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Mesenchymal stem cells (MSCs) have shown beneficial effects in the treatment of abdominal aortic aneurysm (AAA). Nonetheless,
the biological properties of adipose-derived MSCs (ASCs) from patients with AAA (AAA-ASCs) remain unclear. This study is
aimed at investigating the properties of cell phenotype and function of AAA-ASCs compared with ASCs from age-matched
healthy donors (H-ASCs). H-ASCs and AAA-ASCs were studied for cell phenotype, differentiation capacity, senescence, and
mitochondrial and autophagic functions. Cellular senescence was examined by senescence-associated β-galactosidase (SA-β-gal)
staining. Mitochondrial morphology was determined by MitoTracker staining. Despite the similar surface markers of AAA-
ASCs and H-ASCs, AAA-ASCs exhibited altered multidifferentiation potential. Compared with H-ASCs, AAA-ASCs displayed
enhanced senescence manifested by increased SA-β-gal activity and decreased proliferation and migration ability. Furthermore,
AAA-ASCs showed increased mitochondrial fusion, reactive oxygen species (ROS) production, and decreased mitochondrial
membrane potential. In addition, AAA-ASCs exhibited decreased autophagy level, upregulation of IL-6 and TNF-α secretion,
and downregulation of IL-10 secretion compared with H-ASCs. Nonetheless, treatment of AAA-ASCs with rapamycin (an
autophagy activator) dramatically reduced secretion of IL-6 and TNF-α and enhanced secretion of IL-10. In conclusion, our
study showed that AAA-ASCs exhibit senescence phenomena and decreased cell function. Understanding the specific alterations
in AAA-ASCs will help explore novel strategies to restore cell function for AAA treatment.

1. Introduction

Abdominal aortic aneurysm (AAA), which is characterized
by loss of vascular smooth muscle cells, extracellular matrix
(ECM) degradation, and progressive abdominal aortic dila-
tion, is the leading cause of morbidity and mortality in the
elderly [1]. The incidence of AAA in the aging population
is estimated to be 6 to 9% [2]. Although the underlying mech-
anisms are not fully understood, chronic inflammation of the

arterial wall is known to play a critical role in regulating its
pathogenesis [3–5]. Despite the advances in pharmacological
strategies including macrolides, tetracyclines, statins, and
surgical interventions, there remains no effective treatment
to prevent AAA progression and rupture [6]. Identifying
novel strategies to prevent AAA is urgently needed.

Mesenchymal stem cells (MSCs) aremultipotent cells that
can differentiate into a variety of cell types including adipo-
cytes, osteoblasts, and chondrocytes. There is accumulating
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evidence of the benefit of MSCs as cellular therapy for var-
ious inflammation-related diseases owing to their unique
immunomodulatory properties [7–9]. Indeed, over the past
decades, MSC-based therapy has emerged as a promising
approach for AAA treatment. Administration of human
MSCs protects against AAA formation by inhibiting CD4+

T-cell-produced proinflammatory cytokines [10]. Trans-
plantation of MSCs into apoE(-/-) mice has been shown
to attenuate Ang II-induced AAA formation by downregu-
lating levels of MMPs and inflammatory cytokines and
restoring elastin in the aortic wall [11]. Currently, MSCs
can be obtained from many adult tissues, the most com-
mon being bone marrow (BM) and adipose tissue [12].
Nonetheless, their isolation from BM is limited by the
number of cells obtained and the need for an invasive pro-
cedure [13]. In contrast, adipose tissue is widely distributed
in the human body and contains a larger number of MSCs.
Nevertheless, the function of adipose-derived MSCs (ASCs)
isolated from patients greatly declines. ASCs from patients
with coronary artery disease exhibit a decreased immuno-
modulatory capacity due to excessive reactive oxygen
species (ROS) production [14] although the biological
properties of those from patients with AAA (AAA-ASCs)
have not been determined. In the current study, we assessed
the phenotype and functionality of AAA-ASCs and ASCs
from age-matched healthy donors (H-ASCs).

