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ABSTRACT

Hes and Hey genes are the mammalian counterparts
of the Hairy and Enhancer-of-split type of genes in
Drosophila and they represent the primary targets of
the Delta–Notch signaling pathway. Hairy-related
factors control multiple steps of embryonic devel-
opment and misregulation is associated with var-
ious defects. Hes and Hey genes (also called Hesr,
Chf, Hrt, Herp or gridlock) encode transcriptional
regulators of the basic helix-loop-helix class that
mainly act as repressors. The molecular details of
how Hes and Hey proteins control transcription are
still poorly understood, however.
Proposed modes of action include direct binding to
N- or E-box DNA sequences of target promoters as
well as indirect binding through other sequence-
specific transcription factors or sequestration of
transcriptional activators. Repression may rely on
recruitment of corepressors and induction of
histone modifications, or even interference with
the general transcriptional machinery. All of
these models require extensive protein–protein
interactions. Here we review data published on
protein–protein and protein–DNA interactions of
Hairy-related factors and discuss their implications
for transcriptional regulation. In addition, we sum-
marize recent progress on the identification of
potential target genes and the analysis of mouse
models.

INTRODUCTION

Precise temporal and spatial control of gene expression
is accomplished by a broad array of sequence-specific
transcription factors. Many of these are inefficient
transcriptional activators or repressors on their own, but
they recruit potent coactivators or corepressors that

cannot bind directly to DNA in turn (1). Regulatory
mechanisms include chromatin-remodeling factors that
mobilize nucleosomes and histone-modifying enzymes.
The expression of such regulatory factors is controlled by
diverse signaling pathways, other transcription factors
and regulatory RNAs, building up a highly complex
transcriptional network.
The Notch signaling pathway represents a central

regulator of gene expression. This cascade controls cell
fate determination and differentiation, making it essential
for many aspects of embryonic development as exempli-
fied by a variety of mouse knockout studies. In humans,
mutations of Notch ligands or receptors are responsible
for a number of diseases like Alagille syndrome,
CADASIL, T-cell leukemia, aortic valve calcification
and other cardiovascular disorders (2–4).
Notch receptors are single-pass transmembrane pro-

teins that become activated upon ligand binding. This
leads to two consecutive cleavage events releasing the
intracellular domain (NICD), which then translocates to
the nucleus. There NICD interacts with the DNA-binding
protein RBPJk (also known as CBF1, Rbpsuh or Su(H)
in Drosophila), which is associated with corepressors
(e.g. N-CoR, SHARP, CtBP). Interaction with NICD
replaces these corepressors and allows recruitment of
coactivators like Mastermind/MAML and p300/CBP
leading to transcription of target genes (Figure 1) (5).
The most extensively studied and best understood targets
are Hairy and Enhancer-of-split [E(spl)] genes in
Drosophila and the relatedHes andHey genes in mammals
(6). Interestingly, there is a crosstalk between Notch
and the BMP/TGF-beta, JAK-STAT, Ras and HIF
signaling pathways to enhance activation of Hey/Hes
expression (7–11), suggesting that these factors transduce
and integrate signals from multiple pathways.
Besides the activation of target genes via RBPJk,

referred to as the canonical pathway, additional, non-
canonical functions of Notch have been described that are
less well characterized. These include e.g. regulation of the
actin cytoskeleton, interaction with the wingless pathway,
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RBPJk-independent activation of target genes (12), or
activation of the RNA-binding protein Musashi (13).

HAIRY AND E(spl) IN DROSOPHILA

In the fruitfly Drosophila melanogaster, Hairy and seven
clustered E(spl) genes (m8, m7, m5, m3, mb, mg and md)
control crucial developmental processes like segmentation,
myogenesis or neurogenesis. All of these genes encode
basic helix-loop-helix (bHLH) proteins (14). The DNA-
binding basic domain (b) is contiguous with one of two
amphipathic a-helices separated by a loop (HLH) that
serve as a dimerization domain and as a platform for
additional protein interactions (15). The HLH region is
followed by two additional a-helical stretches (helix3/4),
called the Orange domain. This domain is thought to serve
as an additional interface for protein interactions and
it acts as a transcriptional repressor when fused to a
DNA-binding domain (16). A further characteristic of
Hairy and E(spl) proteins is the invariant proline residue
in the basic domain and a highly conserved carboxytermi-
nal tetrapeptide motif WRPW that recruits the corepres-
sor Groucho (14).
E(spl) genes are activated by Notch signaling and their

protein products, as well as Hairy, block neuronal
differentiation by inhibiting proneural bHLH activators
like Atonal, Daughterless and those of the Achaete–Scute
complex (14). The molecular details of how this is
achieved are diverse and in part still controversial.

