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Machine learning applications for personalized medicine are highly dependent on access to sufficient
data. For personalized radiation oncology, datasets representing the variation in the entire cancer patient
population need to be acquired and used to learn prediction models. Ethical and legal boundaries to
ensure data privacy hamper collaboration between research institutes. We hypothesize that data sharing
is possible without identifiable patient data leaving the radiation clinics and that building machine learn-
ing applications on distributed datasets is feasible.
We developed and implemented an IT infrastructure in five radiation clinics across three countries

(Belgium, Germany, and The Netherlands). We present here a proof-of-principle for future ‘big data’
infrastructures and distributed learning studies. Lung cancer patient data was collected in all five loca-
tions and stored in local databases. Exemplary support vector machine (SVM) models were learned using
the Alternating Direction Method of Multipliers (ADMM) from the distributed databases to predict post-
radiotherapy dyspnea grade P 2. The discriminative performance was assessed by the area under the
curve (AUC) in a five-fold cross-validation (learning on four sites and validating on the fifth). The perfor-
mance of the distributed learning algorithm was compared to centralized learning where datasets of all
institutes are jointly analyzed.
The euroCAT infrastructure has been successfully implemented in five radiation clinics across three

countries. SVM models can be learned on data distributed over all five clinics. Furthermore, the infras-
tructure provides a general framework to execute learning algorithms on distributed data. The ongoing
expansion of the euroCAT network will facilitate machine learning in radiation oncology. The resulting
access to larger datasets with sufficient variation will pave the way for generalizable prediction models
and personalized medicine.
� 2016 The Authors. Published by Elsevier Ireland Ltd on behalf of European Society for Radiotherapy and

Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Introduction

Medical research revolves around accumulation and analysis of
(patient) data. Collecting sufficient quantities of data to explain a
phenomenon is arguably a major impediment to scientific progress
in a technology-driven discipline such as radiation oncology. This
obstacle becomes even more eminent in light of the recent adop-
tion of machine learning [1] to foster the goal of personalized med-
icine: machine learning algorithms require access to large
databases with sufficient variation in the collected data to answer
complex research questions.

Single institutes struggle to collect the necessary data volumes
with sufficient diversity to learn from. Furthermore, data collected
in radiation oncology is influenced and biased by technological
(e.g., vendor-specific properties [2]), human (e.g., local patient
characteristics, physician’s opinions [3]), as well as organizational
(e.g., treatment guidelines) factors which can change rapidly.
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Research questions in such contexts may remain unanswerable by
isolated data collection efforts: the data may be too biased or sim-
ply lack the necessary variation to successfully model relationships
between the collected variables. Data homogeneity may not only
be an issue for single institutes but nationwide due to national
treatment guidelines [4]. Hence, generalizable machine learning
models to answer these research questions should be created by
incorporating data from multiple institutes in a continuous man-
ner (i.e., rapid learning health care [5]). Systematic data sharing
among research institutes will become an indispensable means
for personalized medicine to thrive in radiation oncology. At pre-
sent, data sharing is characterized by one-off exchanges of datasets
with limited standardization of data collection and data character-
ization. Further, data sharing is impeded by each institute’s legal
and ethical concern to protect their patients’ privacy rights.

In this study, we present euroCAT, an IT infrastructure for sys-
tematic data sharing among research institutes. A video summary
is available here: https://youtu.be/ZDJFOxpwqEA

The hypotheses of the study are

(1) Data sharing for machine learning is possible without iden-
tifiable patient data leaving an institute’s IT systems. Thus,
the institutes remain in control of their data, preserve data
privacy, and thereby overcome legal and ethical issues com-
mon to other forms of data exchanges.

(2) Running machine learning applications on these data is fea-
sible and, given the appropriate methodology, the resulting
models only minimally differ from centrally learned models,
which makes efforts to centralize data largely unnecessary.
As an example, support vector machines (SVM) predicting
severe dyspnea after radiotherapy (henceforth simply called
dyspnea) are learned from the data provided in five
institutes.