2. Materials and Methods

2.1. Study Subjects. This study was approved by the research
ethics board of Guangdong Provincial People’s Hospital,
China. All participants provided written informed consent,
and the demographic information is summarized in
Table 1. Subcutaneous adipose tissue was harvested from 13
AAA patients undergoing surgery and 11 age-matched
healthy donors.

2.2. Isolation and Characterization of ASCs. ASCs were iso-
lated from adipose tissue from healthy donors and AAA
patients as previously reported [15]. Briefly, adipose tissue
(1-5 g) was cut into small pieces and digested with enzyme
and subsequently plated on 10 cm culture dishes. After 48
hours, nonadherent cells were washed off and the remaining

cells cultured with DMEM/low glucose (Gibco) medium sup-
plemented with 10% FBS (Life Technologies, 16000), 0.1mM
2-mercaptoethanol (Life Technologies, 21985023), NEAA
(Life Technologies, 11140050), and 0.1% Penicillin/Strepto-
mycin (Life Technologies, 15140122). The ASCs at passages
3~4 were used in the current study. Both H-ASCs and
AAA-ASCs were passaged at 3-day intervals and the same
cell number (100,000 cells per 6 cm dish) plated. Population
doubling was evaluated at each passage.

Surface markers of H-ASCs and AAA-ASCs were
determined using flow cytometry. Antibodies including
anti-CD31 (BioLegend, 303111), anti-CD45 (BioLegend,
304011), anti-CD73 (BioLegend, 344003), anti-CD90 (Bio-
Legend, 328107), and anti-CD105 (BioLegend, 323205) were
used. The differentiation capacity of H-ASCs and AAA-ASCs
into adipocytes and osteocytes was examined as previously
described [16].

2.3. Senescence-Associated β-Galactosidase (SA-β-Gal)
Staining. The cellular senescence of ASCs was determined
using a SA-β-gal staining kit (Beyotime, C0602) according
to the manufacturer’s protocol. Briefly, the same number of
H-ASCs and AAA-ASCs after passage was plated on a 6-
well plate. After 24 hours, ASCs were washed with PBS, fixed
with fixative solution for 15 minutes, and subsequently incu-
bated with SA-β-gal staining solution overnight at 37°C in an
incubator without CO2. Finally, the senescent ASCs with blue
color were captured from five different view fields of each
sample and their senescence analyzed.

2.4. Immunofluorescence Staining. Immunofluorescence
staining was performed as previously described [17]. H-
ASCs and AAA-ASCs were cultured in a 24-well plate with
glass cover slides. After fixation with formaldehyde for 30
minutes, H-ASCs and AAA-ASCs were permeated with
0.1% Triton X-100 in PBS for 30 minutes and then incubated
with Ki67 antibody (1 : 100, Abcam, ab15580) and γH2AX
antibody (1 : 100, Abcam, ab81299) overnight at 4°C. Next,
ASCs were incubated with the fluorescent-labeled secondary
antibodies for 1 hour at room temperature in the dark and
then mounted with 4′,6-diamidino-2-phenylindole (DAPI;
Vector Laboratories, Inc.) to stain the nucleus. Five view

Table 1: Demographic characteristics of the study subjects.

Total subjects
Control AAA P value

11 13 —

Age (y), mean ± SEM 65:75 ± 5:509 64:9 ± 9:793 0.9377

Male (n, %) 8 (72.7%) 11 (84.6%) —

Height (cm), mean ± SEM 168:1 ± 7:563 169:07 ± 7:444 0.7478

Weight (kg), mean ± SEM 64:1 ± 10:021 65:31 ± 9:358 0.7760

BMI (kg/m2), mean ± SEM 22:57 ± 2:148 22:71 ± 1:967 0.8704

BSA (m2), mean ± SEM 1:692 ± 0:171 1:797 ± 0:167 0.1591

Smoking (n, %) 2 (18.2%) 6 (46.1%) —

Hypertension (n, %) 2 (18.2%) 7 (53.8%) —

BMI: body mass index; BSA: body surface area; AAA: abdominal aortic aneurysm; BSA = 0:0061 ∗ height ðcmÞ + 0:0128 ∗weight ðkgÞ – 0:1529.
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fields from each slide were randomly photographed using a
fluorescent microscope.

