5.64 CMTM2 9.52 3.68

ID4 11.80 5.15 CXCR5 9.34 4.63

CDK5R1 9.50 6.76 ID4 9.31 5.15

CTGF 9.13 3.75 DDIT4L 8.77 2.65

Table 1.  First 11 genes with the top PC-score based on density of methylation level differences and density 
of Hellinger divergences*. *The entire table and details are given in Supplementary Table S2. †Signal density 
variation for each gene is given in the output of MethylIT function countTest2. This is the group mean difference 
of the normalized number of DMPs in 1k.
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Methylation signal on DEG-DMGs across individuals is network associated.  Correlation and hier-
archical cluster analyses of the methylation signal on genes across individuals from control and patient groups 
were performed to investigate the relationship of methylation signal within genes serving as network hubs and 
the other genes in the networks. The heat-map corresponding to the correlation matrix of methylation signal on 
hubs is provided in Fig. S9.

Hierarchical clustering on the set of DMG hubs and DEG-DMG hubs showed that their methylation signal 
was structured into well-defined groups (Fig. S8). This analysis was extended to genes that integrate DMG hubs 
and the whole DEG-DMG network (Fig. 9A). Network genes were grouped into three stable and non-arbitrary 
clusters. The analysis of cluster stability is in Supplementary Information S1.

Mapping of clusters into PPI networks at a medium confidence interaction score (0.4 or higher value, see 
Methods) is shown in Figs. 9B–D. The enrichment p-value for each of the three PPI networks is lesser than −10 16, 
indicating that proteins from any of clusters 1 to 3 share more interactions than would be expected for a random 
set of proteins of similar size drawn from the genome. Such an enrichment suggests that these sets of proteins are 
at least partially biologically connected as a group16.

Figure 9B,D shows that the hub information from each cluster structure was integrated into a central cohe-
sive block of the corresponding mapped network (yellow nodes in Fig. 9B–D). The mapping of random gene 
subsets (sampled from the DMG hubs and network DEG-DMGs) into PPI networks, restricted to nodes with 
3 or more interactions and confidence interaction score of 0.7, suggested that hub-core information from each 
cluster structure preserved in the PPI network was non-random and statistically significant. The probability of 

Figure 9.  Correspondence between clusters of genes carrying correlated methylation signals and PPI networks 
built on them. (A) Hierarchical clustering on the set of 191 DEG-DMGs (Fig. 6) and DMG hubs derived from 
previous network analyses (see Methods). Hierarchical clustering yielded three main clusters of genes, each 
carrying correlated methylation signals through the individuals (Supplementary Fig. S8). (B–D) PPI networks 
built on the corresponding gene subsets integrating clusters 1 to 3. Not all genes from each cluster integrated 
the corresponding PPI network built on them; there were three genes left out of the network in (B) and in (C) 
and five dropped genes in (D). Hubs of DMGs and DEG-DMGs, identified in previous PPI network analyses 
(Figs. 2A,C and 6B) are highlighted in yellow. Gene co-expression is encoded in the edge colors from lighter to 
darker (stronger).

https://doi.org/10.1038/s41598-020-58123-2
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obtaining similar mappings from clusters to a cohesive block of hubs by chance is lesser than 0.05 (Supplementary 
Information S1).

Our results appear to support the existence of a structural association between clusters of highly correlated 
methylation signal on DMG hubs and DEG-DMGs and the PPI interaction networks from the STRING data-
base16. Cluster integrity based on methylation signal is (mostly) preserved in the PPI networks that derive from 
external information on protein-protein interaction collected from published experiments in STRING. These 
observations insinuate that methylation repatterning is targeted.

DMG network hubs are consistent with the centrality–lethality rule.  The essential nature of DMG 
and DEG-DMG hub loci was investigated at the Genomic Data Commons Data Portal (https://portal.gdc.cancer.
gov/), which contains numerous cancer datasets42. Screening the TCGA database revealed that all hubs identified 
in our analysis could undergo mutations classified as high-impact, affecting patient survival (Fig. 10).

The overlap in frequency of high-impact mutations with the hub PPI network is shown in Supplementary 
Fig. S10.

Discussion
Data from this study reflect non-random methylation repatterning within gene networks reportedly associated 
with cancer development and risk. The data represent a novel approach to integrative network analysis of DMGs, 
DEGs and DEG-DMGs based on WGBS and RNA-Seq data from PALL patients.