The aim of the study was to deploy the euroCAT system in five
partner institutions within three European countries (Belgium,
Germany, and The Netherlands) and in four languages (Dutch, Eng-
lish, French, and German) and test the above hypotheses.

euroCAT focusses on multi-centric machine learning in radia-
tion oncology, similar work to implement privacy-preserving data
analysis exists, e.g., for Genome-Wide Association Studies (GWAS)
[6]. Constable et al. concisely discuss existing literature for dis-
tributed learning and the accompanying risks. A web service for
distributed logistic regression analysis is presented by Jiang et al.
[7] to facilitate collaborative regression analysis.
Material & methods

euroCAT infrastructure

Institutes within the euroCAT network (a site) dedicate a server
within their IT infrastructure that hosts the local databases and
local learning connector (Varian Medical Systems, Palo Alto,
USA). The global learning environment (Varian Learning Portal)
spans the sites, and connects a central server (the master) outside
the sites’ IT infrastructure to the learning connectors inside the
sites. Master and sites communicate via file-based, asynchronous
messaging. The user interacts with the learning environment via
a web browser-based interface in which s/he can upload learning
applications (MATLAB, MathWorks, Natick, MA, USA) and can initi-
ate machine learning runs. Every learning application consists of
two parts, one site algorithm which runs inside the sites’ infras-
tructure and interacts with the learning connector and one master
algorithm which runs in the global learning environment and can
send and receive messages to and from the site algorithms.
Data

Each participating center (Aachen (Germany), Eindhoven (The
Netherlands), Hasselt (Belgium), Liège (Belgium), and Maastricht
(The Netherlands)) was asked to retrospectively select at least 50
patients which fulfilled the inclusion criteria (non-small cell lung
cancer, high-dose radiotherapy, no surgical treatment). The centers
were provided with an overview of variables that were needed for
the study. Initially, survival outcome, dysphagia outcome, and dys-
pnea outcome were scored. For this proof-of-principle paper, we
only used the dyspnea outcome. The data was stored in a spread-
sheet. An euroCAT researcher visited each center and manually
checked 20% of the collected data for inconsistencies/mistakes.
Post-treatment dyspnea was recorded for 268 patients. Given
availability in the databases, three features were manually selected
to construct an exemplary prediction model for post-treatment
severe dyspnea: lung function tests (FEV1 (in %), forced expiratory
volume in 1 s, in %, adjusted for age and gender), cardiac comorbid-
ity (non-hypertension cardiac disorder at baseline, for which treat-
ment at a cardiology department has been given), and timing of
chemotherapy. Severe dyspnea was defined as P Grade 2 dyspnea
after treatment. The variables are listed in Table 1.

From the spreadsheets, data was extracted using an open source
data warehousing tool (Pentaho) and stored in an open-source
database (PostgreSQL). From this database, data elements were
mapped to the Semantic Web data model (Resource Description
Framework, RDF) using an open source tool (D2RQ) and stored in
an open-source RDF store (Sesame, Eclipse RDF4J). During mapping
to RDF the data elements were coded using Uniform Resource
Identifiers (URIs) which are defined in a domain ontology (Radia-
tion Oncology Ontology) and reference ontologies (NCI Thesaurus,
Unit Ontology) in the Web Ontology Language (OWL, available on
the Bioportal [8]). The learning connector uses the Semantic Web
query language SPARQL to query data from the RDF store [9] and
can parse that data to the site learning algorithm.

Distributed learning

The process of carrying out distributed learning inside euroCAT
is presented schematically in Fig. 1. At each iteration, the data
stored at different sites is processed simultaneously and sepa-
rately. Updated model parameters are then sent from each site to
the master. At the master, an algorithm compares the model
parameters and updates them further. The algorithm also checks
whether the learning process has converged sufficiently (according
to pre-set convergence criteria). If the convergence criteria are not
yet met, the master sends the parameters back to each of the sites.
Once the sites receive updated parameters, they are used as a start-
ing point for adjusting the model parameters further (given the
local data) once again. This completes one iteration cycle. The
learning iterations continue until the convergence criteria are
satisfied.