2.5. Scratch-Wound Assay. H-ASCs and AAA-ASCs were
plated on a 12-well plate and cultured until they reached
90% confluence. The same-width scratches were made using
a 1mL pipette tip on the bottom of the plate. Next, H-ASCs
and AAA-ASCs were gently washed with PBS and then cul-
tured with medium without serum in an incubator with 5%
CO2 at 37

°C. After 24 hours of incubation, the migration of
ASCs into the “wound” area was captured using a phase con-
trast microscope and analyzed.

2.6. MitoTracker Staining. The mitochondrial morphology of
ASCs was evaluated by MitoTracker Green FM (Invitrogen,
M7514). Briefly, H-ASCs and AAA-ASCs were incubated
with DMEM supplemented with 20 nM/L MitoTracker
Green FM in the dark for 30 minutes. Subsequently, cells
were mounted with DAPI and photographed under a confo-
cal microscope.

2.7. ROS Measurement. Mitochondrial ROS in ASCs was
measured by MitoSOX staining (Invitrogen, M36008).
Briefly, H-ASCs and AAA-ASCs were cultured in a 24-well
plate with glass cover slides until 70~80% confluence. After
washing with PBS three times, H-ASCs and AAA-ASCs were
cultured with 5μmol/L MitoSOX at 37°C for 15 minutes in
the dark. Images of five different view fields of H-ASCs and
AAA-ASCs from each slide were randomly captured. The
fluorescence intensity was calculated using ImageJ software
(National Institutes of Health, Bethesda, MD, USA) in three
independent experiments.

2.8. JC-1 Staining. The mitochondrial membrane potential
(MMP) was determined by JC-1 dye (Thermo Fisher Scien-
tific, T3168) according to the manufacturer’s protocol.
Briefly, H-ASCs and AAA-ASCs were cultured in 24-well
plates with glass coverslips and then stained with JC-1 dye
for 10 minutes. Finally, five different view fields of H-ASCs
and AAA-ASCs were randomly photographed and fluores-
cence intensity calculated using ImageJ software in three
independent experiments.

2.9. Western Blotting. The proteins of H-ASCs and AAA-
ASCs were extracted and their concentration determined
using a bicinchoninic acid assay kit (Thermo Fisher Scien-
tific, 231227). A total of 25μg of protein of each sample
was loaded, separated by SDS/PAGE, and then transferred
to PVDF membranes. After blocking with 5% fat-free milk
in TBST, the membranes were incubated at 4°C overnight
with the following antibodies: anti-p-Drp1 ser616 (1 : 1000,
Invitrogen, PA5-64821), anti-Drp1 (1 : 1000, Invitrogen,
PA5-20176), anti-Mfn2 (1 : 1000, Abcam, ab124773), anti-
p53 (1 : 1000, Abcam, ab26), anti-p21 (1 : 1000, Abcam,
ab109199), anti-Beclin (1 : 1000, CST, 3738), anti-LC3I/II
(1 : 1000, CST, 4108), anti-p62 (1 : 1000, CST, 5114), and
GAPDH (1 : 1000, CST, 2118). Subsequently, after washing
with TBST three times, the membranes were incubated with
secondary antibodies (1 : 3000, CST) at room temperature for
1 hour and then exposed in a dark room.

2.10. Transmission Electron Microscope (TEM). Examination
of ASCs using a TEM was performed as previously described
[18]. Briefly, after washing with PBS, the cells were fixed with
2.5% glutaraldehyde in phosphate buffer for 4 h and then
postfixed with 1% OsO4 for 2 h. Next, cells were dehydrated
with a graded concentration of ethanol (30, 50, 70, 80, 90,
95, and 100%). Subsequently, cells were infiltrated with 1 : 1
acetone : Spurr resin (SPI-Chem, 02690-AB) for 1 h at room
temperature, 1 : 3 acetone : Spurr resin for 3 h, and then abso-
lute Spurr resin overnight. Electron images were captured
under a TEM (Hitachi, H-7650).