Proposed models include sequestering of activator com-
plexes away from DNA (17), direct binding to promoters
of target genes and recruitment to promoters without
direct DNA binding (18).

MAMMALIAN HES AND HEY PROTEINS

In the mouse and rat genomes, seven Hes (Hes1-7) (19–25)
and three Hey genes (Hey1,2,L; also published as
Hrt1,2,3; Hesr1,2; Herp2,1 or Chf2,1) have been identified
(26–30). Hes proteins are highly similar to Hairy and
E(spl), especially within the bHLH, Orange and WRPW
domains. Similar to their Drosophila ancestors, Hes
proteins are supposed to bind N- and E-box DNA
sequences (CACNAG, CANNTG) and they can recruit
TLE1-4 corepressors (the orthologs of Groucho) through
their WRPW tetrapeptide (31). While Hes1, Hes5 and
Hes7 can be induced by the Notch pathway (25,32–35),
Hes2, Hes3 (34) and Hes6 (24) appear to be independent
of Notch signaling, and further data on Hes4 are lacking.

All members of the Hey gene family can be induced by
Notch (26,27,29,30,36–39), they are strongly conserved
during evolution (40) and there is also a Drosophila Hey
gene with hitherto unknown function (26,27). Especially
the bHLH and Orange domains are similar to those of
Hes proteins, but the invariant proline residue in their
basic domains is replaced by glycine and they do not bind
to N-box sequences (41). Hey proteins preferentially bind
to an E-box sequence that is also recognized by Hes1,
Hes6 and E(spl) proteins (29,41–43). The most striking
difference between Hes and Hey proteins is the lack of the
WRPW tetrapeptide in the latter. Instead a related YRPW
peptide or a further degenerated YXXW (HeyL) sequence
can be found, which cannot bind TLE corepressors
(41,42). The YXXW motif is followed by a conserved
TE(I/V)GAF peptide with presently unknown function
(Figure 1B).

There are several additional mammalian proteins that
exhibit strong homologies to Hairy and E(spl). Examples
are Helt, DEC1 (also known as Stra13, SHARP-2
or BHLHB2) and DEC2. They generally lack
WRPW/YRPW motif sequences and there is no evidence
for a Notch-dependent expression thus far.

BIOLOGICAL FUNCTIONS OF HES AND HEY
GENES

Mammalian Hairy-related proteins are specifically
expressed in various tissues and they fulfill important
roles during development and adulthood. It is beyond the
scope of this manuscript to review all these functions in
detail, instead Table 1 provides a short overview of the
phenotypes seen in gene targeting experiments in mice.

Hes1 plays an essential role in the development of the
nervous system, sensory organs (eye, inner ear), pancreas
and endocrine cells, as well as lymphocytes. Loss of Hes5
or Hes3 is less severe, but combined with Hes1 deficiency
leads to more profound pathologies, as there is partial
redundancy among these genes. Hes7 is important for
somitogenesis. In contrast, Hey genes play critical roles in

Figure 1. Scheme of Notch signaling. (A) Ligands of the Delta (Dll) or
Jagged (Jag) family induce intramembrane cleavage of the Notch
receptor. The intracellular domain replaces transcriptional corepressors
with activators enabling transcription of Hes and Hey genes by RBPJk.
(B) Domain organization of Hes and Hey proteins. Numbers indicate
the amino acid content of the individual protein domains.
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the cardiovascular system. Hey2�/� mice and those with a
combined Hey1/L loss suffer from severe congenital heart
defects. While Hey1�/� mutants are viable, a combined
Hey1/2 deficiency phenocopies the vascular defects of
Notch1�/� embryos, including impaired angiogenic
remodeling and a lack of arterial differentiation. The
known overlap in expression sites (31) suggests that there
may be additional genetic interactions to be uncovered in
compound Hes and Hey deficient mutants.

PROTEIN INTERACTIONS AND MODES OF
TRANSCRIPTIONAL REPRESSION

Hairy-related proteins can interact with a large number of
HLH proteins, but they also recruit transcriptional core-
pressors like histone deacetylases. Furthermore, Hes and
Hey proteins can form complexes with other transcrip-
tion factors, which often turns these into transcriptional
repressors. Currently known interacting proteins are
summarized in Table 2 and a schematic overview of the
functional roles of such complexes is presented in
Figure 2.