Using this infrastructure allows models to use data for learning
without transferring these data across the network. The learned
model is a support vector machine (SVM) classifier, solved with
the Alternating Direction Method of Multipliers (ADMM) method
[10].

Support vector machines (SVM) & the Alternating Direction Method of
Multipliers (ADMM)

A support vector machine determines two parallel hyperplanes,
forming a ‘border’ which separates the feature space into two large
regions and a margin between the planes. Each dimension of this
feature space represents one patient feature (e.g., FEV1 (in %) or
cardiac comorbidity) and each patient is represented by one point

https://youtu.be/ZDJFOxpwqEA


Table 1
Overview of patient characteristics per hospital.

Variable Maastricht Eindhoven Hasselt Liège Aachen

Count % Count % Count % Count % Count %

Post-RT dyspnea
< 2 89 72% 50 89% 8 57% 20 61% 36 86%
P 2 34 28% 6 11% 6 43% 13 39% 6 14%
Missing 0 0% 0 0% 0 0% 0 0% 0 0%

Cardiac comorbidity
No 90 73% 44 79% 2 14% 27 82% 24 57%
Yes 33 27% 12 21% 3 21% 6 18% 12 29%
Missing 0 0% 0 0% 9 64% 0 0% 6 14%

Chemotherapy timing
None 16 13% 5 9% 3 21% 0 0% 2 5%
Sequential 22 18% 24 43% 2 14% 2 6% 4 10%
Concurrent 85 69% 27 48% 8 57% 31 94% 33 79%
Missing 0 0% 0 0% 1 7% 0 0% 3 7%

FEV1 (in %)
Mean & Standard Dev 78 21 80 25 80 25 72 23 66 19
Missing Count & Percentage 0 0% 20 36% 2 14% 0 0% 20 48%

Fig. 1. Distributed learning flow in euroCAT.
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in this space. For simple problems, the intention would be to iden-
tify hyperplanes that separate all patients with dyspnea from the
group of patients without dyspnea. This is not possible in most
cases, therefore the objective becomes to find hyperplanes such
that

– most of the dyspneic patients are on one and non-dyspneic
patients are on the other side

– if there is a patient on the ‘wrong’ side of the border, the
distance to the border is as small as possible
– the border between the groups of dyspneic and non-dyspneic
patients is as large as possible.

The optimal hyperplanes (dwþ b ¼ 1 and dwþ b ¼ �1, where d
are the features of a patient) are determined by a vector of
coefficients ðw; bÞ that minimizes a cost function under a set of
constraints (see Appendix A for details).

Boyd et al. [10] discuss a distributed formulation of a support
vector machine using the Alternating Direction Method of
Multipliers (ADMM) and provide MATLAB code [11]. The ADMM



Fig. 2. Convergence graphs of distributed ADMM solutions xd to centralized
solutions xc for 104 iterations. Vertical lines indicate the iterations in which
internal convergence criteria were met in the euroCAT network. The data was
created in local simulations. ‘�’ indicates ‘Trained on all sites except’.
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algorithm gained popularity in the machine learning community as
it allows to split up large datasets into smaller portions and dis-
tribute the analysis over multiple machines. In our multi-centric
learning context, the same property is exploited to overcome the
restriction that data may not be centralized. ADMM requires a
multitude of iterations in which estimates for ðw; bÞ are refined
using each site’s data. See Appendix A for a more detailed descrip-
tion of SVMs and ADMM.

Learning & validation

For details on additional data processing steps, parametrization
of the ADMM algorithm, and the code used to execute the algo-
rithm, we refer to Appendix B.

To display the capabilities of the distributed learning network,
support vector machines are once trained on all sites and once
trained and validated in a cross-validation design: the SVM is fitted
using data from four sites and validated on the remaining site. This
process is repeated four times with validation on another site. The
average values for training and validation constitute the cross-
validation result.

The models’ performance is measured in terms of discrimina-
tive performance expressed as the area under the curve (AUC) of
the Receiver Operating Characteristic curve (ROC).