2.11. Enzyme-Linked Immunosorbent Assay (ELISA). Condi-
tioned medium from H-ASCs, AAA-ASCs, or rapamycin-
treated AAA-ASCs was prepared as previously reported
[19]. The concentration of inflammation-related cytokines,
including IL-6, IL-10, and TNF-α, in the conditioned
medium was detected by ELISA. Each experiment was
repeated three times.

2.12. ATP Content Measurement. ATP in H-ASCs and AAA-
ASCs was harvested with boiling distilled water as previously
reported [20]. The ATP content was examined using an ATP
Determination Kit (Molecular Probes, A22066).

2.13. Telomere Length Measurement. Genomic DNA was
extracted directly from H-ASCs and AAA-ASCs using
standard procedures. The relative telomere length was
determined as previously described [21]. Briefly, the telo-
mere length was represented by the relative ratio of the
telomere repeat copy number (T) to the single-copy gene
36B4 copy number (S). The T/S ratio was determined by
quantitative polymerase chain reaction (qPCR) using a
7900HT thermal cycler (Applied Biosystems). It can then
be calculated by the formula T/S = 2ð−dCtÞ, where dCt is
the difference in threshold cycle obtained by subtracting
the average 36B4 Ct value from the average telomere Ct
value. Primer sequences are as follows: Tel 1b—270 nM,
5′-GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGA
GGGT-3′; Tel 2b—900nM, 5′-TCCCGACTATCCCTAT
CCCTATCCCTATCCCTATCCCTA-3′, 36B4u—300 nM,
5′-CAGCAAGTGGGAAGGTGTAATCC-3′; and 36B4d—
500nM, 5′-CCCATTCTATCATCAACGGGTACAA-3′. All
samples were measured in triplicate.

2.14. Statistical Analysis. All values are expressed as mean
± SEM. Statistical analyses were performed using Prism
5.04 Software (GraphPad Software for Windows, San
Diego, CA, USA). Comparison between two groups was
analyzed by unpaired Student’s t-test. Comparison between
multiple groups was analyzed by using one-way ANOVA
followed by the Bonferroni test. A p < 0:05 was considered
statistically significant.

3. Results

3.1. Characterization of H-ASCs and AAA-ASCs. We evalu-
ated the surface antigens of H-ASCs and AAA-ASCs using
flow cytometry. The results showed that H-ASCs and AAA-
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ASCs expressed similar surface markers including negative
for CD31 and CD45 and positive for CD73, CD90, and
CD105 (Figure 1(a)). Subsequently, we examined the dif-
ferentiation capacity of H-ASCs and AAA-ASCs into adi-
pocytes and osteocytes. As shown in Figure 1(b), both
H-ASCs and AAA-ASCs differentiated into adipocytes
and osteocytes as manifested by Oil Red O staining and
Alizarin Red staining (Figures 1(b) and 1(c)). Notably,
quantification of Oil Red O staining showed a great
increase in the percentage positive area, whereas Alizarin
Red staining showed a decreased percentage of positive
area in AAA-ASCs after differentiation compared with
H-ASCs, suggesting that the differentiation capacity of
AAA-ASCs was altered (Figures 1(b) and 1(c)).

