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Abstract

Quantitative MRI methods have recently gained extensive interest and are seeing substan-

tial developments; however, their application in single patient vs control group comparisons

is often limited by inherent statistical difficulties. One such application is detecting malforma-

tions of cortical development (MCDs) behind drug resistant epilepsies, a task that, espe-

cially when based solely on conventional MR images, may represent a serious challenge.

We aimed to develop a novel straightforward voxel-wise evaluation method based on the

Mahalanobis-distance, combining quantitative MRI data into a multidimensional parameter

space and detecting lesion voxels as outliers. Simulations with standard multivariate Gauss-

ian distribution and resampled DTI-eigenvalue data of 45 healthy control subjects deter-

mined the optimal critical value, cluster size threshold, and the expectable lesion detection

performance through ROC-analyses. To reduce the effect of false positives emanating from

registration artefacts and gyrification differences, an automatic classification method was

applied, fine-tuned using a leave-one-out strategy based on diffusion and T1-weighted data

of the controls. DWI processing, including thorough corrections and robust tensor fitting was

performed with ExploreDTI, spatial coregistration was achieved with the DARTEL tools of

SPM12. Additional to simulations, clusters of outlying diffusion profile, concordant with

neuroradiological evaluation and independent calculations with the MAP07 toolbox were

identified in 12 cases of a 13 patient example population with various types of MCDs. The

multidimensional approach proved sufficiently sensitive in pinpointing regions of abnormal

tissue microstructure using DTI data both in simulations and in the heterogeneous example

population. Inherent limitations posed by registration artefacts, age-related differences, and

the different or mixed pathologies limit the generalization of specificity estimation. Neverthe-

less, the proposed statistical method may aid the everyday examination of individual sub-

jects, ever so more upon extending the framework with quantitative information from other

modalities, e.g. susceptibility mapping, relaxometry, or perfusion.
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Introduction

Drug resistant epilepsies (DRE)

Drug resistance affects about 20–30% of the epileptic patient population, causing severely

impaired quality of life and a difficult to treat situation [1, 2]. Most of the drug resistant cases

(~60%) are focal epilepsies, nevertheless there are generalized forms. Malformations of cortical

development (MCDs) and long-term epilepsy-associated tumors (LEATs) are among the most

frequent etiological factors causing DRE [3–6]. Subtypes of MCDs include focal cortical dys-

plasia (FCD), polymicrogyria (PMG), heterotopia (HTP), hemimegalencephaly (HME), while

subtypes of LEATs include gangliogliomas, and disembryoplastic neuroepithelial tumors

(DNTs) [7]. Most of these entities may exhibit variable features on MR images collected with

an epilepsy protocol. DRE patients are often candidates for surgical intervention but the prob-

ability of postoperative seizure freedom however is remarkably lower in cases lacking any iden-

tifiable lesions on conventional MRI [8]. Therefore better visualization of MCDs and LEATs

e.g. as shown in [9–15] can be crucial for improving surgical outcomes.

Diffusion tensor imaging

Diffusion tensor imaging (DTI) is a widely used, albeit rather simplistic, representation of dif-

fusion weighted MRI (DWI, or dMRI) data (applicable with sufficient number of diffusion

weighting directions and strength), in the examination of white matter (WM) microstructure

[16–18] on the voxel-level, and macrostructure through tractography. Rotationally invariant

scalar metrics, derived from the diffusion tensor eigenvalues (λ1, λ2, λ3), such as mean (MD)

or radial diffusivity (RD) and fractional anisotropy (FA) [17, 19] are proven to be sensitive to

different pathological changes. FA, the normalized standard deviation of the eigenvalues is

highly sensitive but aspecific to changes in WM microstructure, and although it has been

widely considered as a measure of structural integrity, interpreting its changes, especially in

regions with crossing fibers, is a more complex question. Apart from FA the most commonly

reported metric is MD, the arithmetic mean of the eigenvalues, which is shown to be propor-

tional to membrane density, while RD (the mean of the second and third eigenvalues) has

been shown to increase with changes of the myelin structure (de- or dys-myelination) or

increased axonal diameter [20]. The first eigenvalue, often referred to as axial diffusivity

(marked either by λ1, L1, AD, or DA), has been reported to decrease with various types of

pathologies (e.g. axonal injury [21]) and increase with brain maturation [22].

Typical DTI studies involve group-level comparisons of two or more of these scalar values by

the application of parametric tests on regions of interest (ROI, [23]), skeletonized WM (using

Tract Based Spatial Statistics—TBSS [24]), or the voxel-level [25, 26]. Nevertheless, selecting

which metrics are necessary to be examined has been a debated topic [27], and, as all of them are

calculated from the same three eigenvalues and therefore usually exhibit strong correlations, it is

arguable whether including all four in any study provides meaningful additional information.

The current study introduces a simple and straightforward statistical evaluation method,

which, by examining the three eigenvalues themselves, covers all the scalar information of the

diffusion tensor.

When trying to uncover pathological brain regions of individuals, comparing one patient to

a group of controls is called for, however the use of conventional parametric tests in such sin-

gle-subject examinations is always limited, as the fundamental assumption of fixed parameter

sets is often violated. Popular approaches to work around this problem in DTI examinations

include the use of nonparametric tests [28], or permutation approaches [29], however these

methods usually only work with single variables or metrics of interest.
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DTI in the diagnosis of epilepsy

DTI has been proven sensitive to the disrupted tissue microstructure, identified in MCDs.

Abnormalities tend to extend beyond the lesions themselves, for example [30] identified

decreased FA and increased MD and RD in regions spanning 5-20mm around the nodules

in children with periventricular nodular heterotopia. Widespread decrease of FA was also

demonstrated in [31] in major WM tracts in both hemispheres (e.g. in the cingulum, for-

ceps minor, anterior thalamic radiation, superior longitudinal fasciculus, uncinate fascicu-

lus, and the inferior fronto-occipital fasciculus) in a group of patients with frontal FCDs,

using TBSS.

More sophisticated models such as diffusion kurtosis imaging (DKI; [32]) or the NODDI

(neurite orientation dispersion and density imaging, [33]) approach may further improve

lesion detection based on diffusion weighted MRI [34–36]. Since DTI is still the most widely

used approach, mainly because of its simplicity and clinically feasible acquisition and process-

ing time, we chose to demonstrate our proposed statistical method using DTI data, however,

the framework we introduce may be applied to all kinds of voxel-wise variables derived from

any meaningful model.

The multidimensional approach

Multidimensional studies aim to combine information from independent sources in order to

raise statistical power; a feat sought after in the neuroimaging literature. Several strategies were

employed to implement this combination at different levels of statistical analysis throughout

the past two decades, using (and sometimes combining) voxel-wise, surface-based, and ROI-

level methods. The performance of this pooling of information has been evaluated on the level

of p-values [37, 38], T-score maps [39], and by using multivariate [40, 41] and logistic regres-

sion [42].

The lowest level at which neuroimaging information can be combined is achieved by work-

ing with raw data, or derived parameter maps. Such was the approach e.g. in [43] working

with voxel-wise MD and volumetry data. More recently, the performance of machine learning

based classifiers in the scope of lesion detection was demonstrated with satisfying perfor-

mance, e.g. on the voxel level in [12], working on T1-weighted data using a one-class support

vector machine-based classifier and outlier detection approach; or on the vertex-level, working

with morphologic and intensity-based metrics in [10] and [44] using surface-based

methodology.

As the aforementioned models and studies demonstrated (detailed in 4.1 in the Discussion),

multidimensional approaches can increase statistical power by combining the sensitivity pro-

files of independent modalities, but their usage is often complicated, computationally expen-

sive, and includes arbitrary choices (for example the choice of combining functions by [39] or

the choice of weighting factors for multivariate linear regression).

The current study was aimed at developing a more straightforward and easier to use

method, based on the Mahalanobis-distance for testing neuroimaging (specifically DTI) data

in the context of lesion detection when comparing a single patient to a group of healthy

controls.