The majority of DNA methylation changes fall within intergenic regions of the genome, and only 4795 (includ-
ing non-coding) of the 57241 annotated human genes were identified as DMGs. Methylation signal is observed 
not only within gene-body regions of DMGs, but also (and frequently with high intensity) in upstream and down-
stream domains. Although we were able to identify this methylation signal with high classification performance14, 
it was not clear the extent that DMGs and DEG-DMGs may be the consequence of changes in gene expression 
rather than effectors. More detailed analysis of the features of methylation signal on cancer-associated genes and 
pathways is now feasible among the identified sites.

Since networks were built based entirely on external information retrieved from STRING database, their 
analysis provided unbiased identification of network hubs independent of our information on methylation or 
gene expression. Network enrichment analysis of DMGs identified several KEGG pathways of relevance to can-
cer. Relevant genes were identified as network hubs and grouped into clusters of network hubs carrying highest 
network centrality measurements (Figs. 2 and 6). Available theoretical and experimental evidence suggests that 
disruption of a network hub, or genes that regulate the hub, could alter the entire gene network6,7,24,43. Genomic 

Figure 10.  Hub essentiality expressed as impact on patient survival as reported in TCGA. (A) Distribution of 
high impact mutations across hubs. (B) Overall survival plot. (C) Distribution of most frequently mutated hubs.
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studies indicate that mutations of a highly connected protein node (hub) are more likely to be lethal to an organ-
ism than mutations at a sparsely connected node (non-hub), a phenomenon known as the centrality-lethality 
rule. Thus, hub identification may offer candidate targets in the search for potential biomarkers. Strong linearity 
trends observed in pairwise regression between the centrality measurements (Fig. 3) in the main hub cluster 
(Fig. 2A) suggest that genes from the cluster are non-randomly targeted by methylation action during PALL 
development24.

Clusters of hubs integrating PPI subnetworks comprise the backbone of a network. The essentiality of gene 
hubs in preserving the integrity of the interacting network is quantitatively expressed in network centrality sta-
tistics. For sub-networks of hubs (Figs. 2 and 6), higher centrality values and linear relationships between the 
centrality statistics of the network hubs reflects a higher number of reported biologically meaningful associations 
between the hubs and the other genes in the sub-networks and main network (Fig. 3).

There was strong correspondence in the network enrichment analyses derived from PPI networks in DMGs 
and DEGs (Fig. 4), supporting the non-random nature of methylation signals within protein-coding regions 
in signaling pathways linked to cancer development. Although not all DEGs are detected as DMGs and vice 
versa, massive overlap of enriched KEGG pathways (Fig. 4) suggests a coordinated response of methylation and 
gene-expression machineries. The possibility of such an in concert regulatory response was statistically supported 
by Lin’s concordance correlation coefficient and Kendall coefficient of concordance.

An example of coordinated regulatory response of methylation and gene expression is seen in the case of 
the EGFR gene, identified as a hub in the DMG network (Fig. 2). EFGR is a tyrosine kinase that regulates auto-
phagy via the PI3K/AKT1/mTOR, RAS/MAPK1/3 (enriched pathways shown in Fig. 4A,B, and in Fig. 6A,E), and 
STAT3 signaling pathways44,45. Although EGFR was not a reported DEG, its activators, EPIDERMAL GROWTH 
FACTOR (EGF, Fig. 6B) and EGFL7 were identified as both DMGs and DEGs. EGFL7 is reported to be a key fac-
tor for the regulation of the EGFR signaling pathway46. Additionally, EGFL7 is a secreted angiogenic factor that 
can result in pathologic angiogenesis and enhance tumor migration and invasion via the NOTCH signaling path-
way34 (a pathway enriched in the PPI-DMG network). The NOTCH pathway is a conserved intercellular signaling 
pathway that regulates interactions between physically adjacent cells. In the set of patients with PALL, NOTCH1 
is reported as a DEG and DMG (Figs. 2A and 6B).

Another example of the gene network architecture of leukemia emerges by tracking up- and downstream 
interconnections of the genes PIK3CG (DEG-DMG) and PIK3CD (a DMG network hub, Fig. 2) from the PI3K/
AKT signaling pathway (enriched in the set of DEG-DMGs, Fig. 6). Phosphatidylinositol-4,5-bisphosphate 
3-kinase (PI3K) is a critical node in the B cell receptor (BCR, a DEG-DMG) signaling pathway and its isoforms, 
PIK3CD and PIK3CG are involved in B cell malignancy47. Crosslinking CD19 with the BCR augments PI3K acti-
vation, and VAV proteins, VAV1 (DMG), VAV2 (DEG-DMG), and VAV (DEG-DMG) also contribute to PI3K 
activation downstream of BCR and related receptors48. BCR and its downstream signaling pathways, including 
Ras/Raf/MAPK, JAK/STAT3, and PI3K/AKT (all enriched in PALL patients, Figs. 4 and 6), play important roles 
in malignant transformation of leukemia49.