3.2. AAA-ASCs Are More Senescent than H-ASCs.We exam-
ined the cell growth rate of H-ASCs and AAA-ASCs via serial
passaging. As shown in Figure 2(a), AAA-ASCs demon-
strated a lower growth rate and arrested growth at passage
6, whereas H-ASCs continued growing until passage 10, sug-
gesting that the proliferative capacity of AAA-ASCs was
decreased (Figure 2(a)). AAA-ASCs exhibited increased cell
size compared with H-ASCs (Figure 2(b)). Next, we per-
formed SA-β-gal staining to determine the cellular senes-
cence of H-ASCs and AAA-ASCs. Compared with H-ASCs,
the percentage of SA-β-gal-positive cells was dramatically
increased in AAA-ASCs (Figure 2(c)). Furthermore, the pro-
tein level of cellular senescence markers such as p53 and p21
was also significantly increased in AAA-ASCs compared
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Figure 1: Characterization of H-ASCs and AAA-ASCs. (a) The surface markers of H-ASCs and AAA-ASCs were examined by flow
cytometry. Both YMSCs and AMSCs were positive for the MSC-specific markers CD73, CD90, and CD105 but negative for CD31 and
CD45. (b) Adipogenic differentiation evaluated by Oil Red O staining and quantification of adipogenic efficiency in H-ASCs and AAA-
ASCs. Scale bar = 200 μm. (c) Osteogenic differentiation evaluated by Alizarin Red staining and quantification of osteogenic efficiency in
H-ASCs and AAA-ASCs. Scale bar = 200 μm. Data are expressed as mean ± SEM. n = 3. ∗∗p < 0:01.
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Figure 2: AAA-ASCs displayed increased cellular senescence. (a) Cell growth curves show the lower proliferative ability of AAA-ASCs
compared to that of H-ASCs. (b) Representative images of cell morphology and quantitative analysis of cell size in H-ASCs and AAA-
ASCs. Scale bar = 200 μm. (c) Representative images of SA-β-gal staining and quantitative analysis of SA-β-gal-positive cells in H-ASCs
and AAA-ASCs. Scale bar = 200μm. (d) Western blotting and quantitative analysis of the expression levels of p53 and p21 in H-ASCs and
AAA-ASCs. (e) Immunostaining of the proliferation marker Ki67 and quantitative analysis of Ki67-positive cells in H-ASCs and AAA-
ASCs. Scale bar = 200 μm. Data are expressed as mean ± SEM. n = 3. ∗∗∗p < 0:001.
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with those in H-ASCs (Figure 2(d)). In addition, Ki67 stain-
ing showed that the proliferative rate of AAA-ASCs was
much lower than that of H-ASCs (Figure 2(e)). These data
suggest that AAA-ASCs are more senescent than H-ASCs.

3.3. AAA-ASCs Exhibit Increased DNA Damage and
Decreased Migration Capacity. It has been reported that the
accumulation of DNA damage is a leading cause of cellular
senescence [22]. We examined DNA damage in AAA-ASCs
and H-ASCs using γH2AX staining. The percentage of
γH2AX-positive cells was significantly enhanced in AAA-
ASCs compared with H-ASCs (Figure 3(a)). We also mea-
sured the telomere length in AAA-ASCs and H-ASCs.
AAA-ASCs exhibited a shorter telomere length than H-
ASCs (Figure 3(b)). Next, we evaluated the migratory capac-
ity of AAA-ASCs and H-ASCs using scratch assays. Both
AAA-ASCs and H-ASCs invaded the scratch area within 24
hours (Figure 3(c)). Notably, AAA-ASCs presented reduced
migration into the scratch area compared with H-ASCs
(Figure 3(c)).