To demonstrate the validity of the distributed learning
approach with respect to a centralized learning algorithm, we com-
pare the ADMM results to solutions from a centralized SVM opti-
mizer. To this end, we centralize the data from all sites and solve
the SVM optimization problem (Eqs. (1)–(3), Appendix A). Missing
value imputation is still done per site to ensure comparability of
centralized and distributed results. For this demonstration, the dis-
tributed algorithm is run in a local simulation environment.

Results & discussion

The results for learning and validation on all sites and the 5-fold
cross-validation can be found in Table 2. The discriminative
performance in the cross-validation is modest with a validation
AUC of 0.66 but stable across training (0.62) and validation
(0.66). Training AUCs are stable across folds (0.60–0.64) while
inter-fold validation AUCs vary considerably (0.57–0.77). Published
models [12,13] show similar discriminative performance. The
sole purpose of the presented SVM models is to display the
infrastructure’s functionality and it is advised not to use these
models in a clinical setting.

The coefficients of the SVM trained in the euroCAT network and
in centralized learning can be found in Table 4. The individual run
time of the 6 learning runs in the current euroCAT network was
approximately 2 h or less with an iteration count between 300
and 500. Fig. 2 illustrates the convergence of the ADMM results
to the centralized optimization results for all six learning runs.
The iteration number is listed on the x-axis, the norm of the differ-
ence between ADMM and centralized results is shown on the y-
axis. The algorithm was run for 104 iterations and the iterations
Table 2
Discrimination performance (AUC) obtained by learning an SVM on all sites and in a 5-fold
Appendix A).

Train on All All except Maastricht All except Eindhoven
Validate on Maastricht Eindhoven
Training AUC 0.63 0.61 0.60
Validation AUC 0.58 0.77
in which the internal convergence criteria are met in the euroCAT
network are indicated by vertical lines. In all six cases, the solution
approaches the centralized solution non-monotonically until the
convergence criteria are met and the ADMM algorithm stops. The
ADMM-based SVMs do not completely coincide with centralized
models (see Table 4) as the convergence criteria were relaxed to
accommodate for the relatively long network communication time
in each iteration. A centralized learning algorithm determines SVM
coefficients in less time as there is no network communication.
Thus, when using ADMM-based distributed learning (or other dis-
tributed learning methods with repeating master-site communica-
tion), one faces a trade-off between solution precision and
computation time. While the network communication time will
surely force large-scale simulation studies to be maximally paral-
lelized (to minimize the impact of network communication), the
impact on prediction model development and performance is
expected to be limited: the impact on AUC-based discriminative
performance is small for the exemplary SVM models (compare
Tables 2 and 3) and can be further reduced with stricter conver-
gence criteria (see Fig. 2). Viewed differently, ‘early stopping’ is
employed in machine learning as a regularization technique to
avoid overfitting [14]. Models that suffer from overfitting explain
the training data but fail to correctly predict outcomes in other
datasets. Therefore, the trade-off between solution precision and
computation time should not harm the goal of developing robust
machine learning models for personalized medicine.
CV in distributed learning (ADMM, following the formulation shown in Eqs. (4)–(7),

CV

All except Hasselt All except Liège All except Aachen
Hasselt Liège Aachen
0.64 0.62 0.64 0.62
0.57 0.72 0.64 0.66



Table 3
Discrimination performance (AUC) obtained by learning an SVM on all sites and in a 5-fold CV in centralized learning (solving the optimization problem shown in Eqs. (1)–(3),
Appendix A).

CV

Train on All All except Maastricht All except Eindhoven All except Hasselt All except Liège All except Aachen
Validate on Maastricht Eindhoven Hasselt Liège Aachen
Training AUC 0.63 0.61 0.60 0.63 0.61 0.64 0.62
Validation AUC 0.58 0.77 0.59 0.72 0.64 0.66

Table 4
SVM coefficients ðw; bÞ learned by distributed and centralized learning.