The Mahalanobis-distance

Definition. The Mahalanobis-distance is a measure of dissimilarity, commonly used in

multivariate outlier detection problems [45–47]. Following the original definition by [48], in a

P dimensional statistical field (constructed from P separate variables) the squared distance

between an observed distribution with mean μ = (μ1, μ2, . . . μP) and covariance matrix S, and

Personalized microstructural evaluation using a Mahalanobis-based outlier detection strategy on DTI data

PLOS ONE | https://doi.org/10.1371/journal.pone.0222720 September 23, 2019 3 / 30

https://doi.org/10.1371/journal.pone.0222720


any point X = (X1, X2, . . .XP) is expressed in the form:

D2

M ¼ ðX � μÞT S� 1 ðX � μÞ ð1Þ

Multiplication with the inverse of the covariance matrix maps the inter-point distances to a

standard L2-norm, cleared of any possible correlations and differences in standard deviations

(σ1, σ2,. . . σP) between the dimensions (Fig 1); therefore D2 values reflect how far a given point

is from the underlying multivariate distribution.

This mapping feature is potentially useful in diffusion weighted image processing and the

detection of pathological tissue microstructure in the DTI framework, as different tensor

eigenvalues are sensitive to different pathologies but they generally exhibit strong correlations

[20–22].

By definition, the Mahalanobis-distance is related to Hotelling’s T2 (e.g. used in [43]) with

the exception that the latter compares a group of subjects to the reference distribution, by

using �X (the group average of Xi = (X1, X2, . . .XP) vectors, each corresponding to an individual

subject) instead of a single X. Like Hotelling’s T2 is often referred to as the multidimensional

equivalent of Fischer’s two-sample T-test, one may view the squared Mahalanobis-distance as

a multidimensional one-sample T-statistic.

The Mahalanobis-distance has been employed in neuroimaging in relation to various disor-

ders and at different levels of information processing: in discrimination between normal tissue

types and brain tumor [49]; in ordering the eigenvectors of discriminatory principal compo-

nent analysis [50], differentiating Schizophrenia patients from controls using whole brain FA;

in combining DTI-scalar metrics with T1 and T2-weighted images in WM-ROIs [51], quantify-

ing brain maturation; in discerning subtypes of mild cognitive impairment [52] based on T1,

T2, and proton density-weighted images; and, more recently, in quantifying the difference

Fig 1. The effect of the multiplication with the inverse of the covariance matrix. The multidimensional distribution is cleared of possible correlations and

differences in standard deviation, therefore the distances are effectually calculated in a Euclidean space.

https://doi.org/10.1371/journal.pone.0222720.g001
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between patients with autism spectrum disorder and subjects with normal aging [53], using

different sets of DTI scalars from major WM tracts.

In the current study, 3 dimensional distributions were constructed in each voxel from the

eigenvalues of the diffusion tensor, and the voxel-wise squared Mahalanobis-distance was cal-

culated using empirical μ and S from samples containing one patient and a group of control

subjects (Fig 2).

Statistical inference based on critical values. Critical values for detecting a single multi-

variate outlier at a desired level of significance, as shown by [54], can be calculated using

Wilks’s criterion [55] with the following formula:

D2

crit ¼
pðn � 1Þ

2Fp;n� p� 1;a=n

nðn � p � 1þ pFp;n� p� 1;a=nÞ
; ð2Þ

where p is the number of dimensions, n is the number of observations (subjects) and F is the

distribution function of the F statistics, with the appropriate numerator and denominator

degrees of freedom at the desired significance level α. By selecting a sufficiently conservative α,

Fig 2. Mahalanobis-distance in the 3D space of DTI eigenvalues. Outlying diffusion profile in a given voxel of a

single subject under examination (red) is detectable through the distance (D2) from a group of controls (blue and

green) in the three dimensional parameter space of the diffusion tensor eigenvalues. Common alterations of the

diffusion profile, such as a higher first eigenvalue (as in the case of point A; usually detected through increased

fractional anisotropy in univariate tests); an increase in all three eigenvalues (B; commonly observed as increased mean

diffusivity); or an altered diffusion profile with normal-appearing diffusion strength (like in the case of C, when MD

equals to the average MD of the controls, but the eigenvalues differ) are all detectable in the multivariate framework

with a single test.

https://doi.org/10.1371/journal.pone.0222720.g002
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i.e. one aiming to control the family-wise error rate (FWE) or the false discovery rate (FDR),

the problem of multiple comparisons (high number of voxels under examination) may also be

addressed. Although the distributions of the diffusion tensor eigenvalues are usually not

strictly Gaussian, this generally does not affect the calculation of Mahalanobis-distance signifi-

cantly, however, it may result in an overestimation of the critical values somewhat reducing

sensitivity with the unintendedly more conservative inference. With the analytically derived

critical values accounting for sample size, statistical significance is not likely to be affected by

the bias described in [56], however, as with conventional statistical approaches, using larger

control samples is desirable to increase specificity.

Spatial registration

For all voxel-level examinations, images under consideration (the DTI eigenvalue maps in our

analysis) have to be coregistered, i.e. transformed into a common coordinate system to achieve

sufficient spatial concordance. For its high performance, we chose the DARTEL [57] process-

ing pipeline from the SPM12 toolbox (http://www.fil.ion.ucl.ac.uk/spm/) [58]; an approach

commonly used in voxel-based morphometry (VBM) studies [59, 60]).

DARTEL creates a ‘template’ image in several iteration steps that is the closest to each indi-

vidual subject’s anatomy. This way the common coordinate system is tuned for being study-

specific, resulting in more efficient handling of macroscopic anatomical differences compared

to other widely used approaches, for example those utilizing the MNI152 template space [61]

as the target of ‘normalization’.

The popular and widely-used TBSS [24] approach of the FSL software package (https://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/) may reach a higher level of spatial correspondence, but it limits the

statistics to a supposed WM ‘skeleton’ by projecting voxel-level DTI scalar values to the center-

lines of the WM fiber bundles. This spatially informed and highly confined data reduction is

suboptimal for detecting lesions that are most prominent in the GM-WM boundary zone;

therefore, we opted for extending the scope of the analysis to the whole brain, while aiming to

retain high power by using the multidimensional approach, and not using TBSS in our

investigation.

As this study’s main objective is aiding the detection of small, hard to find lesions, we chose

not to include spatial smoothing (which is generally applied in voxel-level examinations), as it

would diminish our method’s performance in such applications.

Aims

The main aim of the current study was to evaluate the performance of the Mahalanobis-dis-

tance as a tool for detecting microstructural abnormalities, by simulations using data from

standard multivariate normal distribution (SMVND – NP(0,1)) and from healthy controls.

Based on the simulation results we also aimed to demonstrate the utility of the approach in

select cases of patients with MCDs.

Material and methods

Diffusion and T1 weighted MR imaging data of 45 healthy control subjects (25.6 years average

age, range: 20–37 years, 17 males) and 13 patients (21 years average age, range: 7–46 years,

with two children under 10, 7 adolescents between 14 and 18, 9 males) with MCDs was

acquired at 3T (Philips Achieva scanner, Philips Medical Systems, Best, The Netherlands).

DW-MR images were collected with a single shot SE-EPI sequence, with diffusion weighting

in 32 directions with b = 800 s/mm2 and one b = 0 image. In-plane resolution was 2x2 mm

(reconstructed to 1.67x1.67 mm with zero filling); whole brain coverage was achieved with 84
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(adjusted when necessary), 2 mm thick axial slices and no gap; TR = 9660 ms repetition time,

TE = 75.64 ms echo time, and 90˚ flip angle was used; the total acquisition time was 8:32 min-

utes. High resolution 3D T1 weighted images were also acquired for registration purposes

(1mm isotropic voxels), using a standard 3D gradient-echo sequence. 2D fluid attenuated

inversion recovery (FLAIR) sequences (0.43x0.43 mm in plane resolution, 3.3 mm thick coro-

nal slices, tilted perpendicular to the hippocampi, TR = 9000 ms, TE = 125 ms, TI = 2800 ms,

flip angle = 90˚) were also acquired for the visualization of the MCDs.