Hes and Hey factors form homo- and heterodimers

Drosophila E(spl) proteins form homodimers and hetero-
dimers with each other via their HLH domains (17) and
this has also been found for Hes and Hey proteins
(41,44–47). Heterodimers between Hes and Hey family
members appear to be even more stable than the
corresponding homodimers. The Orange domain signifi-
cantly improves interaction strength (44) and such
heterodimers bind to DNA target sequences with even
higher affinity than the corresponding homodimers (41).
As there is overlapping expression between Hes and Hey
genes in several tissues (31), it is conceivable that such
heterodimers are formed in vivo. Indeed, affinity purifica-
tion of Hes1 from preadipocytes led to copurification of

Hey1 as well as Helt, a new Hey-related protein that
associates with Hey2 and Hes5 (46). Surprisingly, Helt
appears to use its bHLH domain to bind Hey2, but its
Orange domain to interact with Hes5 (48). As Hes and
Hey factors differ in the recruitment of corepressors as
discussed below, heterodimers broaden the respective
repression capacity (Figure 2D). In rare cases hetero-
dimerization may even be antagonistic, e.g. during neural
differentiation, where Hes6 counteracts Hes1 repression
activity by forming Hes1/Hes6 heterodimers (22).

Interaction with other bHLH proteins

The bHLH family consists of about 125 members (49).
Hes and Hey proteins have been shown to interact
specifically with some of the ubiquituosly expressed
E-proteins (21,44,50,51). The latter tend to form homo-
dimers or heterodimers with lineage-specific bHLH factors
and they activate transcription by binding to E-box
DNA sequences (CANNTG). Interaction with Hes1,
5 or 7, however, strongly reduces transcriptional activity
of E-proteins, presumably in a squelching type of action
(19,21,25,50).
Hairy-related proteins also interact with lineage-specific

bHLH factors. Hey1 forms dimers with the muscle-specific
factor MyoD and prevents its activity during myogenic
differentiation of 10T1/2 cells. Here, Hey1 is supposed to
counteract formation of a critical MyoD/E47 heterodimer
(52). Hey2 was shown to antagonize activation of the
VEGF promoter by the ARNT/EPAS (HIF2) complex
(28) and the activity of Ptf1-p48, a bHLH protein
important for pancreas development, is likewise strongly
decreased by Hes1, Hey1 or Hey2 (53) (Figure 2G and H).
Finally, interaction of Hey proteins with Hand1 and
Hand2, two important bHLH regulators of heart devel-
opment, has also been described (54), but functional data
are still lacking.

Table 1. Phenotypes of Hes or Hey gene deficient mice

Notch regulated Mouse knockout phenotype References

Hes1 Yes Neurulation defects, premature differentiation of neural progenitor cells (120–122)
Eye and inner ear defects (123–125)
Pancreas defects and defective endocrine differentiation (126)
Disturbed T-cell differentiation, lack of thymus (127)

Hes3 No Viable, fertile (128)
Hes5 Yes Viable, fertile (35,121)

Eye and inner ear defects (129,104)
Elevated myelin levels in central nervous system (117)

Hes6 No Viable, fertile (24)
Hes7 Yes Somitogenesis defects (108)
Hes1/5 Enhancement of Hes1�/� phenotype (35,121,125,130)

Defects in cranial and spinal nerves (131)
Hes1/3 Missing midbrain and anterior hindbrain due to premature neuronal differentiation (128)
Hes1/3/5 More severe than Hes1/5 loss (125)
Hey1 Yes Viable, fertile (132,133)
Hey2 Yes Congenital heart defects (134–138)

Decreased arterial neointima formation (87)
HeyL Yes Viable, fertile (47)
Hey1/2 Angiogenesis and arterial differentiation defects (132,133)
Hey1/L Congenital heart defects (47)
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Table 2. Summary of protein-protein interactions of Hes (A) and Hey (B) proteins

Interaction
partner

Hes/Hey protein Interacting Hes/Hey
domain

Method Comments References

(A)

Homo/Heterodimers

Hes1 Hes1 bHLH-Or GST, IP, Y2H (41,44)
Hey1,2 Hes1 bHLH

(Or stabilizes)
GST, IP, Y2H Stronger than homodimers (41,44–46)

Hes6 Hes1 ND IP Repression of Hes1 activity (22)
Helt Hes5

(not Hes1)
(Orange of Helt) IP (48)

HLH factors

E47 E2-2 Hes1,5 ND IP, M2H Repression of transcriptional activity (21,51)
Id1,2,3,4 Hes1 ND IP�, M2H Sequestration (51)
ITF1,2 Hes1 bHLH GST, Y2H (44)
Mash1 (Ascl1) Hes5 ND IP Repression, sequestration (21,117)
Ptf1-p48 Hes1 ND GST, IP, Y2H Repression of transcriptional activity (53)

Other transcription fators

c-myb Hes1 ND IP� Repression of transcriptional activation of
CD4 promoter

(94)

GATA1 Hes1 ND GST, IP Represses GATA1 activity, but not
DNA-binding capacity.