Trained on w1 w2 w3 w4 b

All Distributed 0.01 �0.32 �0.20 �0.25 �0.55
Centralized 0.01 �0.31 �0.20 �0.25 �0.55

All except Maastricht Distributed �0.03 �0.31 �0.20 �0.29 �0.51
Centralized �0.02 �0.31 �0.20 �0.29 �0.51

All except Eindhoven Distributed 0.01 �0.28 �0.06 �0.33 �0.48
Centralized 0.02 �0.28 �0.06 �0.33 �0.48

All except Hasselt Distributed 0.00 �0.32 �0.20 �0.26 �0.55
Centralized 0.00 �0.31 �0.20 �0.26 �0.55

All except Liège Distributed 0.00 �0.31 �0.20 �0.25 �0.55
Centralized �0.01 �0.31 �0.20 �0.26 �0.55

All except Aachen Distributed 0.00 �0.34 �0.19 �0.24 �0.53
Centralized 0.00 �0.34 �0.19 �0.24 �0.53
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A challenge of distributed learning is that the user is not able to
inspect the data which is used as input for the machine learning
applications. S/he must rely on summary statistics to ascertain that
the data is in the desired format. This obstacle can be overcome by
collaboration between users from the respective institutes and
strictly following the agreed data collection and storage protocols.
An euroCAT umbrella protocol [15] was provided to the participat-
ing institutes to guide future lung data collection. Protocols for
other diseases are also available: for a data sharing project
between MAASTRO Clinic and the Sacred Heart University Hospital
(Rome) on rectal cancer, a corresponding umbrella protocol was
developed [16].

Systematic data sharing not only requires an IT infrastructure,
as developed in this study, but it also depends on systematic data
collection in routine clinical care. It has been argued that data from
routine care is a valuable source of information to improve the
standard of care [5,17]. However, this data is often not treated as
such. Consequently, data collection and standardization have the
potential to be improved as also observed in this study.

Even though routine clinical care might become a cornucopia of
clinical data, this data needs to be handled with care: McGale et al.
[18] show that conclusions from routine clinical care data may
contradict findings from randomized clinical trials. Routine care
data is subject to many biases contrary to data from carefully
designed trials. The conclusion should not be to discard routine
care data altogether but rather to develop means to profit from this
data: i.e., develop appropriate methodology, e.g., extensive correc-
tion for confounders [19], and to expand standardized data collec-
tion to capture all data necessary to detect confounders, e.g., collect
accompanying patient data from referring hospitals/physicians and
details on the (quality of the) treatment given. Viewed differently,
the purpose of data collection, regardless whether it is data from
randomized clinical trials or routine care, is to improve treatment
quality for all patients. Peters et al. [20] show that even within
clinical trials treatment quality is highly variable among institutes,
i.e., institutes treating fewer patients delivering lower quality
treatments. Given these difference, it is debatable whether conclu-
sions drawn from trials which were conducted at selected insti-
tutes translate into routine clinical care where the standard of
care may be generally lower and patient populations differ
[21,22]. Data collected in routine clinical care is directly sampled
from the population in question unlike trial data derived from a
biased proxy. Therefore, systematic data collection in routine
clinical care will not only provide new opportunities for further
analyses (with the abovementioned necessary caution) but it will
also allow systematic studies of the general patient population
and tracking whether treatment benefits observed in clinical trials
arrived in routine clinical care.

Continued concerns over patient privacy might render insti-
tutes reluctant to participate in systematic data sharing. Illegal
access to data is prevented within the euroCAT learning environ-
ment: the web browser-based learning interface is only accessible
with registered user accounts and learning runs are always linked
to such account. Learning algorithms circulating in the network
need to be authenticated by a digital file signer that is available
only to registered members of the euroCAT network. Furthermore,
permission to learn on an institute’s data is granted by the respec-
tive institute’s principal investigators per user account or on a run-
by-run basis. Additionally, illegal data transfers can be identified
and shut down: standard master/site communication is limited
to small volumes like model parameters, prediction outcomes,
and summary statistics. Limits on the communication volume
therefore render high volume data transfers impossible. Collabora-
tion with external parties always comes with a risk of losing con-
trol over one’s data. Mutual trust and legal assurance to
safeguard other parties’ data are key aspects in scientific collabora-
tion. However, in comparison to the traditional data exchange col-
laborations, a data sharing network such as euroCAT adds technical
control mechanisms to manage and limit access to an institute’s
data.