Patients were selected retrospectively, with several different types of MCDs and other

abnormalities: MCD subtypes included polymicrogyria (in two patients) schizencephaly (two

patients), subependymal heterotopia (in three patients), FCD (in six patients), hippocampal

sclerosis (in four patients), cortical dysgenesis (in three patients) and other, not clearly identifi-

able malformations (in four patients). Several other types of abnormalities were also identified

in the patient group, such as DNT (in one patient, later confirmed by histopathology), ische-

mic WM lesions (in two patients), a gliotic cyst (in one patient), focal gliosis (in one patient,

also confirmed by subsequent histopathology), and malrotation of the hippocampus (in one

patient). Diagnoses of MCD subtypes were based on neuroradiology report; the supplementary

S1 Table contains detailed information on each lesion and abnormality, along with the results

of neuroradiology assessment and lesion detection calculations.

The study was approved by the Scientific and Research Ethics Committee of the Medical

Research Council, Budapest, Hungary (ETT TUKEB—20680-2/2012/EKU (368/PI/2012)) for

patients and (ETT TUKEB 23609-1/2011-EKU, 23421-1/2015-EKU) for controls; all partici-

pants provided written informed consent. Anonymized T1-weighted images (facial structures

removed using the ‘mri_deface‘ function of Freesurfer - https://surfer.nmr.mgh.harvard.edu/

fswiki/mri_deface) and coregistered DTI-eigenvalue maps of the patients and controls are

available in the ‘GIN’ public repository under the DOI 10.12751/g-node.80dd9a.

Data processing

DWI data was preprocessed using the Matlab-based ExploreDTI software package (http://

www.exploredti.com/) [62]. Processing steps included the transformation into ExploreDTI’s

coordinate system, rigid body transformations for correcting subject motion, and non-rigid

transformations for susceptibility-related and EPI-induced distortion-correction, while also

rotating the b-matrix (the diffusion directions) accordingly, in order to avoid angular inaccu-

racies [63]. T1-weighted images were used as templates for registration to correct the distor-

tions inherent to the EPI-acquisition method [64]; thereby DW-images were spatially aligned

to these T1-weighted images. After robust tensor fitting, using the RESTORE (Robust Estima-

tion of Tensors by Outlier Rejection) [65] algorithm, the tensor eigenvalues were calculated

and exported for the voxel-level analysis.

As described in subsection ‘Data processing’, we used the DARTEL method with default

parameters for the group-level coregistration of the eigenvalue images with the following steps:

The DARTEL template was created from the T1-weighted images of the control subjects;

patient data was subsequently registered to this common space. As a byproduct of the registra-

tion, ‘flow-fields’ describing the transformation between each individual’s native space and the

template space were obtained and used to coregister the eigenvalue images. Finally, the DAR-

TEL template was used to generate a brain mask and subsequent calculations were limited to

this volume.

This way, the reference distribution of voxel-wise DTI eigenvalues in the common coordi-

nate system (control data) had low observed sample variance, unbiased by patient anatomy,

and provided a solid basis for sensitive lesion detection. On the other hand, this subsequent
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transformation of patient data may have amplified registration artefacts, especially in cases

when a patient was highly different from the controls (e.g. when the patient was significantly

younger, or had large anatomical abnormalities).

The DARTEL pipeline includes a ‘modulation’ step to account for macroscopic anatomical

differences, using the Jacobian of the transformation matrices. As the method was developed

to examine cortical thickness and structure, when the transformation includes the merging of

voxels, the summation of tissue probability values keeps the information of cortical thickness.

However, when working with DTI eigenvalues, this addition (preserving the ‘concentration’)

would falsify the original diffusion traits, therefore this ‘modulation’ option was omitted in our

processing framework [42]. This processing pipeline contains only 2 interpolation steps. First,

in the motion and distortion-correction step, the DWI data is interpolated to the finer resolu-

tion of the T1-weighted images [66], while the second is performed in the coregistration step

of the DARTEL method, to a coarser, 1.5mm isotropic resolution. This is the necessary mini-

mal number of interpolations when each individual’s T1-weighted images are used for DWI

distortion correction, and statistical inference is made in a common space.

Spatial alignment was assessed by visual inspection and the ‘Check Data Quality’ function

of the Computational Anatomy Toolbox (‘CAT12’, an extension to SPM12) [67]. This tool cal-

culates a three dimensional spatial correlation coefficient between images; misaligned data is

easily identified by the decreased level of correlation.

The resulting coregistered whole brain tensor eigenvalue images of the healthy subjects

were used for three purposes: (a) as data basis for simulations in a ‘bootstrap’ manner, (b) in a

leave one out examination to measure the performance of coregistration and its effect on false

positives, and (c) as controls when patient data was examined.

Independent automatic evaluation of MCDs. As part of our epilepsy post-processing

protocol we also used the MAP07 toolbox that performs single subject vs. control group com-

parisons on volumetric T1 data derived 3D feature maps regarding the GM–WM junction

(junction map), cortical gyration (extension map), and cortical thickness (thickness map). The

resulting Z-score maps can be thresholded and/or combined (combined map) in order to pin-

point areas with suspected pathologies [13–15].

We analyzed all our cases using the default processing parameters of the MAP07 toolbox,

the feature map comparisons were performed against a generic normal database provided with

the software, which consists data of 150 healthy controls scanned on five different MRI systems

[14]. The resulting Z-score maps were thresholded at the default Z> 4 value and then com-

bined and converted to ROIs.

The resulting ROIs were used to signify locations being suspicious of malformation of corti-

cal development in the general neuroradiology workup. They have all been re-evaluated by the

neuroradiology expert (PB), and those without underlying pathology were discarded. The

MAP07 ROIs deemed relevant, along with the ones manually traced over lesions not being

identified by the MAP07 toolbox, were then edited (ZK) to completely cover the respective

pathologies, and then served as ground truth lesions in further analysis.

Mahalanobis-distance related calculations

We have implemented the calculation of the voxel-wise Mahalanobis-distance (D2) from the

DTI eigenvalue maps according to (1), the statistical inference based on critical values deter-

mined by (2), and cluster size thresholding, in Matlab scripts and functions (MATLAB 9.2,

The MathWorks Inc., Natick, MA United States). Eigenvalue maps are being read in nifty for-

mat, transformed to vector format for efficient parallelized calculations, inference is performed

voxel-by-voxel, followed by cluster identification, and size thresholding (also see the bottom
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half of Fig 3). The same framework was used for subsequent calculations, including simula-

tions, leave-one-out examination of controls and patient evaluations.

The analyses were performed as follows:

Simulations

The performance of the method was evaluated using simulations with two distinct sets of data:

(a) Gaussian random images and (b) real diffusion tensor eigenvalue data. Following the fash-

ion of Smith et al. [68], alternative fractional receiver operating characteristics (AFROC) analy-

ses was carried out on both sets.

As the critical values calculated by (2) depend on sample size, and the aim of the simulation

study was to provide grounds for later analyses; the same number of control observations (45

subjects) were modelled in both simulations.

In order to evaluate the method’s performance as a lesion detection tool, simulations were

carried out with different contrast-to-noise ratios (CNR—i.e. effect strengths: difference

between mean values of the ‘lesions’ and the ‘background’, measured in units of standard

deviation with σ lesion = σ background), and lesion sizes, with a variable cluster size threshold for

controlling the rate of false positives. An overview ‘flow-chart’, describing the steps of the sim-

ulations is shown in Fig 3.

Fig 3. Flow chart demonstrating steps of the simulations. Eigenvalue maps of standard multivariate normal distributions (SMVND–upper half) and random

resampling of the real eigenvalue maps of the control subjects (lower half) were used as reference data. True negative and true positive ‘cases’ (with added artificial

‘lesions’, i.e. patches of voxel values of shifted distributions, compared to the background) were generated and the squared voxel-wise Mahalanobis-distance (D2) was

calculated in relation to 45 control cases. D2-images were subjected to thresholding using FDR- or FWE-corrected critical values (for multiple comparisons) and cluster

size thresholding. False positive rates (FPR) were calculated from true negative ‘cases’, while true positive rates (TPR) and hit rates (TPR-binary, i.e. TPRB) resulted from

the positive cases.

https://doi.org/10.1371/journal.pone.0222720.g003
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A group of 45 ‘control subjects’ were generated following 3D Gaussian distribution, with

zero mean and unit standard deviation in all three random variables (N3(0,1), SMVND) in

each voxel (Leftmost panel in the upper half of Fig 3). The spatial dimensions matched those

of the real coregistered DTI data, described in subsection ‘Data processing’.