Our analysis also considered gene regulatory domains upstream and downstream to gene-body regions and, 
in particular, enhancer regions. The set of genes targeted by DMERs did not integrate to a PPI network, but were 
found in signaling pathways or regulators from them. As in the previous analyses, enhancer methylation repat-
terning identified cancer-related genes (Fig. 7B). For example, SMARCA4 (Fig. 8) encodes an ATPase of the chro-
matin remodeling SWI/SNF complexes frequently found upregulated in tumors50 and represents a DEG-DMG in 
patients with PALL. The product of this gene can bind BRCA1 (DEG-DMG)51 and also regulates the expression 
of the tumorigenic protein CD44 (DEG-DMG)52.

PPI networks are only models to identify highly interconnected players from the subjacent web architecture 
of genes involved in a specific biological process. Thus, results from the application of more than one network 
model can complement, and different network models do not necessarily overlap 100% with the set of enriched 
pathways. Deriving subsets of the DEG-DMG dataset by applying MCODE clustering increased confidence over 
previous results.

The integrative analyses of DMGs, DEGs and the networks derived from them, as well as DMERs (graphically 
summarized in Figs. 2 to 10), provided consistent indication related interactions with cancer development and an 
association between gene methylation repatterning and gene expression changes. This association was supported 
by Spearman’s rank correlation rho and the bivariate FGM copula (Supplementary Fig. S7), which implies a linear 
dependence for expected values of gene expression changes on methylation changes for the set of DEG-DMGs.

Our analysis suggested a stochastic deterministic dependence relationship, where larger values of gene expres-
sion changes are probabilistically associated with larger values of methylation changes (in the entire set of 
1772 DEG-DMGs). Within the set of DEG-DMGs, observed changes in gene expression were not statistically 
independent of the methylation changes, showing association with a significant linear trend (Supplementary 
Fig. S7). This result may be indication that the relationship between gene methylation repatterning and altered 
gene expression would be present at lower density methylation levels. This relationship could be overlooked with 
over-stringent filtering of methylome data. Three analytical approaches assisted in discovering this association: i) 
signal detection for DMP identification, ii) GLM-based group comparison for DMG identification, and iii) copula 
modeling of stochastic dependence.

Results demonstrated the potential of integrative network analysis of DMGs and DEGs for identification 
of biologically relevant methylation biomarkers. Numerous clusters of interacting genes were detected in the 
sub-networks of hubs from PPI networks of DMGs and DEGs, with only a few described here. Hubs of DMGs and 
DEG-DMGs sharing similarity in their methylation patterns across patients (Fig. 9A) were located in cohesive 
blocks in the PPI network (Fig. 9B,D). This observation suggests, with support of statistical analysis, that these 
hubs were not arbitrarily targeted with methylation changes, and may be consistent with susceptibility of the hubs 
to high impact mutations (Fig. 10).
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More detailed analysis of these data leads us to propose three factors likely to be important to biomarker iden-
tification. A potential biomarker must 1) be a DMG or a DEG-DMG with one or more well defined differential 
methylation pattern(s) on gene-body, upstream or downstream domains; 2) integrate one or more gene pathways 
that are biologically relevant for leukemia and, simultaneously, show enrichment in the PPI networks of DMGs 
and DEGs, and 3) represent a hub or a biological connection to a relevant hub. Genes holding to these guidelines 
integrate the subnetworks of hubs shown in Figs. 2B, 5C,D and 9, and the list of potential biomarkers can be 
extended using the information provided in the Supplementary Tables S1 and S2.

As shown in Figs. 7 and 8, potential biomarkers need not comprise entire genes, but more likely specific 
regions within or neighboring gene regions. The last intron in NOTCH1 (Fig. 7) or the region covering MIR-
126 in EGFL7 (Fig. 8) are candidate examples. Intersection of the identified networks with available data from 
independent cancer studies lends support for this approach in identifying effective disease biomarkers. However, 
while intersection of methylome and gene expression data with cancer-relevant gene networks is compelling, 
we have not eliminated the possibility that these outcomes may be influenced by the relative abundance of 
cancer-related networks within the various databases currently available. To help circumvent this limitation, we 
proposed ranking the DEG-DMGs based on their discriminatory power to discern disease state from healthy.