3.4. Mitochondrial Function Is Impaired in AAA-ASCs.Accu-
mulating evidence has shown that mitochondrial dysfunc-
tion plays a critical role in regulating cellular senescence
[23–25]. Therefore, we examined the mitochondrial function
in AAA-ASCs. It has been reported that mitochondrial mor-
phology is closely associated with mitochondrial function
[26]. First, we examined the morphology of mitochondria
in AAA-ASCs and H-ASCs. MitoTracker staining results
showed an increased mitochondrial length in AAA-ASCs
(Figure 4(a)). Western blotting showed that compared with
H-ASCs, the level of mitochondrial fission protein p-Drp-1
ser616 was significantly reduced in AAA-ASCs, whereas the
level of mitochondrial fusion protein Mitofusin 2 (Mfn2)
was greatly increased (Figure 4(b)), suggesting increased
mitochondrial fusion in AAA-ASCs. Disruption of mito-
chondrial dynamics contributes to mitochondrial ROS gen-
eration. We evaluated ROS generation in AAA-ASCs and
H-ASCs using MitoSOX staining and revealed it to be signif-
icantly increased in AAA-ASCs compared with H-ASCs
(Figure 4(c)). Subsequently, we examined mitochondrial
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Figure 3: AAA-ASCs demonstrated increased DNA damage and decreased migration capacity. (a) Representative images of γH2AX staining
and quantitative analysis of γH2AX-positive cells in H-ASCs and AAA-ASCs. Scale bar = 50μm. (b) Quantitative analysis of the telomere
length in H-ASCs and AAA-ASCs. (c) Representative images of scratches of wound healing demonstrating the migration ability and
quantification of the wound recovery rate of H-ASCs and AAA-ASCs. Scale bar = 200μm. Data are expressed as mean ± SEM. n = 3.
∗∗p < 0:01; ∗∗∗p < 0:001.
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Figure 4: Mitochondrial function was decreased in AAA-ASCs. (a) Representative images of mitochondrial morphology determined by
MitoTracker staining in H-ASCs and AAA-ASCs. Scale bar = 25 μm. (b) Western blotting and quantitative analysis of the expression level
of p-Drp1 ser616/Drp1 and Mfn2 in H-ASCs and AAA-ASCs. (c) Representative images of ROS determined by MitoSOX staining and
quantitative analysis of ROS generation in H-ASCs and AAA-ASCs. Scale bar = 100 μm. (d) Representative images of MMP determined by
JC-1 staining and quantitative analysis of MMP in H-ASCs and AAA-ASCs. (e) The intracellular ATP level in H-ASCs and AAA-ASCs.
Data are expressed as mean ± SEM. n = 3. ∗∗∗p < 0:001.
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membrane potential (MMP, ΔΨm) using JC-1 staining in
AAA-ASCs and H-ASCs. The JC-1 signal (red color,
aggregates, high potential; green color, monomers, low
potential) displays the ΔΨm in the mitochondria. The
results showed a significant reduction in the red/green
fluorescence ratio in AAA-ASCs compared with H-ASCs
(Figure 4(d)), indicating the ΔΨm collapse in AAA-
ASCs. Furthermore, the intracellular ATP level in AAA-
ASCs was significantly reduced compared with H-ASCs
(Figure 4(e)). Collectively, these data show that mitochon-
drial function is impaired in AAA-ASCs.

3.5. Autophagy Level Is Decreased in AAA-ASCs. Growing
evidence has shown that autophagy mediates the cellular
senescence of MSCs [27, 28]. We first detected the autopha-
gosomes in each cell using a TEM. As shown in Figure 5(a),
the number of autophagosomes in AAA-MSCs was much
lower than that in H-ASCs (Figure 5(a)). To verify this, we
detected the protein expression of some key autophagy-
associated proteins LC3II/I, Beclin, and p62. Compared with
H-ASCs, the protein expression of LC3II/I and Beclin was
significantly downregulated in AAA-MSCs, whereas the level
of p62 protein was upregulated (Figure 5(b)). These results
suggest that the autophagy level is decreased in AAA-ASCs.

3.6. AAA-ASCs Display an Altered Secretome. The MSC
secretome plays an important role in the regulation of MSC
immunopotency. Because autophagy promotes the paracrine
effects of MSCs [29], we evaluated key immunomodulatory
cytokines in the H-ASC and AAA-MSC secretome. AAA-
MSCs secreted higher levels of IL-6 and TNF-α and a lower
level of IL-10 than H-ASCs (Figures 6(a)–6(c)). Moreover,
treatment of AAA-ASCs with the autophagy activator, rapa-
mycin, significantly reduced the levels of IL-6 and TNF-α and
increased the level of IL-10 in the secretome, suggesting that
autophagy may play a role in regulation of the immunomod-
ulatory properties of AAA-ASCs (Figures 6(a)–6(c)).