(85)

RBPJk Hes1 bHLH (H1) IP Repression of transcriptional activity (75)
Runx2 (Cbfa1) Hes1 C-terminus

(not WRPW)
GST, IP, Y2H Enhances Runx2 activity, interferes

with TLE1 and HDAC1 recruitment
(63,92,93)

Runx1 (Cbfa2) Hes1 ND GST, IP (92)
Sox10 Hes5 ND IP Repression, sequestration (116)
STAT3 JAK2 Hes1,5 bHLH-Or IP� Promotes STAT3 phosphorylation

and nuclear translocation
(11)

Transcriptional cofactors

TLE1,2,3,4 Hes1,5,6 WRPW GST, IP�, Y2H Function as a corepressor (46,59–65,68)
SIRT1 Hes1 bHLH GST, IP Augments repression capacity (77)
HDAC1 Hes1 ND IP (93)
CBP Hes1 ND IP Turns Hes1 into transcriptional activator (68)
Others

pRB Hes1 ND IP Enhances Runx2/Hes1 activity (139)
Ubiquilin 1 Hes1 ND M2H (140)

(B)

Homo/Heterodimers

Hey1,2,L Hey1,2,L bHLH
(Or stabilizes)

GST, IP, Y2H (41,44,47)

Hes1 Hey1,2 bHLH
(Or stabilizes)

GST, IP, Y2H Stronger than homodimers (41,44–46)

Helt Hey2 (bHLH of Helt) IP (48)
HLH factors

ARNT Hey1,2 ND Y2H Repression of ARNT/EPAS induction of
VEGF promoter

(28)

HAND1,2 Hey1,2,L ND GST (54)
Id1 Hey1 ND IP Reduced half-life of Id1 (119)
ITF1,2 Hey1,2 bHLH GST, Y2H (44)
MyoD Hey1,2 ND IP Repression of MyoD activity, sequestration (52)
Ptf1-p48 Hey1,2 ND IP Repression of Ptf1-p48/E47-induced

gene expression
(53)

Other transcription fators

AR SRC Hey1 ND GST, IP� Repression of AR/SCR-induced gene expression (74)
GATA1,2 Hey1,2 bHLH GST, IP� Repression of transcriptional activity (83)
GATA4,6 Hey1,2,L bHLH IP Repression of transcriptional activity (72,73,76,88)
RBPJk Hey1,2,L bHLH (H1) IP Repression of transcriptional activity (75)
Runx2 (Cbfa1) Hey2 ND GST Repression of transcriptional activity (4)
SRF Hey2 bHLH GST, IP Prevents SRF interaction with CArG box (89) Contradictory

result: (84)
STAT3 Hey1,2 ND IP Enhances transcriptional activity (11)

Transcriptional cofactors

Sin3A N-CoR Hey1,2 bHLH GST, IP Augments repression capacity, recruitment
of HDAC1

(41)

SIRT1 Hey2 bHLH GST, IP Augments repression capacity (77)
Others

BOIP Hey1 (not Hey2) Or IP, Y2H (45)

Abbreviations: H1, helix 1; IP, co-immunoprecipitation, IP�; co-immunoprecipitation with endogenous proteins; GST, GST pull-down assay;
M2H, mammalian two-hybrid assay; Or, Orange domain; Y2H, yeast two-hybrid assay.
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How can Hairy-related factors alter the functional
properties of many different bHLH proteins? The
promiscuity of HLH heterodimerization already generates
a spectrum of pairings with varying affinities that may
indirectly reduce the amount of specific dimers. Work in
Drosophila further suggests that inhibition of bHLH
proteins like Scute does not rely on formation of
compromised or novel HLH dimers but may be due to
binding of E(spl) repressors to the Scute transactivation
domain. Thus, even within the bHLH family of proteins
multiple modes of interaction are possible (17,18,55).

Recruitment of Groucho/TLE

The WRPW motif of Hairy and E(spl) proteins has
been assumed to mediate transcriptional repression in
Drosophila as it was only found in repressor proteins (56).
Its functional importance was underscored by the fact
that two mutant Hairy alleles carry mutations of the
WPRW sequence (57). In Drosophila, the WRPW motif
of Hairy and E(spl) proteins binds the corepressor
Groucho (58) and in mammals Hes proteins recruit the
Groucho homologs TLE1-4 to generate a transcriptional
repressor complex (46,59–65). Groucho/TLE is supposed
to attract further corepressors like histone deacetylases
and members of the Sin3 complex, suggesting that such
interactions lead to strong transcriptional repression
(66,67). The interaction with TLE proteins appears to be
quite stable, as affinity purification of Hes1 containing
nuclear complexes from mouse preadipocytes yielded only
a small number of interacting proteins that include TLE1,
3 and 4 (46).