True positive images were generated, starting from similar random ‘noise’ data and adding

simulated ‘lesions’: 3D patches with predefined sizes, randomly generated shape, and voxel val-

ues from a distribution with the mean shifted from the background values, according to the pre-

defined CNR. Each true positive image had one ‘lesion’ with a center randomly selected from

25 different locations; coordinates were defined on the template, close to the frontal, temporal,

and occipital GM-WM boundary, in view of the second set of simulations with real eigenvalue

data. One thousand such positives and another thousand negatives (i.e. just SMVND ‘noise’)

were generated to calculate true and false positive rates (Left panel in the upper half of Fig 3).

After the calculation of voxel-wise D2-values, thresholding was performed using critical val-

ues calculated to control the Family-Wise Error Rate (i.e. Bonferroni bounds) or the False Dis-

covery Rate (using the Benjamini-Hochberg step-up algorithm on P-values calculated by the

inverse of (2)). The surviving supra-threshold voxels were subjected to cluster-size threshold-

ing following third-neighbor cluster definition, i.e. 26 neighbors (Middle panel in the upper

half of Fig 3).

The resulting binary images were used to calculate the true positive rate (TPR) in positive,

and the false positive rate (FPR) in negative cases. Two types of TPR were defined, the first as

the ratio of identified positive voxels (i.e. the identified lesion volume ratio, averaged over the

pool of positive cases), following the original AFROC TPR as used by [68] (Right panel in the

upper half of Fig 3).

As lesion detection is a binary problem (i.e. identifying only a part of the region of patho-

logical tissue is also considered a positive result) any true positive voxel was counted as a hit in

the second definition of true positives (TPR Binary—TPRB). False positives were defined simi-

larly, as any positive cluster in a true negative (only noise) image was considered a false hit.

TPR ¼
P1000

1

P
#positive voxels
#voxels in lesion

1000
ð3Þ

TPRB ¼
P1000

1

Itrue positive

1000
ð4Þ

FPR ¼
P1000

1

Ifalse positive

1000
ð5Þ

The same sets of simulations were performed for each combination of the controlled

parameters with FDR and FWE critical values. TPR, TPRB and FPR values corresponding to

each set of controlled parameters were used for the creation of ROC curves and the calculation

of ‘area under the curve’ (AUC) values, using the 0–0.05 FPR-range, using trapezoids under

the curve and the FPR = 0.05 point determined with linear interpolation. AUC values were

scaled up to the [0; 1] range to compensate for the limited range of interpretation. This con-

strained FPR-range means that in our simulations, the Family-Wise Error rate is also con-

trolled at the subject level (above the voxel-level FWE or FDR), resulting in thorough

correction for multiple comparisons.

Values of the three varied parameters are summarized in Table 1.

The desired CNR was calculated by setting the difference between means, in units of stan-

dard deviations. In SMVND simulations σ = 1 was used, while unique values were calculated
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in each individual ‘lesion’ volume and for each eigenvalue in the second set of simulations

with real DTI data.

In an exploratory analysis, additional simulations were performed with smaller effect sizes

(down to CNR = 0.1); however, since the lesion detection performance did not exceed chance

level, these results were omitted. Larger cluster size thresholds of 19, 27 and 50 voxels were also

used, but, as no false positives were identified above the size of 4 voxels (7 voxels in the second

set of simulations; see subsection ‘Real Eigenvalue simulations’) these results are not detailed

in the present article either.

The second sets of simulations were performed based on the diffusion tensor eigenvalue

maps of the control group using bootstrap approach, i.e. 2000 resamples considered as individ-

ual ‘subjects’ were generated by random resampling of voxel values from the pool of 45 control

subjects (bottom half of Fig 3). Similar to the first set, half of these resamples were designed to

be ‘positive’ with added simulated ‘lesions’, while the other half of the resamples was ‘negative’.

Finally, the same subsequent TPR, TPRB, and FPR calculations were performed as with the

SMVND data, corresponding AUC and optimal threshold vales were obtained.

While the first set of simulations used Gaussian random values in the whole of the brain,

the bootstrapping in the second set was performed on the voxel level, thereby these values fol-

lowed the distribution of tensor eigenvalues in the particular ‘lesion’ volume. Thus the CNR in

each artificial ‘lesion’ was determined using a volume-specific σ (representing the distribution

around the GM-WM boundary), assuming σlesion = σbackground. Although this may be consid-

ered a limitation, as true MCDs are likely to exhibit atypical distribution of tensor eigenvalues,

since the statistical decision is made independently in each voxel with no cluster-level infer-

ence, this assumption does not affect the detection performance directly.

Leave-one-out examination of controls

The simulations demonstrated that lesions with sufficiently high effect strengths (CNR) and

volumes are detectable using the proposed Mahalanobis-distance based method, with satisfy-

ing sensitivity. On the other hand, this high sensitivity makes the approach susceptible to regis-

tration artefacts and strong individual variability, resulting in false positive clusters. In order to

measure the impact this effect has on patient evaluation, data of the control subjects was also

used in a leave-one-out examination, comparing each individual to the remaining 44. Calcula-

tion of D2-values, inference with critical values (with FWE or FDR correction), and cluster size

thresholding (with the size of 7 voxels) were performed in the same manner as with the simula-

tions. Resulting thresholded D2-maps, indicating regions of significantly outlying diffusion

profiles were transformed back to the native space of each patient’s original T1-weighted

image.

Cluster description based on tissue probability maps (TPMs). The results contained

several clusters, in many cases obvious false positives, likely resulting from the aforementioned

registration inaccuracies and individual variability in gyration patterns. In order to distinguish

Table 1. CNR lesion size and cluster size threshold values used in the simulations.

CNR [σ] 1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnð2Þ

p
a 3 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnð2Þ

p
- - -

Lesion size [#voxels] 19 35 50 100 200 - -

Cluster size threshold [#voxels] 1 2 3 4 5 6 7

a Note that CNR = 2
p
(2ln(2)) contrast to noise ratio equals to 1 FWHM distance between the peaks of the

distributions.

https://doi.org/10.1371/journal.pone.0222720.t001
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such false positives and increase the specificity of our method, clusters were subjected to addi-

tional post-processing in the following manner:

From each individual’s Tissue Probability Maps (resulting from the initial segmentation

step of the DARTEL-pipeline), we defined a new parameter describing voxel position, by sub-

tracting the WM TPM from the cerebrospinal fluid (CSF) TPM: δ = P(CSF)–P(WM) (Fig 4).

This way a δ-value was assigned to each voxel from the [-1; 1] range, with positive values indi-

cating voxels closer or belonging to CSF, and negative values indicating voxels closer or

belonging to WM.

Registration artefacts around the brain surface would mainly contain voxels with positive

values (δ> 0; meaning that the majority of voxels are from the CSF). On the other hand,

MCDs under consideration typically occur around the GM-WM boundary, thereby true

clusters would contain negative values close to zero (δ≲ 0), the distribution of the δ -values in

any given cluster could be used as an indicator of cluster position along the centrifugal

WM-GM-CSF axis.

In the second step, clusters with more than half of the voxels with δ> 0.1 were eliminated

from the analysis. This cutoff, signaling lesions with the majority of voxels from the CSF, was

determined based on the results of leave-one-out examination of controls.

Representative cases

As described in subsection ‘Data processing’, DTI eigenvalue maps of patients with MCDs

were registered to the DARTEL-template created from control data. D2-calculation and

thresholding using FWE-corrected critical values (see the corresponding subsection ‘Real data

examinations’ for the reasoning behind using the more conservative correction), cluster size

thresholding (again with 7 voxels threshold size), and the δ-value-based post-processing of the

clusters were performed in the same manner as described above.