The pilot study was restricted to sharing a dataset of limited
size in three countries. However, the range of variables, number
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of patients, and number of institutes is variable: linking an entire
hospital’s EHR and PACS to the learning environment is theoreti-
cally possible. Further, the ontologies used for euroCAT to match
variables across institutes bear the potential to facilitate data shar-
ing around the globe. For euroCAT, data was shared across clinics
located in three different countries, i.e., with three different
national data collection guidelines and three different languages
(Dutch, French, and German). This pilot study has led to follow-
up projects in, among others, the Netherlands (duCAT), Italy
(VATE), the USA (meerCAT), Australia (ozCAT), Canada (canCAT),
and China (sinoCAT).

The potential of the euroCAT infrastructure exceeds the pre-
sented results. The capability to learn SVMs is just one example
for applications of the distributed learning infrastructure. The
ADMM algorithm used for SVMs is extendable to other existing
machine learning methods like linear/logistic regressions and fea-
ture selection methods like (logistic) LASSO [10]. Independent of
the ADMM algorithm, the infrastructure can facilitate other
machine learning techniques such as Bayesian Networks learned
from distributed data [23]. More generally, any desirable computa-
tion requiring access to an institute’s data with subsequent aggre-
gation on the master is feasible. Systematic data sharing efforts
such as euroCAT will likely profit from the ongoing research in
the flourishing fields of machine learning and artificial intelligence.

The presented IT infrastructure facilitates modeling of multi-
centric data without direct access to said data. This method bears
the risk that inter-institutional bias in variables, e.g., due to incon-
sistent (toxicity) scoring, varying reporting standards, different
patient populations, or data collection errors remain unnoticed.
Future work will be focused on the systematic detection of such
affected data in a distributed learning network.
Conclusion

Multi-centric rapid learning for health care is feasible as shown
by the support vector machines developed in the euroCAT net-
work. We have no doubts that the clinical decision support sys-
tems of the future would routinely use models based on data
available in distributed databases across national borders. One
solution for surmounting accompanying technical, legal, and ethi-
cal issues with data sharing is already delivered across three coun-
tries by the euroCAT system and has shown to scale globally. We
believe that distributed learning is the best way to go for building
clinically reliable models that are universally applicable, personal-
ized, and robust.
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Appendix A

A support vector machine determines two parallel hyperplanes,
forming a ‘border’ which separates the feature space into two large
regions and a margin between the planes. Each dimension of this
feature space represents one patient feature (e.g., FEV1 (in %) or
cardiac comorbidity) and each patient is represented by one point
in this space. For simple problems, the intention would be to iden-
tify hyperplanes that separate all patients with dyspnea from the
group of patients without dyspnea. This is in not possible in most
cases, therefore the objective becomes to find hyperplanes such
that

– most of the dyspneic patients are on one and non-dyspneic
patients are on the other side

– if there is a patient on the ‘wrong’ side of the border, the dis-
tance to the border is as small as possible

– the border between the groups of dyspneic and non-dyspneic
patients is as large as possible.

The optimal hyperplanes are determined by

min
w;b

1
k
jjwjj22 þ

Xn

i¼1

si ð1Þ

such that

yiðdiwþ bÞ P 1� si for all i ¼ 1; . . . ;n ð2Þ

si P 0 for all i ¼ 1; . . . ;n: ð3Þ
w is the normal vector of the separating hyperplanes, b is the bias
term. ðw; bÞ characterizes the hyperplanes. si is an auxiliary variable
for sample i representing the classification error. k is a parameter to
assign more importance to the first or the second term of the objec-
tive. k needs to be positive. yi 2 f�1;1g is the label of training sam-
ple i. di is the vector of features for sample i. Minimizing the first

term in the objective function, 1
k jjwjj22, maximizes in the margin,

i.e., the space between both hyperplanes. Minimizing
Pn

i¼1si mini-
mizes the classification error. The objective is split into two terms,
1
k jjwjj22 and