A recent report on the control of Mash1 expression in
differentiating neural stem cells suggested that the Hes1/
TLE interaction can be dissociated by cellular signaling
pathways that may even convert Hes1 into a transcrip-
tional activator (68). In this case the corepressor complex
disassembles, but Hes1 remains bound to the Mash1

promoter and after CaMKIIdelta-dependent phosphory-
lation recruits coactivators including p300/CBP
(Figure 2A and B). It remains to be seen, however, to
what extend this scenario can be generalized.
Another surprise came from a genome-wide chromatin

profiling analysis in Drosophila, where 59 putative target
genes were detected for Hairy and 155 for Groucho. Quite
unexpectedly, only a single gene was targeted by both
proteins, while there was a strong overlap of binding sites
for Hairy and other corepressors like CtBP and Sir2 (69).
As the screen for Groucho targets was only performed in
Kc cells, this may not necessarily be representative for
other cell types and differentiation states, but decoration
of larval polytene chromosomes rather supported the
conclusions of little overlap in targeted genes. This clearly
suggests that Groucho is not the primary cofactor for
Hairy and perhaps for E(spl) proteins alike, but this may
well depend on the cellular context.
In contrast to Hes proteins, the Hey proteins cannot

bind to TLE proteins (41,42). Hey1 and Hey2 lack a
WRPW motif, but harbor a related YRPW (YQPW)
motif. The crystal structure of the WRPW–TLE1 interac-
tion revealed that the N-terminal tryptophan residue binds
in a hydrophobic pocket (70), where the tyrosine residue
of Hey proteins cannot efficiently interact. Indeed, a
corresponding tyrosine to tryptophan (Y!W) exchange
in Hey1 allows TLE1 binding (42). Consistent with these
data deletion of the YXXW-TE(I/V)GAF motif of Hey
proteins was found to have no effect on repression
capacity and the reason for its strong conservation
remains to be established (4,52,71–76).

Interaction with other corepressors—localization of
repression domains

Despite the lack of TLE recruitment, Hey proteins are
strong transcriptional repressors, and this prompted
searches for interacting corepressors other than TLE.

Figure 2. Proposed models of how Hairy-related factors affect gene expression. (A and B) Binding of Hes1 (dark blue) to a class C E-box can repress
or activate the Mash1 promoter depending on the recruited cofactors. (C) Hey proteins (light blue) recruit cofactors different than Hes1 and bind to
E-box sequences in vitro. (D) DNA binding of a Hes/Hey heterodimer. (E) Combined DNA and protein binding turning a transcriptional activator
into a repressor. (F–I) Transcriptional regulation independent of DNA binding includes turning activators into repressors (F), prevention of DNA
binding, sequestration, degradation (G and H) or interference with the basal transcriptional machinery (I).
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Strong repression activity could be mapped within the
bHLH domain of Hey1 and Hey2, which directly interacts
with N-CoR and mSin3A. These corepressors then
indirectly recruit histone deacetylase-1 (HDAC1) (41).
The bHLH domains of Hey2 and Hes1 can recruit yet

another histone deacetylase, SIRT1 (77). This direct
interaction is evolutionary conserved as Drosophila
Hairy interacts with the SIRT1 homolog Sir2, a NAD+-
dependent histone deacetylase associated with gene
silencing, control of metabolism and aging (78). Loss of
Sir2 function leads to reduced activity of Hairy repressor
activity (79).
The region between the Orange domain and the

WRPW/YXXW motif also possesses some repression
capacity, but its mode of action is unclear (4,41,52,
72–74,76). In Drosophila, Hairy and E(spl)md interact
with the C-terminal binding protein (CtBP) via the
pentapeptides PLSLV or PVNLA that are located close
to the WRPW motif, but the physiological relevance of
this interaction has been questioned (80,81). CtBP is
assumed to again recruit chromatin-modifying enzymes
like histone deacetylases to mediate repression (82). The
fact that there was a striking overlap of genomic targets
for Hairy, Sir2 and CtBP in the above-mentioned screen
of Drosophila Kc cell chromatin strongly argues for a
common molecular pathway and perhaps physical inter-
action of the proteins (69).