Results were qualitatively evaluated by comparing the anatomical images and D2 ‘heatmaps’

along with the Z-scored junction maps, resulting from independent calculations by the

Fig 4. Definition of ‘tissue probability’ used for cluster filtering. δ- values were calculated in each voxel by subtracting the probability of a voxel belonging to the white

matter (WM) from the probability of it belonging to the cerebrospinal fluid (CSF), using the tissue probability maps obtained in the initial segmentation of the T1-

weighted images. The resulting δ-value indicates the voxels’ position along the centrifugal WM-GM-CSF axis.

https://doi.org/10.1371/journal.pone.0222720.g004
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MAP07 toolbox [13]. Clusters of outlying diffusion profile, remaining after the thresholding

and artefact removal steps were considered true positive, when good spatial concurrence with

the underlying pathology (as observed on anatomical scans) and the reviewed and corrected

results of the MAP07 toolbox was ascertained.

An additional step included the calculation of the clusters’ centers of mass (using the D2-

values as weights), and their (physical) distance from lesion masks created manually, based on

the neuroradiology reports and aided by independent MCD detection using the MAP07

toolbox (ZK, and LRK) [15] and reviewed by an expert neuroradiologist (PB).

Results

The FWE-corrected, D2 critical value, calculated using (2) (with n = 46, p = 3, and

aFWE ¼
0:05

#voxels ¼
0:05

3:4054�105 ¼ 1:4683� 10� 7) was 27.8324.

As FDR correction uses the p-values of each statistical test and determines the critical p for

a given set (the tests in each voxel, in our case), the FDR corrected D2 critical values were

unique for each patient image, typically in the range between 19 and 21.

Group-wise average values and standard deviation for the whole grey and white matter of

the coregistered eigenvalue maps from the controls are included in Table 2 while their spatial

distributions are presented in Fig 5.

During manual revision of the results of independent lesion detection with the MAP07

toolbox, only 11 abnormalities were identified in the example cases, thereby the remaining

lesion masks were entirely hand drawn.

SMVND simulations

False positives. In the simulations with SMVND data, false positives were identified in all

cases when no cluster size thresholding was employed, with both FWE and FDR corrected crit-

ical values. On the contrary, no false positives were identified with thresholds larger than 4

voxels, meaning that for simulated lesions with voxel values from standard Gaussian distribu-

tion, and sizes that are reasonable to assume any true malformation would have, the method

had 100% specificity.

True positive rates and hit rates. AUC values, calculated for each lesion size-CNR

parameter pair, with both FWE and FDR corrected critical values are summarized in Table 3

for both definitions of true positives (AFROC curves can be seen in Fig 6). As expected, with

increasing CNR and lesion sizes, both the TPR and the TPRB (hit rate) increased.

In the [0; 0.05] FPR interval, the chance level (0.5) was exceeded in lesion detection with all

lesion sizes and CNR above 1 FWHM using either FDR or FWE-corrected critical values.

More than half of the lesion voxels were identified with CNR>3σ, with all lesion sizes and criti-

cal values (except for the smallest lesions and FWE correction, were the AUC was 0.493).

Table 2. Mean values and standard deviations of the tensor eigenvalues.

Grey Matter White Matter

Mean Std Mean Std

λ1 1,1295E-03 2,3623E-04 1,2117E-03 2,5012E-04

λ2 9,3691E-04 2,1694E-04 8,0431E-04 1,6876E-04

λ3 8,1112E-04 2,1290E-04 6,0377E-04 1,7571E-04

Means and standard deviations (Std) of the DTI eigenvalues, averaged over the control sample, in the whole grey and

white matter, presented in units of mm2/s.

https://doi.org/10.1371/journal.pone.0222720.t002
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Real eigenvalue simulations

False positives. Simulations based on real DTI eigenvalue data resulted in similar behav-

ior of false positives: every case showed false positive clusters with a minimum size of one or

two voxels, but with cluster size thresholds of 6 (with FWE-correction) or 7 (with FDR-correc-

tion) voxels, FPR decreased to 0.1–0.3% (i.e. 1–3 false positives per sets of 1000 simulations).

True positive rates and hit rates. The resulting AUC values are summarized in Table 4;

AFROC curves are presented in Fig 7.

Chance level lesion identification performance (Binary AUC>0.5) was exceeded at

CNR = 1FWHM in cases of lesions larger than 19 voxels using FDR-corrected critical values,

and in cases of lesions larger than 35 voxels with FWE-corrected critical values; however, per-

formance in lesion voxel identification only exceeded the chance level at CNR = 2FWHM,

Fig 5. Spatial distribution of the sample-wise mean and standard deviation of the coregistered eigenvalue maps from the controls. Mean values (left column) and

standard deviations (right column) are presented on the same respective scales for the three diffusion tensor eigenvalues in units of mm2/s.

https://doi.org/10.1371/journal.pone.0222720.g005
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achieving 77.3–85.9% AUC with FDR-corrected, and 75.1–77.8% AUC with FWE corrected

critical values.

Based on these simulation results, it is reasonable to expect that in patient examinations

using the diffusion tensor eigenvalues, the proposed method can identify regions exhibiting

abnormal diffusion profile, while sufficiently eliminating false positives. Using FDR-corrected

critical values and a seven-voxel cluster size threshold should be a suitable choice when search-

ing for small, well-defined lesions.

Real data examinations

Leave-one-out analysis of controls. The FDR-corrected critical values resulted in an aver-

age of 21.11 (5–55) clusters/subject, while the more conservative FWE-correction yielded 4.93
(0–13) clusters in average, 1.79 (0–5) of those being in the WM. Based on this result, combined

with the observation that the true positive clusters in subsequent patient examinations were

also present with the more conservative approach (Fig 8), we decided to only use critical values

aimed to control the FWE for patient examinations, decreasing the influence of inherent vari-

ability and/or coregistration inaccuracy.

After removing clusters based on the δ-values (those with more than half of the voxels with

δ> 0.1), the number of remaining clusters decreased to an average of 2.79 (0–7) with an aver-

age size of 16.21 voxels (7–167), meaning, that most of those resulting from insufficient core-

gistration or normal differences in gyration patterns (mainly located in the CSF) were filtered

out. Examples of the resulting few minimal cluster-masks overlaid on each control subject’s

T1-weighted images are shown on S1 Fig.

Patient examination. After applying the previously detailed processing steps to the 16 D2-

images of the 13 patients, on average 59.4 (35–90) clusters per subject were identified with an

average size of 31.4 (7–680) voxels (after removing 6 larger clusters emanating from missing

cerebellar slices). The majority of these clusters were obvious artefacts, identifiable by their

shape and location (e.g. in the occipital lobes, close to and following the GM-CSF boundary,

Table 3. AUC value results of the simulations with SMVND data.

SMVND

FDR

Lesion size [vox]! 19 35 50 100 200

CNR # AUC AUC Binary AUC AUC Binary AUC AUC Binary AUC AUC Binary AUC AUC Binary

2σ 0,000 0,000 0,000 0,004 0,000 0,003 0,000 0,005 0,001 0,011

1 FWHM 0,296 0,593 0,339 0,840 0,349 0,941 0,368 0,998 0,382 1,000

3σ 0,660 0,953 0,702 0,998 0,713 0,999 0,736 1,000 0,752 1,000

2 FWHM 0,996 1,000 0,998 1,000 0,999 1,000 0,999 1,000 0,999 1,000

FWE

Lesion size [vox]c! 19 35 50 100 200

CNR # AUC AUC Binary AUC AUC Binary AUC AUC Binary AUC AUC Binary AUC AUC Binary

2σ 0,000 0,000 0,000 0,004 0,000 0,003 0,000 0,005 0,000 0,011

1 FWHM 0,158 0,593 0,185 0,840 0,201 0,941 0,216 0,998 0,222 1,000

3σ 0,493 0,953 0,536 0,998 0,555 0,999 0,576 1,000 0,580 1,000

2 FWHM 0,984 1,000 0,991 1,000 0,994 1,000 0,995 1,000 0,996 1,000

Area under the curve (AUC) values resulting from the alternative fractional receiver operating characteristics curves (AFROC) of simulations with standard multivariate

normal distribution (SMVND) data, FDR and FWE corrected critical values, and following both the fractional and binary definition of true positive rate (TPR);

calculated from the [0; 0.05] false positive rate (FPR) range.

https://doi.org/10.1371/journal.pone.0222720.t003
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Fig 6. Alternative fractional receiver operating characteristics (AFROC) curves of the simulations with standard multivariate

normally distributed (SMVND) data. Results with both FWE- and FDR-corrected critical values, following both definitions of

true positives (fraction of positive voxels–TPR–and hit rates–TPRB), with all different values for simulated lesion size and effect

strength (contrast to noise ratio) are presented.

https://doi.org/10.1371/journal.pone.0222720.g006
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independent of the underlying gyral and sulcal pattern), see Discussion. Examples of resulting

clustered D2-images are shown on the rightmost panels of Fig 9 and S3 Fig, along with coronal

FLAIR images, MAP07 junction maps and the raw D2-images overlaid on each subject’s T1-

weighted image. Regions with outlying diffusion properties, corresponding to 22 (out of the

23) MCDs and other abnormalities were identified in the patient group, in good spatial con-

currence with the neuroradiological evaluation and the lesion masks. The remaining, 23rd, an

FCD-type malformation only resulted in two supra-threshold voxels, subceeding cluster size

threshold; it was only identified when using the less conservative, FDR-corrected critical val-

ues. The (physical) distances between centers of masses of the resulting D2-clusters and the

lesion masks are summarized in Table 5.