4. Discussion

There were several major findings in the current study. First,
ASCs derived from AAA patients displayed phenomena of
senescence, manifested by a decreased proliferative capacity,
increased SA-β-gal activity, and DNA damage. Second,
AAA-ASCs exhibited increased mitochondrial fusion and
decreased mitochondrial fission, leading to excessive ROS
production and reduced MMP. Third, the autophagy level
of AAA-ASCs was decreased. Fourth, AAA-ASCs secreted
higher levels of the inflammatory cytokines IL-6 and TNF-
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Figure 5: Autophagy level was decreased in AAA-ASCs. (a) Representative images of autophagosomes examined by a TEM and quantitative
analysis of autophagosomes in H-ASCs and AAA-ASCs. Scale bar = 500 nm. (b) Western blotting and quantitative analysis of the expression
level of LC3II/I, Beclin, and p62 in H-ASCs and AAA-ASCs. Data are expressed as mean ± SEM. n = 3. ∗∗p < 0:01; ∗∗∗p < 0:001.
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α and a lower level of IL-10, an effect partially reversed by
rapamycin treatment.

A growing body of evidence from preclinical studies
and clinical trials has shown the promising results of autol-
ogous ASC transplantation in various disorders including
cardiovascular diseases and AAA [30–33]. Nevertheless,
the function of ASCs is adversely influenced by a patient’s
comorbid conditions, thus affecting their therapeutic effi-
ciency. In the current study, we successfully isolated ASCs
from healthy age-matched controls and AAA patients.
Although we observed no difference in the surface antigen
profile between AAA-ASCs and H-ASCs, the differentiation
capacity of AAA-ASCs into adipocytes was dramatically
increased while that into osteocytes was decreased, indicat-
ing that the differentiation tendency of AAA-ASCs was
modified. These findings are consistent with a previous
study showing that adipose-derived mesenchymal stromal
cells from diabetic patients exhibit an altered differentiation
tendency [34]. It has been reported that the function of
MSCs declines with aging [35]. Aging MSCs tend to lose
their differentiation capacity. These results promote us to
speculate that the altered differentiation capacity of AAA-
ASCs may be caused by cellular senescence. As expected,
we found that SA-β-gal activity and protein levels of p21
and p53, hallmarks of aging, were significantly increased
in AAA-ASCs compared with those in H-ASCs, demon-
strating the cellular senescence of AAA-ASCs. Furthermore,
the proliferative and migratory capacities were also
decreased in AAA-ASCs. These data provide further evi-
dence that AAA-ASCs present impaired function. Never-
theless, the potential mechanisms underlying AAA-ASC
senescence remain to be elucidated.

To the best of our knowledge, mitochondria are dynamic
organelles that undergo fission and fusion. Mitochondrial
fusion is mainly mediated by Mfn1/2 and optic atrophy pro-
tein 1 (OPA1). Mitochondrial fission is regulated by Drp1
and fission-1 (Fis1). Recent studies have highlighted that
abnormal mitochondrial dynamics are related to cellular
senescence [36, 37]. Our previous study also showed that
MSCs display increased mitochondrial fusion as evidenced

by the upregulation of Mfn2 and the downregulation of p-
Dp1 ser616 accompanied by increased cellular senescence
during their expansion in vitro [23]. Similarly, we found that
AAA-ASCs exhibited increased mitochondrial length and
increased protein level of Mfn2 and decreased protein level
of p-Drp1 ser616, suggesting that mitochondrial fusion
occurs in AAA-ASCs. In contrast, the senescent MSCs
derived from idiopathic pulmonary fibrosis patients had
fragmented and dysfunctional mitochondria [38]. The differ-
ent mitochondrial morphology may be due to the variety of
patients with different comorbid conditions. Mitochondrial
morphology is inherently associated with function. Mito-
chondrial fusion in MSCs leads to increased ROS generation
and a reduced MMP, inducing mitochondrial dysfunction
[14]. We further showed that AAA-ASCs had elevated
mitochondrial ROS levels and decreased MMP. Since mito-
chondrial dysfunction plays a critical role in AAA-ASC
senescence, it is worth investigating whether the restoration
of mitochondrial dysfunction can rejuvenate AAA-ASCs.