Interaction with distinct HDAC classes

Studies using the histone deacetylase inhibitor trichostatin
A (TSA) that inhibits HDACs, but not sirtuins like
Sir2/SIRT1, revealed that recruitment of both types of
histone deacetylases is necessary for full Hes and Hey
repression activity. A plausible scenario suggests that Hey
and Hes factors can recruit HDAC1 using the bHLH
domain and the C-terminus, while SIRT1 is only bound
by the bHLH domain. If this model is correct, TSA
treatment would only partially block repression by
inhibiting HDAC1 without affecting SIRT1. Indeed,
many reports describe only moderate effects of TSA
on modulation of Hes or Hey repression activity
(29,73,74,77,83,84) with one exception (85). In contrast,
repression capacity of the carboxyterminal half of the
Hes1 and Hey2 proteins, which does not bind SIRT1, is
almost abolished by TSA treatment (74,77).
Taken together, these observations suggest that Hey

and Hes factors use combinations of both, TSA sensitive
and insensitive histone deacetylases to mediate repression
by histone modification.

Repression of GATA factors

The zinc finger transcription factors GATA1, 2 and 3 play
crucial roles e.g. in the hematopoietic system, whereas
GATA4, 5 and 6 are important regulators in the
cardiovascular system. GATA factor activity is tightly
regulated by interaction with cofactors (86). There is
convincing evidence that Hes and Hey proteins interact
with GATA factors (Figure 2F) to strongly repress GATA
transcriptional activity (72,73,76,83,85,87,88). In hemato-
poietic progenitor cells there seems to be competition

between Hes1 and the coactivator p300 for GATA1
interaction (85), but the molecular mode of repression is
not clear, as studies on the influence on DNA binding by
GATA are controversial (72,83,85). In the developing
heart, Hey2 appears to limit GATA4/6 activity and this is
consistent with an elevated expression of GATA target
genes in Hey2 knockout mice (73).

Interference with theMyocardin/SRF complex

Hey2 does not only interfere with GATA4/6, it also seems
to interfere with another master regulator in vascular
smooth muscle cells (VSMCs), Myocardin. Hey2 is
coexpressed with Myocardin in VSMCs of arteriosclerotic
lesions as well as after vascular wall injury, where it
represses Myocardin-induced upregulation of the smooth
muscle myosin heavy chain promoter (84,89). Myocardin
forms a ternary complex with serum response factor
(SRF) on CArG-boxes (90), but the question of how Hey2
interferes with the function of this Myocardin/SRF
complex is open. While one study found a direct
Hey2/SRF interaction that inhibited DNA binding of
the ternary complex, another found no evidence for this
and invoked independent parallel pathways acting on
smooth muscle genes (84,89).

Other protein interactions

Besides the more classical interaction partners that were
seen in multiple organisms, there are several additional
interactions that may be of functional relevance. Runx2
(Cbfa1), a central regulator of bone development,
physically interacts with Hairy-related factors, but Hes
and Hey proteins seem to have opposing effects in this
case. While Hey1 and Hey2 strongly inhibit Runx2
activity (4,91), Hes1 cooperates with Runx2 to stimulate
the Osteopontin or Osteocalcin promoters (92,93). In the
latter case, interaction of Runx2 or Runx1 (AML1,
Cbfa2) with Hes1 inhibits formation of the Hes1/TLE
complex and thus blocks Hes1 repression capacity (63,92).

Hey1 was also shown to interact with the androgen
receptor (AR) that binds the coactivator SRC1 to activate
transcription of androgen-responsive promoters.
Recruitment of Hey1 to the AR/SRC1 complex, however,
prevents activation of AR (74). Similarly, there is evidence
that c-myb is turned from a transcriptional activator into
a repressor of the CD4 enhancer in the presence of Hes1
and both proteins form a stable nuclear complex in T-cells
(94) (Figure 2E).

Finally, there is compelling evidence that the Notch
pathway interacts with other important signaling cascades
like BMP/TGF-beta (7) or hypoxia-induced signaling
(8,9). It appears that Notch enhances signaling through
the JAK-STAT pathway since Hes1, Hes5, Hey1 and
Hey2 bind to STAT3, which enhances phosphorylation
and nuclear translocation of STAT3 (11).

Hey1 was even postulated to directly act on the basal
transcriptional machinery to repress promoters that
contain an initiator element, but lack a TATA box,
where introduction of a TATA box would relieve
repression by Hey1 (95) (Figure 2I). This hypothesis is
based on repression by Hey1 and Hey2 of the minimal
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Vegfr2 promoter (96–98) that lacks E-box sequences and it
has precedence in the binding of the Hairy-related factor
Stra13 to the basal transcription factor TFIIB (99).
Nevertheless, it remains to be seen whether these findings
hold up to further scrutiny and can be generalized.