Discussion

Regarding multidimensional approaches

When selecting a multidimensional approach to combine different modalities, the research

question determines the level at which information is pooled, from group-level, through indi-

viduals, down to voxel-based methods. Examining more general processes, like response to

stimulation in functional MRI (fMRI) calls for ‘cohort level’ statistical methods, like combining

p-value maps with pooling approaches in [38], or using the conjunction method by [37], test-

ing a simultaneous null hypothesis.

Higher level information pooling has also been proven efficient in examining systemic dis-

orders of the CNS, e.g. in Alzheimer’s disease in [39], combining T-score maps from univariate

parametric tests on GM density and perfusion data; or in amyotrophic lateral sclerosis, with

multivariate linear regression on spectroscopy findings of different metabolites [41]. The supe-

riority of multivariate models compared to combined univariate models was demonstrated by

[40] in examining simultaneous changes in FA, cortical thickness, and perfusion also in Alz-

heimer’s disease, and logistic regression was shown to improve categorization of patients with

Table 4. AUC value results of the simulations with SMVND data.

Real Eigenvalues

FDR

Lesion size [vox]! 19 35 50 100 200

CNR # AUC AUC Binary AUC AUC Binary AUC AUC Binary AUC AUC Binary AUC AUC Binary

2 σ 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,002 0,001 0,018

1 FWHM 0,161 0,299 0,228 0,533 0,229 0,596 0,248 0,702 0,272 0,863

3 σ 0,430 0,637 0,450 0,756 0,414 0,740 0,456 0,884 0,463 0,939

2 FWHM 0,773 0,858 0,843 0,940 0,859 0,960 0,822 0,920 0,818 0,920

FWE

Lesion size [vox]! 19 35 50 100 200

CNR # AUC AUC Binary AUC AUC Binary AUC AUC Binary AUC AUC Binary AUC AUC Binary

2σ 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,001 0,000 0,001

1 FWHM 0,108 0,221 0,141 0,403 0,160 0,544 0,168 0,696 0,166 0,752

3σ 0,337 0,598 0,353 0,712 0,352 0,745 0,356 0,835 0,353 0,946

2 FWHM 0,751 0,947 0,776 0,998 0,778 0,999 0,777 1,000 0,760 0,980

Area under the curve (AUC) values resulting from the alternative fractional receiver operating characteristics curves (AFROC) of real eigenvalue simulations with FDR

and FWE corrected critical values and following both the fractional and binary definition of true positive rate (TPR); calculated from the [0; 0.05] false positive rate

(FPR) range

https://doi.org/10.1371/journal.pone.0222720.t004
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Fig 7. Alternative fractional receiver operating characteristics (AFROC) curves corresponding to the simulations based on

real diffusion tensor eigenvalue data. Results with both FWE- and FDR-corrected critical values, following both definitions of true

positives (fraction of positive voxels–TPR–and hit rates–TPRB), with all different values for simulated lesion size and effect strength

(contrast to noise ratio) are presented.

https://doi.org/10.1371/journal.pone.0222720.g007

Personalized microstructural evaluation using a Mahalanobis-based outlier detection strategy on DTI data

PLOS ONE | https://doi.org/10.1371/journal.pone.0222720 September 23, 2019 18 / 30

https://doi.org/10.1371/journal.pone.0222720.g007
https://doi.org/10.1371/journal.pone.0222720


different subtypes of mild cognitive impairment in [42] by combining ROI-level DTI, volume-

try, and cortical thickness data at the subject level.

On the other hand, when searching for unique abnormalities (like injuries or MCDs) in

individuals, inference is made below the subject level: combining data from independent

modalities into multivariate distributions and performing statistical evaluation in this high

dimensional space enables the pooling of information on the lowest level, only preceded by

necessary spatial coregistration. An example for the resulting increased sensitivity was [43]

where the combination of voxel-wise MD and volumetry data (using Hotelling’s T2 test, a two-

sample equivalent of the Mahalanobis-distance) outlined the effects of traumatic brain injury

(TBI), even in cases where none of the individual modalities yielded significant results.

More recent studies also demonstrated the utility of machine-learning based approaches

for epileptic lesion detection. Surface-based methodology formed the basis of [10] and [44]

using morphologic and intensity-based features (such as cortical thickness, sulcal depth, curva-

ture of the surface, and gradient of intensity; all calculated from T1 or T2-weighted images on

the vertex-level), with similar performance as our approach. In [10] higher specificity was

achieved in detecting FCD type lesions.

Similarly to the present study, outlier-detection approach was used in [12], identifying epi-

lepsy-related malformations, using a voxel-based, one-class support vector machine classifier.

By working on feature maps computed from T1-weighted data, comparable sensitivity and less

false positives were achieved than with our approach, partially due to a far more conservative

cluster size threshold (82 voxels, compared to 7 in our work).

Such machine-learning based methods are expected to lead the analysis of multidimen-

sional neuroimaging data; however, our study draws merit from several advantages. The

straightforward and easy-to-use application of the multidimensional statistics with moderate

computation times (only a few seconds per subject on a commercial PC, after preprocessing

and registration) aided the accessibility of the method, while the use of DTI data opened the

scope of research to disruptions in tissue microstructure.

On information sources and dimensionality considerations

Theoretically, there is no limitation to the number of examined dimensions in the multivariate

distribution examined with the Mahalanobis-distance (as long as the number of subjects

exceeds the number of dimensions). Therefore, in order to circumvent the limitations of the

diffusion tensor representation, any diffusion processing model (e.g. diffusion kurtosis imag-

ing [32, 34], spherical deconvolution [69, 70], etc.), or even raw diffusion weighted data could

be evaluated in the same straightforward manner.

Fig 8. Comparison of the results with FDR and FWE corrected critical values. Thresholded and clustered D2-results overlaid on the T1-weighted image of a 27 y.o.

male patient with polymicrogyria in the basal region of the left inferior frontal gyrus (see panel D of Fig 8, as well.) Coronal slices presented in neurological orientation,

i.e. left side is on the left, slices of the 2D FLAIR image were angulated perpendicular to the hippocampi.

https://doi.org/10.1371/journal.pone.0222720.g008
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On the other hand, since L2-type distance metrics tend to show decreasing performance

with higher number of dimensions [71], known as the effect of distance concentration, and, as

[56] demonstrated, the calculation of the Mahalanobis-distance may induce a bias, dependent

on sample size, that becomes substantial with higher (P>10) number of dimensions, simply

pooling together every available source of information would not necessarily increase statisti-

cal power. Other types of distance metrics, particularly an LP-norm should be a viable choice

in such higher dimensional examinations [72], however, this was out of the scope of the cur-

rent study.

Another intriguing possibility for MRI-based lesion detection using the Mahalanobis-dis-

tance is including voxel-level data from other modalities, such as T1 or T2-weighted images,

tissue probability maps, MRI or PET-based perfusion measurements, etc., as long as proper

spatial coregistration is achievable [43]. Since data in any given dimension is rescaled and

cleared of correlations, any meaningful modality could be incorporated to the analysis frame-

work, also including more complex measures from related processing pipelines, such as corti-

cal parcellation, volumetry or morphometry results [10, 42, 44], once again, with distance

concentration kept in mind.