Potential biomarkers can be scored with the application of PCA (Table 1 and Supplementary Table S2). In 
this study, the first PC was sufficient to build a PC-score of DEG-DMGs based on gene-body methylation signal 
intensity. PC-scores identify cancer-related genes that are not identified by the PPI network approach, although 
not all relevant genes were identifiable, including, for example, NOTCH1. Within a large gene like NOTCH1, the 
non-homogenous distribution of gene body methylation signal (Fig. 7A) can result in what appears as low-density 
methylation signal globally, even with high local signal. Nevertheless, PC-score provides an acceptable comple-
ment to the PPI network approach. Results obtained with the approach proposed here support its application for 
identification of reliable and stable biomarkers. A list of genes relevant as biomarker candidates for leukemia, 
several previously proposed as biomarkers by others, is provided in the Supplementary Tables online.

Materials and Methods
Methylation and gene expression datasets.  The datasets of genome-wide methylated and unmeth-
ylated read counts (for each cytosine site) from normal CD19+ blood cell donor (NB) and from patients with 
pediatric acute lymphoblastic leukemia (PALL) where downloaded from the Gene Expression Omnibus (GEO) 
database. DMPs were estimated for control (NB, GEO accession: GSM1978783 to GSM1978786) and for patients 
(ALL cells, GEO accession number GSM1978759 to GSM1978761) relative to a reference group of four inde-
pendent normal CD19+ blood cell donor (GEO accession: GSM1978787 to GSM1978790). The datasets of DEGs 
from the group of patients with PALL were taken from the Supplementary Information provided in the previous 
study18.

A list of 2,579cancer-related genes compiled by Bushman Lab (http://www.bushmanlab.org/links/genelists) 
was used to identify DEG-DMGs oncogenes.

Methylation analysis.  Methylation analysis was performed by using our home pipeline Methyl-IT14 version 
0.3.1 (a R package available at https://git.psu.edu/genomath/MethylIT). Estimation of differentially methylated 
positions (DMPs) is consistent with the classical approach using Fisher’s exact test except for a further applica-
tion of signal detection (see examples of methylation analysis with MethylIT at https://github.com/genomaths/
MethylIT, version 0.3.2). Need for the application of signal detection in cancer research was pointed out decades 
ago53. Here, application of signal detection was performed according to standard practice in current implemen-
tations of clinical diagnostic tests54–56. That is, optimal cutoff values of the methylation signal were estimated on 
the receiver operating characteristic curves (ROCs) based on ‘Youden Index’54 and applied to identify DMPs. 
The decision of whether a DMP is detected by Fisher’s exact test (or any other statistical test implemented in 
Methyl-IT) is based on optimal cutoff value55.

Differentially methylated positions (DMPs) were estimated for control (four normal CD19+ blood cell 
donors) and patient (ALL cells from three patients) groups relative to a reference group of four independent 
normal CD19+ blood cell donors. Inclusion of a reference group permitted the evaluation of natural variation in 
healthy individuals and reduction of noise in a signal detection step of the methylation analysis pipeline.

Estimation of differentially methylated regions (DMRs).  The regression analysis of the generalized linear model 
(GLMs) with logarithmic link, implemented in MethylIT function countTest, was applied to test the difference 
between groups of DMP numbers/counts at specified genomic regions, regardless of direction of methylation 
change. Here, the concept of DMR is generalized and it is not limited to any particular genomic region found 
with specific clustering algorithm. It can be applied to any naturally or algorithmically defined genomic region. 
For example, an exon region identified statistically to be differentially methylated by using GML is a DMR. In 
particular, a DMR spanning a whole gene-body region shall be called a DMG. DMGs were estimated from group 
comparisons for the number of DMPs on gene-body regions between control (CD19+ blood cell donor) and ALL 
cells based on generalized linear regression.

The fitting algorithmic approaches provided by glm and glm.nb functions from the R packages stat and MASS 
were used for Poisson (PR), Quasi-Poisson (QPR) and Negative Binomial (NBR) linear regression analyses, 
respectively. These algorithms are implemented in the Methyl-IT14 function countTest and countTest2, which only 
differ in the way to estimate the weights used in the GLM with NBR. The following countTest parameters were 
used: minimum DMP count per individual (8 DMPs), test p-value from a likelihood ratio test (test = “LRT”) and 
p-value adjustment method (Benjamini & Hochberg57), cut off for p-value (α = 0.05), and Log2Fold Change for 
group DMP number mean difference >1.
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The methylation analysis of genomic regions to identify differentially methylated enhancer regions (DMERs) 
was performed on a set of enhancers reported by Hnisz et al.58. Usually, the size of the genomic region covered by 
an enhancer varies depending on the tissue type. In our current case, for each enhancer we analyzed the maxi-
mum region spanning all reported sizes for different tissues.