In summary, there is a plethora of interactions based on
classical HLH dimerization as well as interactions with
corepressors or histone deacetylases. The exact target sites
of such bHLH heterodimers are currently unknown.
In several cases, Hes and Hey proteins appear to bind to
other DNA-binding transcription factors to modulate
their activity. Quite surprisingly they often seem to rely on
the DNA-binding capacity of their respective partners
and do not need E- or N-box type target sequences. With
probably rare exceptions, Hes and Hey proteins act as
genuine transcriptional repressors.

POTENTIAL TARGET GENES OF HAIRY-RELATED
PROTEINS

The expression levels of multiple genes are affected by
Hairy-related transcription factors. Here we present a
short summary of potential target genes that have at least
been verified using promoter-reporter assays (Table 3).
These data suggest that Hes factors use both, DNA-
binding dependent and independent functions to regulate
transcription, whereas Hey factors seem to primarily
repress the function of activating transcription factors by
forming protein–protein complexes with them. However,
this is not simply a tritrating-out mechanism or prevention
of DNA binding by activators. It appears more likely that
DNA-bound activators are turned into repressors by
recruitment of Hey factors associated with corepressors.

Potential DNA-binding sites

Studies in Drosophila have shown that Hairy and E(spl)
are capable of DNA binding. While initial studies suggest
that these factors bind to N-box (CACNAG) sequences
and a variant thereof, the class C E-box site (CACGCG),
later studies revealed that the class B E-box sequence
CACGTG is the preferred binding site for E(spl) proteins
(56,100–102). The flanking nucleotides of such a core
sequence may also influence binding as shown by site
selection experiments, which revealed tggCACGTGcca as
the optimal binding site (103).

In mammals Hes1, 2, 3, 5 and 7 can bind to N-box
sequences (19–21,25,41). Hes1 also interacts strongly with
class C sites, but the binding affinities of Hes1, 2 and 7
towards class B E-box sequences appears to be somewhat
lower (20,25,41). Interestingly, it was proposed that Hes6,
an antagonist of Hes1, does not bind to standard N- or
E-boxes (22), but to the E(spl) specific class B site (43).
In the case of Hes1, DNA binding can be inhibited by
PKC-mediated phosphorylation of serine residues in the
basic domain (118), but it is unclear if this is physiologi-
cally relevant and the site is not conserved in other Hes
and Hey proteins.

The preferred binding site for Hey1 and Hey2 is the
same class B site as described for the E(spl) proteins
(29,41–43,52,71), and even the preference for the flanking

nucleotides is conserved (42). N-box binding of Hey1 and
Hey2 is very weak, but binding to class C sites can be
enhanced by formation of a Hey2/Hes1 heterodimer (41)
(Figure 2A–D). Thus it is still difficult to reconcile the
diverse biological functions with the apparent overlaps in
potential genomic targets as identified by binding-site
selection schemes. Selectivity may thus depend on addi-
tional cofactors, unappreciated differences in in vivo
affinities and spatio-temporal expression patterns.

Autoregulation and oscillating gene expression

During formation of the somites in the embryo several
components of the Notch signaling system are expressed
in a cyclical fashion. Waves of expression move through
the presomitic mesoderm and finally arrest in a newly
formed somite, which then buds off. This repeated
process, referred to as the somite segmentation clock
(105), was first discovered in chicken, where an oscillatory
expression of the Hes1 ortholog c-Hairy1 (106) and of
c-Hey2 (44) was observed. In mice, Hes1 and Hes7 are
critical cycling genes (107,108) and loss of Hes7 causes a
loss of somite segmentation (108).
Mathematical models suggest that Hes proteins are

translated and subsequently repress their own trans-
cription. Due to the short half-life of Hes proteins,
autorepression is relieved allowing a new wave of Hes
transcription and translation every 90–120min. Indeed
there are reports showing that Hes1, 7 and Hey1, 2 and L
proteins can repress their own promoters (29,38,108,109).
Elegant work from Ryoichiro Kageyama’s group showed
that the short half-life of Hes7 (�22min) is indeed
crucial for oscillating gene expression during somitogen-
esis, since mutant mice expressing a more stable Hes7
protein (half-life �30min) lose synchronization of the
clock (110).
There is some evidence that cycling Hes1 expression is

an even more general process, since it was observed after
serum stimulation in cultured cell lines (111), however, it
seems that exact synchronization and stabilization of the
oscillation is dependent upon sufficient cell–cell contacts
to keep neighbors in phase (112). Proposed mechanisms
how Hes and Hey proteins repress their own promoters
include direct DNA binding (109) and interaction with
RBPJk (75), but none of those has been fully verified.