Feature selection based on the analysis of meaningful components in such an extended

parameter space may be the aim of future investigations. Quantitative imaging, a feat currently

under intensive research [73], may also benefit from the use of multidimensional distance-

metrics in statistical evaluation.

Regarding simulation results

Simulations with standard multivariate Gaussian data were used to demonstrate the numerical

stability and lesion detection performance of the calculations based on the Mahalanobis-dis-

tance. AUC values calculated from the [0; 0.05] FPR range indicated that above 1 FWHM

mean difference the method is sufficiently sensitive to even the smallest artificial lesions, using

critical values aimed to control either the family-wise error rate or the rate of false discoveries.

This is the level of sensitivity typically aimed for in image processing or spectroscopy as the

resolution (the minimal distance between two peaks, required to separate them) is generally

defined as 1 FWHM.

The use of eigenvalue maps of the control population yielded similar performance: for effect

strengths and lesion sizes expected in MCDs (i.e. 50 voxels, corresponding to 168.75mm3

Fig 9. Example results in select cases of MCDs. Coronal 2D FLAIR images, and MAP07 junction maps, raw, and final, clustered D2-images (red) and

lesion masks (green) overlaid on T1-weighted images in select cases: presumed right superior temporal FCD or PMG and hippocampal sclerosis (panel A);

cortical dysplasia and presumed PMG in the right medio-frontal part of the cingular gyrus (panel B); dysgenesis and partial sclerosis of the left

hippocampus (panel C); presumed PMG or FCD in the basal region of the left inferior frontal gyrus and the posterior pat of the insula (panel D); and left

hippocampal sclerosis (panel E). Coronal slices presented in neurological orientation, i.e. left side is on the left, coronal slices of the 2D FLAIR images were

angulated perpendicular to the hippocampi.

https://doi.org/10.1371/journal.pone.0222720.g009

Table 5. Positive clusters in select cases of MCDs.

Code P01 P02 P03 P04 P05

S1

P05

S2

P05

S3

P06 P07 P08 P09 P10 P11

S1

P11

S2

P12 P13

Number of positive

clusters

1 3 1 1 3 3 7 2 1 1 2 3 1 1 2 4

Average distance (min-

max) [mm]

12.2 18.8

(12.9–

25.7)

6.5 13.6 13.6

(9.44–

17.2)

10.4

(5.1–

17.1)

19.0

(9.5–

29.2)

19.6

(3.7–

35.4)

13.5 11.9 12.1

(6.7–

17.6)

12.1

(3.5–

9.9)

7.7 7.7 4.3

(2.3–

6.3)

17.6

(10.2–

24.1)

Number of positive D2-clusters, and the average, minimum, and maximum distances [mm] between their and the lesion masks centers of mass

https://doi.org/10.1371/journal.pone.0222720.t005
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volume, around 5-7mm in diameter, [12]) the proposed method effectively identifies regions

of abnormal diffusion profile. This performance is on pair with that e.g. [68] achieved in simu-

lations introducing the threshold-free cluster enhancement (TFCE) method. Although the dis-

tribution of the tensor eigenvalues was not exactly Gaussian, this only resulted in a small

reduction in observed sensitivity, which did not cause any substantial reduction in lesion

detection performance.

False positives were completely eliminated in simulations on Gaussian random data, with

cluster size thresholds of 4 voxels, but a 7 voxel threshold was needed to reduce the FPR to

0.1–0.3% in simulations based on the resampling of real eigenvalue maps. (With both FWE

and FDR corrected critical values.) Additional exploratory analysis (not presented in this arti-

cle) using larger thresholds (19, 27, and 50 voxels) confirmed the complete elimination of false

positives, at the cost of reduced sensitivity (reduced true positive rates) to smaller lesions.

Based on these findings we concluded that a cluster size threshold of 7 voxels (i.e. one voxel

and its nearest neighbors) should be an optimal choice for lesion detection, when no spatial

smoothing is performed on the diffusion tensor eigenvalue images. Only this value was used in

the following examinations of healthy controls and patients with MCDs.

Outlier values emanating from measurement errors or numerical instability usually affect

single voxels, thereby false positives of such origin could effectively be eliminated with the clus-

ter size threshold of seven voxels. For applications with statistical inference performed on

images with substantially different resolution from that of the acquisition (e.g. if the eigenvalue

images are resampled to a much smaller voxel size during the processing), an adjusted cluster

size threshold (covering roughly the same volume as 7 voxels with the acquisition voxel size)

should achieve similar robustness to such effects. Similar consideration should go for applica-

tions where spatial smoothing is performed at some level during data processing.

Regarding the leave-one-out examination of controls

Use of the more conservative FWE-corrected critical D2-values and the TPM-based cluster-

evaluation method (δ-values) limited the number of false positives to an acceptable level.

Examination of the control subjects demonstrated that even with the high performance DAR-

TEL-coregistration, clusters of voxels with outlying diffusion profile tend to emerge in (sup-

posedly true negative) control subjects. Most of these clusters proved to be indeed artefactual,

being outside the brain parenchyma, however, in average 1.79 clusters/ subject were identified

in the WM as well. At this level there is no discrimination between clusters emanating from

individual anatomical variability and insufficient registration or noise; this problem is usually

addressed (reduced) by spatial smoothing in most voxel-level studies [74], which we omitted

to retain sensitivity for smaller lesions.

Regarding patient examinations

Apart from one case, all of the MCDs and other abnormalities in all patients were identified on

the processed D2-images, demonstrating the sensitivity of our diffusion-tensor based approach

for detecting minute structural abnormalities. The remaining one FCD-type malformation

was identifiable only in results obtained with the more liberal, FDR-corrected critical values.

This observation demonstrates that the conservative approach with strict critical values can

result in false negatives, thereby decreased sensitivity, in brain regions where the DTI eigenval-

ues in the control group showed higher sample variance.

Raw D2-‘heat maps’, MAP07 ‘junction maps’, and the final D2-clusters were reviewed with

an expert neuroradiologist (PB) and compared to the ground truth lesion masks. As the MCDs

under consideration are mainly localized around the WM-GM boundary (MAP07 also
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compares voxels from T1 images focused on this compartment) and DTI is expected to be

more sensitive in the WM, in most cases, D2-clusters did only partially overlap with the lesion

masks; hence concurrence was ascertained by spatial adjacency. The physical distance between

the lesion masks and the D2-clusters’ centers of masses was also recorded; in clusters deemed

positive, the average distance was 12.07mm, in agreement with results from literature [32].

Patient data was registered to the DARTEL-template, created from only the controls. With

this approach, the template was well defined with relatively low sample variance in diffusion ten-

sor eigenvalue distributions, nevertheless artefactual clusters were commonly observed, but they

were present mainly in the CSF or around the GM-CSF boundary. The δ-value-based method,

evaluating clusters based on tissue probability maps was efficient in filtering out the more evi-

dent ones, however, several cases showed obvious artefacts identifiable by their shape and loca-

tion (e.g. in the occipital lobes, close to and following the GM-CSF boundary, independent of

the underlying gyral and sulcal pattern) escaping elimination. Additional automatic classifica-

tion of artefactual clusters based on spatial distribution properties similar to those implemented

in SOCK [75] and FIX [76] would further aid the evaluation of results. Since the focus of the

present study was on the statistical approach for examining tissue microstructure and the surviv-

ing artefactual clusters were easily discernable among the results, thus did not severely obstruct

patient evaluation, we chose to favor generality and did not penalize the examined volume any

further. Utilizing any or a combination of the above mentioned filtering or labeling approaches

would possibly increase lesion detection specificity, but the detailed evaluation of cluster features

is clearly outside the scope of this paper, and may be investigated in future studies.

In most patients, smaller clusters (typically under 50 voxels) further away from the actual

lesions were also identified in the WM. Apart from the ones in the terminal WM, found in sev-

eral of the adolescent patients, likely reflecting age-related differences in myelination; based on

previous studies [30, 31], such extended WM-abnormalities are to be expected in epileptic

patients [3]: they most likely reflect either the underlying pathological networks or compensa-

tory effects or elicited by them [77]. Exploratory analysis of DTI tractography data in select

cases demonstrated that most of these additional WM clusters are indeed located in or close to

the fiber pathways passing through the primary lesion volumes (S2 Fig).