In addition to mitochondrial dysfunction, we observed
that the level of autophagy was reduced in AAA-ASCs. Indeed,
the basal level of autophagy contributes to maintain cell func-
tion including survival, differentiation, and homoeostasis
under different conditions [39]. Increasing evidence has
shown that altered autophagic activity is a major cause of cel-
lular senescence [40, 41]. A previous study has demonstrated
that the downregulation of autophagy enhances ROS genera-
tion and p53 levels, leading to MSC senescence, whereas acti-
vating autophagy by rapamycin improves the function of aged
MSCs [35]. Hypoxia treatment, via the regulation of the
HIF1α/AIMP3 pathway, delays MSC senescence by inducing
autophagy [27]. In the current study, the protein level of
Beclin1 and LC3II/I was significantly reduced, whereas that
of p62 was increased in AAA-ASCs compared with H-
ASCs, suggesting defective autophagy in AAA-ASCs. There-
fore, a defective autophagy might contribute to AAA-ASC
senescence. Nevertheless, the potential link between AAA-
ASC senescence and autophagy remains unclear.

The therapeutic effects of MSCs for AAA are mainly
attributed to their immunomodulatory capacity. Nonetheless,
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Figure 6: Changes in the secretion of inflammatory factors in AAA-ASCs. (a) Concentration of IL-6 in medium conditioned by H-ASCs,
AAA-ASCs, or AAA-ASCs treated with rapamycin. (b) Concentration of TNF-α in medium conditioned by H-ASCs, AAA-ASCs, or
AAA-ASCs treated with rapamycin. (c) Concentration of IL-10 in medium conditioned by H-ASCs, AAA-ASCs, or AAA-ASCs treated
with rapamycin. Data are expressed as mean ± SEM. n = 3:∗∗p < 0:01; ∗∗∗p < 0:001.
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this immunomodulatory capacity is largely affected by a
patient’s comorbid conditions. It has been reported that the
immunomodulatory capacity of ASCs isolated from patients
with atherosclerosis and type 2 diabetes mellitus is dramati-
cally reduced [42].MSCs isolated from atherosclerosis patients
secrete high levels of IL-6, IL-8, and MCP-1, leading to a
reduced immunomodulatory capacity [43]. Consistently, in
the current study, we also observed higher levels of IL-6 and
TNF-α and a lower level of IL-10 in the AAA-ASC secretome
than in the H-ASC secretome, indicating a reduced immuno-
potency of AAA-ASCs. According to several studies, autoph-
agy is closely associated with the secretion of inflammatory
factors in various types of cells [44–46]. We also found that
rapamycin treatment greatly downregulated the levels of IL-6
and TNF-α and upregulated the level of IL-10 in the AAA-
ASC secretome, suggesting that autophagy mediates the secre-
tion of inflammatory factors in AAA-ASCs, therefore affecting
their immunomodulatory capacity.

There are several limitations in the current study that we
need to acknowledge. First, although we found increased mito-
chondrial fusion in AAA-ASCs, whether mitochondrial fusion
leads to AAA-ASC senescence requires further investigation.
Second, we only analyzed three immunomodulatory cytokines
in the secretome of AAA-ASCs. The alteration of other cyto-
kines or factors in the AAA-ASC secretome remains unclear.
Third, although we observed that AAA-ASCs secrete a higher
level of several immunomodulatory cytokines, the immuno-
modulatory capacity of AAA-ASCs was not determined.

5. Conclusion

Our study shows that ASCs from AAA patients exhibit
phenomena of senescence. In addition, we revealed
impaired mitochondrial function and autophagy in AAA-
ASCs. These results suggest that the therapeutic efficacy
of AAA-ASCs may be impaired compared with H-ASCs.
Targeting mitochondria or autophagy may enhance the
therapeutic efficacy of ASCs derived from AAA patients
in autologous cell-based therapy.
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