Network analysis.  Protein-protein interaction (PPI) networks were built with the STRING app of 
Cytoscape16,22. Network analyses were conducted in Cytoscape. When applying network analysis, not all DMGs 
and DEGs estimated from the experimental datasets integrate networks. Working with subsets of the most rel-
evant genes from the experimental dataset able to integrate networks helped facilitate further network analysis. 
When the number of genes exceeded l00 for network analysis, biologically meaningful web connections were 
difficult to visualize. Therefore, subsetting was applied to select network-related genes.

Biologically relevant subsets of network related genes were selected from the entire set of genes (DMGs, DEG, 
or DEG-DMGs) by using the R packages NBEA and NEAT20,21. Alternatively, Cytoscape app MCODE was used 
for subsetting an entire network59. PPI subnetworks from four network modules identified with MCODE are 
shown. MCODE parameters for degree cutoff: 10, node density cutoff: 0.01, node score cutoff: 0.2, K- score 10, 
and max. depth: 100. K-mean clustering algorithm was applied to each subnetwork to obtain subnetworks of 
hubs using the following node attributes for clustering: betweenness-centrality, degree, closeness-centrality, and 
clustering coefficient. Cluster bootstrapping was applied to evaluate the stability of the cluster found with K-means 
based on Jaccard similarity. The computation was performed with the function clusterboot from R package fpc 
(version 2.2.3).

To facilitate the visual identification of network hubs, node and label sizes were set based on the node 
betweenness-centrality and degree measures, where size of each node (in PPI network) was proportional to its 
value of betweenness-centrality and label font size was proportional to its node degree23. Network enrichment 
analysis in KEGG pathways followed each graphic subnetwork.

To build the hierarchical clustering presented in Fig. 9, the Pearson correlation coefficient of methylation 
signal on genes (through individuals) was transformed to a dissimilarity measure: 1 – corr(x, y), where corr(x, 
y) stands for the correlation between genes x and y. The heatmap corresponding to the dissimilarity matrix is 
shown in Supplementary Fig. S8. Ward’s minimum variance method was used as agglomeration algorithm. The 
methylation signal on each gene was expressed as density of Hellinger divergences of methylation levels at each 
DMP in the gene region. Methylation signals were computed using function getGRegionsStat from the R package 
MethylIT.utils (version 0.1), available at https://github.com/genomaths/MethylIT.utils.”

To evaluate whether the methylation signal was associated to a PPI network, clustered genes were mapped 
into STRING PPI networks (Fig. 9). The uncertainty in hierarchical clusters from Fig. 9 was evaluated with the R 
package pvclust (version 2.0). For each cluster in hierarchical clustering, p-values were estimated via multiscale 
bootstrap resampling. Results are given in Supplementary Information S1.

For each cluster, the amount of information preserved in the mapping was estimated by the fraction of genes 
from the given cluster that integrated a main network with at least a minimum required interaction score. The 
confidence scores indicate the estimated likelihood that a given interaction is biologically meaningful, specific 
and reproducible, given the supporting evidence.

Concordance test for DEG and DMG enrichments on KEGG pathways.  The concordance between 
DEG and DMG enrichments on KEGG pathways, derived from the PPI network via STRING app in Cytoscape, 
was evaluated with the application of the Lin’s concordance correlation coefficient (ρcc) and Kendall coefficient of 
concordance (ρKC). The R package agRee was used for the bootstrap Bayesian estimation of ρCC point value and 
confidence interval60; while the R package vegan was used to compute ρKC through a permutation test61.