Such clusters suggest that microstructural changes reflected in the DTI data is not specific

to the malformations themselves, but also to the disruptions, the actual MCDs inflict on the

corresponding WM pathways. In qualitative evaluation, they may be of clinical importance

shedding light on the extent and/or organization of the epileptic networks themselves. Never-

theless, including other sources of information (e.g. relaxometry, susceptibility, perfusion, or

morphometry measurements) in the proposed multidimensional statistical framework is likely

to improve lesion detection specificity. Following this avenue of research is outside the scope

of this paper, but may be examined in future studies.

As the mean age of our control group was 25.2, the method performed better with adults.

In two younger patients (age<10) more additional clusters were identified, most likely result-

ing from differences in myelination and erroneous registration due to more pronounced ana-

tomical (i.e. head and brain size) differences.

As the method proved to be sensitive to a wide range of malformations and even to more

pronounced physiological variations, more carefully selected control group(s) of matching age

would increase specificity (Fig 9) and better characterization of abnormal tissue microstruc-

ture. Nevertheless, since MCDs associated with the epileptic seizures were identified in all but

one cases, even with approximately 17 years of age difference, it was established that detecting

disrupted tissue microstructure using tensor eigenvalues, based on the Mahalanobis-distance

is indeed feasible and may aid in single subject’s radiological evaluation. Additional case stud-

ies, not included in the present article, demonstrated, that the effects of large anatomical
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abnormalities, higher level of subject motion, or differences in scan parameters (even with a

robust DWI processing pipeline with thorough motion correction and high performance spa-

tial registration) leads to a more severe artefact contamination in the results, than the effect of

age difference.

With clusters observed partially outside the brain parenchyma (typically in the sulci) or evi-

dently following the GM-CSF boundary, regardless of the underlying tissue macrostructure,

registration performance may also be a major effect; potentially causing a high number of arte-

factual clusters, not all of which could be filtered out with the TPM-based cluster-evaluation

method. Fortunately, such clusters are easily identifiable as obvious artefacts, and so are the

results of possible missing slices, postoperative resection sites, large anatomical variations (e.g.

agenesis of the corpus callosum), or large-scale shifts, rotations, or shears.

Papers in the field of automated lesion detection usually examine single types of patholo-

gies, for example patients with FCDs [9, 10, 44, 78], benefiting from the more specific research

question. On the other hand, as clinical practice suggests that different types of MCDs tend to

develop together, our patient group of individuals with mixed pathologies more faithfully rep-

resents typical cases of drug resistant epilepsies [3]. The multidimensional approach proved to

be sensitive to the different types of malformations, which is a satisfying result for a potential

lesion detection method, however, if the framework is to be extended with data from other

modalities in future studies, feature selection analysis would benefit from selecting cases with

single types of MCDs.

The distance metric itself cannot shed light on the nature of the altered diffusion profile,

potentially resulting from several aforementioned normal, pathological, or compensational

processes, which could also be varying across individuals. Therefore the generalization of find-

ings would benefit from group-based measures of the alterations; the identified regions of dis-

rupted microstructure may be subjected to subsequent conventional testing, for example,

exploring whether FA is increased or decreased in the region, or assessing abnormal connec-

tivity through tractography by using the clusters as seed regions [79]. In future studies, such

subsequent examinations, potentially including group-based measures derived from patients

with similar pathologies, could help discerning between direct and compensatory effects,

explaining some of the observed distant WM clusters.

The proposed method proved successful in combining separate eigenvalue maps, benefiting

from the advantages of the multidimensional approach, and achieved sufficient sensitivity in

detecting abnormal diffusion profile. The straightforward application of analytically-derived

critical values [54] allowed making strong inferences, although specificity was limited due to

registration artefacts and normal or pathological variations: effects inherent to all single subject

examinations.

Limitations

The wide range of pathologies and the technical impediments may constrain the generalization

of findings, nevertheless, as the major goal of the present study was to introduce a new method

of statistical evaluation, these predicaments may prove useful in assessing the flexibility of the

method.

Using study specific templates, e.g. the DARTEL approach in the present study may be con-

sidered a limitation, especially when evaluating possible diagnostic tools, nevertheless, the aim

of the current paper was to demonstrate the value of the Mahalanobis-distance based approach

in single patient vs control comparisons. Further analyses using multi-center multi-scanner

data may further warrant the evaluation of the diagnostic potential of a Mahalanobis-distance

based lesion detection tool.
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During additional patient examinations, not presented in the article, we found that a system

upgrade also affected the outcome of the statistical analyses, leading to apparent alterations in

almost the entire WM, this effect may also most probably stem from the rather homogeneously

collected control data. A multi-center, multi-scanner investigation, like mentioned above, may

prove to be useful in overcoming such limitations.

Conclusions

Taken together, the proposed Mahalanobis-distance based method efficiently combined informa-

tion from maps of the three diffusion tensor eigenvalues on the voxel-level. Altered diffusion pro-

files corresponding to malformations of cortical development in single subject vs. control group

examinations were detected as outlier values in the voxel-wise multidimensional distributions.

Searching for pathological brain regions of individuals as outliers, using the Mahalanobis-

distance in evaluation of diffusion weighted imaging data (even with more sophisticated mod-

els for processing, if necessary) seems to be a viable approach, and as the calculations could

easily cover data from other modalities, this evaluation method may substantially advance the

field of quantitative MRI.

Supporting information

S1 Fig. Examples of the observed clusters in the leave-one-out examinations of healthy con-

trol subjects, using critical values corrected for controlling the FWE rate. Cluster masks

overlaid on each individual’s T1-weighted image. Typical clusters that remained after the filter-

ing steps, emerged deep in the sulci or close to the GM-CSF boundary (A, B, C, and D) with

small sizes (16.21 voxels in average), and also in the WM in some cases (E, F). Axial and coro-

nal slices are presented in neurological orientation, i.e. left side is on the left.

(TIF)

S2 Fig. Comparing the location of distant WM clusters to tractography. Deterministic DTI

tractography (performed in ExploreDTI) revealed, that several of the distant WM clusters are

connected to the primary lesions, for example in a 33 y.o. female patient with multiplex right

temporal closed-loop schizencephaly and subependymal heterotopia (left), and in a 27 y.o.

male patient with presumed polymicrogyria or FCD in the left inferior frontal gyrus and the

posterior third of the left insula (right). Axial and coronal slices presented in neurological ori-

entation, i.e. left side is on the left.

(TIF)

S3 Fig. Coronal 2D FLAIR images, and MAP07 junction maps, raw, and final, clustered

D2-images (red) and lesion masks (green) overlaid on T1-weighted images of the remaining

cases. Bilateral frontal WM signal alterations with presumably ischaemic origin -14 y.o. female

patient (panel A). Cortical dysgenesis in the right parieto-occipital sulcus -16 y.o. male patient

(panel B). Histology confirmed focal gliosis -16 y.o. male patient (panel C). Left temporo-basal

DNT and hippocampal sclerosis -15 y.o. female patient (panel D). Multiplex right temporal

closed-loop schizencephaly and subependymal heterotopia -33 y.o. female patient (panel E).

Focal cortical dysplasia in the left middle frontal gyrus– 7 y.o. male patient (panel F). Pre-

sumed PMG or FCD in the basal region of the left inferior frontal gyrus and the posterior pat

of the insula (panel G). Right temporal closed-loop schizencephaly and subependymal hetero-

topia -35 y.o. male patient (panel H). Coronal slices presented in neurological orientation, i.e.

left side is on the left, coronal slices of the 2D FLAIR images were angulated perpendicular to

the hippocampi.

(TIF)
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S1 Table. Patient details, description of the separate malformations, and comparative eval-

uation of the results. Results of independent lesion detection (MAP07) and the proposed

Mahalanobis-distance based method were evaluated with the expert neuroradiologist (PB);

apart from three cases, the diagnoses of MCD subtypes were based on imaging.

(PDF)
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