Pn
i¼1si: The latter is separable among data samples such

that the value for
Pn

i¼1si can be obtained by slicing up the dataset
into multiple parts, computing the contribution of each slice inde-
pendently and merging the results afterwards. This property (and
other) can be exploited such that the SVM optimization problem
is solvable in a distributed fashion. Boyd et al. [10] discuss a dis-
tributed formulation of a support vector machine using the Alter-
nating Direction Method of Multipliers and provide MATLAB code
[11]. The ADMM algorithm gained popularity in the machine learn-
ing community as it allows to split up large datasets into smaller
portions and distribute the analysis over multiple machines. In
our multi-centric learning context, the same property is exploited
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to overcome the restriction that data may not be centralized. The
formulation is
xkþ1
j ¼ argminxi

1TðAixi þ 1Þþ þ q
2

� �
jjxi � zk þ uk

i jj22
� �

ð4Þ
x̂kþ1
j ¼ axkþ1

j þ ð1� aÞzk ð5Þ
zkþ1 ¼ q
1
k

� �þ Nq
ðx̂kþ1 þ ukÞ ð6Þ
ukþ1
j ¼ uk

j þ x̂kþ1
j � zkþ1 ð7Þ
where x ¼ ðw; bÞ, N is the number of sites, and q and a are model
parameters.

In each iteration kþ 1, xkþ1
j is computed at each site j and trans-

mitted to the master. At the master, a relaxation function (6) is

applied to xkþ1
j yielding x̂kþ1

j . The average x̂kþ1 of all sites is used

to compute zkþ1 and ukþ1, which are transmitted to the sites and
are used as input for the computation of xkþ2

j in the next iteration.

xkþ1
j is calculated to reduce the classification error, zkþ1

j is calculated

to increase the margin, and ukþ1
j is the dual variable inherent to the

ADMM algorithm.
ADMM requires a multitude of iterations in which estimates for

ðw; bÞ are refined using each site’s data. Once an estimate of ðw; bÞ
is chosen and the algorithm is stopped, Platt scaling [24] is applied:
the values diwþ b per training sample i are fitted to the dyspnea
outcomes using a logistic regression. diwþ b is a measure of train-
ing sample i’s location in space relative to the two hyperplanes. The
logistic regression equation allows to assign a dyspnea probability
to patients in the training and validation datasets.
Fig. B1. Pseudocode of the MATLAB f
Appendix B

Data processing was done in MATLAB (MathWorks, Natick, MA,
USA). Pseudocodes of the MATLAB functions executed on the mas-
ter and sites are shown in Figs. B1 and B2, respectively.

Patient features were rescaled before learning to improve
algorithm performance. A variable v was rescaled to ~v accord-
ing to

~v ¼ v �minðvÞ
maxðvÞ �minðvÞ

where minðvÞ and maxðvÞ are minimal and maximal feature values,
respectively, found within the entire learning network. This step
requires centralizing minimal and maximal feature values for each
site. This poses no threat to patient privacy since no value can be
allocated to a single patient assuming that each site’s database con-
tains more than one patient. Future work should be dedicated to
replacing this normalization by a generally privacy-preserving
method.

The categorical variables cardiac comorbidity and chemother-
apy timing were each coded as ðc � 1Þ dummy variables, c being
equal to the variable’s cardinality.

Missing values were imputed using the mean for continuous
variables and mode for categorical variables. Means and modes
were derived per site.

The code designed to guide the machine learning process within
the IT infrastructure is available on www.eurocat.info with further
information about the infrastructure and how to join the CAT
project.

The chosen model parameters are q ¼ 1, a ¼ 1:5, and k ¼ 0:01.
The convergence criteria are set as described by [11] with absolute
tolerance ¼ 10�4 and relative tolerance ¼ 10�2. x, z, and u are ini-
tialized at the zero vector. Parameters have been set manually
and based on choices found in [11]. Future work on deriving
clinically-relevant prediction models exceeding an exemplary nat-
ure should also comprise systematic parameter tuning.
unction executed on the master.

http://www.eurocat.info


Fig. B2. Pseudocode of the MATLAB function executed on the sites.
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