To perform the concordance test, a score was assigned to each enriched KEGG pathway from DEGs and 
DMGs based on the number of genes in the pathway and on its corresponding statistical signification based on its 
FDR p-value. Only pathways with FDR p-value lesser than 0.0004 were considered. A new variable, statistical 
signification (sig) was defined according with the scale: =sig  1, 2, 3, for p-values in the intervals ( − −10 , 105 4 ), 
( − −10 , 106 5 ), and ( −0, 10 6 ), respectively. The valor of =sig 0 was assigned to pathways not enriched in one of the 
group, DEGs or DMGs. For example, Phosphatidylinositol signaling system was not enriched in the set of 
PPI-DMGs and, consequently =sig 0DMG , but it was enriched in the set of PPI-DEGs with =sig 3DMG . Then, a 
new variable, named pathway score was defined according to the formula:

= ×P of genes in pathway sig# (1)

We would use the notation Pk
i to indicate that the rating was performed for pathway i identified on the gene set 

k (k =DMGs, DEGs). That is, the pathway score P not only carries information on how many genes are found on 
each pathway but also information on the enrichment statistical signification. The estimated values of PDMG

i  and 
PDEG

i  for each enriched pathway i (from DEGs and DMGs sets, respectively) were used in the concordance tests 
and in the Bland-Altman plot (Fig. 5B).

Stochastic association between methylation and gene expression.  Methylation density of gene 
regions simultaneously identified as DEGs and DMGs was expressed in terms of different magnitudes: 1) pdensity

i , 
density of methylation levels (i: control or patients); 2) TVdensity

i , density of the difference of methylation levels 
between each group (control or patients) and an independent group of four healthy individuals (reference group); 
3) TVBdensity

i , TV  with Bayesian correction, and 4) HDdensity
i , density of Hellinger divergence, where i denotes the 

group mean, control or patient. The density in 1000 bp of a variable X at a given gene region was defined as the 
sum of the magnitude X divided by the length of the region and multiplied by 1000. The differences in 
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methylation densities between control and patient groups were estimated as the absolute difference of methyla-
tion levels = −X X Xdensity

control
density
control

density
patient , where Xdensity

i  represents one of the mentioned variables. Methyl-IT R 
package provides all the functions to obtain all variables mentioned here (https://github.com/genomaths/
MethylIT (version 0.3.2) and https://github.com/genomaths/MethylIT.utils).

Spearman’s rank correlation ρ (rho) was estimated to evaluate the association between the pairs of variable 
∆log FC2  versus: ∆pdensity

, ∆TVdensity , ∆TVDdensity , and ∆HDdensity . Since correlation analysis only measures 
the degree of dependence (mainly linear) but does not clearly discover the structure of dependence, we further 
investigate the structural dependence between these variables with application of Farlie-Gumbel-Morgenstern 
(FGM) copula. FGM copula model estimation was performed with R package copula62.

Principal component analysis (PCA).  PCA is a standard statistical procedure to reduce data dimen-
sionality, to represent the set of DMGs by new orthogonal (uncorrelated) variables, the principal components 
(PCs)63, and to identify the variables with the main contribution to the PCs carrying most the sample variance. 
A PC-based score (PC-score) was built by ranking the DEG-DMGs based on discriminatory power to discern 
between the disease state and healthy. Each individual was represented as vector of the 1775-dimensional space 
of DEG-DMGs. Two PC-scores were estimated: the first based on the density of Hellinger divergence on the 
gene-body and the second one based on the density of the absolute value of methylation level difference. The den-
sity of a magnitude x is defined as the sum of x at each DMP divided by the gene width (in base-pairs). The first 
principal component (PC1) was used to build a PC-based score for the DEG-DMG set, since it had an eigenvalues 
(variance) greater than 1 and carried more than 85% of the whole sample variance (Guttman-Kaiser criterion41). 
The PC-score was built using the absolute values of the coefficients (loadings) in PC1 for each variable (gene). 
Since the sum of the squared of variable loadings over a principal component is equal to 1, the squared loadings 
tell us the proportion of variance of one variable explained by the given principal component. Thus, the greater is 
the PC-score value, the greater will be the discriminatory power carried by the gene.

The density of HD on the gene-body was computed with MethylIT function getGRegionsStat and the princi-
pal component with function pcaLDA, which conveniently applies the PCA calling function prcomp from the R 
package ‘stats’.

Data availability
All the methylome datasets and software used in this work are publicly available. The Methyl-IT R package used 
in the DMP and DMG estimations, as well as several examples on how to use Methyl-IT, are available at GitHub: 
https://github.com/genomaths/MethylIT (version 0.3.2). The datasets supporting conclusions of this report are 
included within Supplementary Material. R script evaluating Methyl-IT performance are available at https://git.
psu.edu/genomath/MethylIT_examples.

Methyl-IT version 0.3.1, used to compute DMGs, is available at https://git.psu.edu/genomath/MethylIT. For 
new analyses we recommend using the current version 0.3.2 available at https://github.com/genomaths/MethylIT.
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