Regulation of endogenous Hes andHey target genes

In recent years, a few dozen potential target genes of Hes
and Hey proteins have been described in the literature
(Table 3). Most of these were identified by candidate gene
approaches. In future studies whole transcriptome ana-
lyses should reveal a more global view of the complex
regulatory network. First attempts have been undertaken
to elucidate targets of Hey2 in endothelial cells or Hes1 in
preadipocytes by microarray analyses (46,113). However,
such experiments will have to be extended to differentiate
direct targets from indirectly regulated genes. This may
have to rely on techniques like chromatin-IP followed by
large-scale tag-sequencing or whole genome microarray
analyses.
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Table 3. Summary of known promoters and DNA-binding sites of Hes (A) and Hey (B) transcription factors

Target gene Hes/Hey protein Method Mode of action/binding site Comment References

(A)

Direct

Acid-�-Glucosidase Hes1 CAT EMSA Class C E-box binding in first
intron

Repression or activation

depending on cell type
(141,142)

Calcipressin Hes1 (not
Hey1,2)

ChIP DNA binding Repression of endogenous
gene expression

(143)

CD4 Hes1 EMSA Luc N-box binding in CD4
silencer, interference with
c-myb

Repression of endogenous
gene in T-cells

(94,144)

E2F1 Hes1 EMSA Luc N-box binding (homodimer
and Hes1/Hey1)

Repression of endogenous
gene

(145)

Hes1 Hes1 CAT FP
ChIP EMSA

Direct: N-box binding
Indirect: Binding to RBPJk

Mutation of N-boxes prevents
inhibition

(75,109,146,147)

Mash1 (Ascl1) Hes1 ChIP EMSA Luc Class C E-box binding Repression of endogenous
gene. Activator by CBP
binding instead of TLE1

(68,114,115)

MBP Hes5 ChIP Luc Direct: DNA binding and
HDAC1 recruitment;

Indirect: repression of Mash1
and Sox10

Elevated myelin levels in
Hes5�/� mice

(117)

Neurogenin3 Hes1 EMSA Luc N-box binding (148)
p27(KIP1) Hes1,6 ChIP EMSA Luc Class C E-box binding Higher p27(KIP1) levels in

Hes1�/� mice
(43,116)

PGDS Hes1 ChIP EMSA Luc E-box binding (149)

Indirect

APRE (acute phase
resp. element)

Hes1,5 EMSA Luc Promotion of STAT3
phosphorylation by
interaction with
JAK2/STAT3

Suppression of endogenous
Hes1 reduces STAT3
phosphorylation

(11)

ATH5 Hes1 CAT Competition with Ngn2
and ATH5

Dominant negative regulator
of ATH5 in retina

(150)

Fatty acid synthase Hes1 Luc Repression of SREBP
transcriptional activity

Blocks adipogenesis in
preadipocytes

(46)

E-box promoter Hes1 CAT Binding to MyoD inhibits
MyoD-driven transcription

Diminished myogenic
conversion of C3H10T1/2
cells induced by MyoD

(19)

E-box promoter Hes1,5,7 CAT FP Luc Binding to E47 inhibits
transcriptional activity and
DNA binding

Interference with B-cell
differentiation

(19,21,25,50)

E-box promoter Hes1 CAT Luc Binding to Mash1 inhibits
transcriptional

activity; Rapid degradation
of Mash1

Neuronal differentiation is
dependent of Hes1
downregulation

(19,115,151)

GATA-binding elements Hes1 ChIP, EMSA, Luc Binding to GATA1 does not
interfere with DNA binding,
but recruitment of p300 is
inhibited

Inhibition of erythroid and
megakaryocytic
differentiation

(85)

Osteopontin Osteocalcin Hes1 Luc Binding to Runx2 interferes
with recruitment of TLE1/
HDAC1; enhanced by
Vit.-D3 and pRB

Potentiation of Runx2-induced
Osteopontin expression

(Activation!)

(63,92,93,139)

p21 Hes1 Luc Repression of MASH/
E47-driven p21 expression

Suppression of endogenous
gene; inhibition of
proliferation

(147)

Ptf1-binding elements Hes1 Luc Binding to Ptf1-p48 interferes
with Ptf1-p48 DNA binding

Ectopic Hes1 represses acinar
cell differentiation

(53,152)

Unknown

DLK-Pref1 Hes1 Luc ND Repression of endogenous
gene

(153)

Mdm2 Hes1 Luc ND Hes1 causes p53 upregulation (154)
p57 Hes1 CAT ND Higher p57 levels in

Hes1�/� mice
(155)

(B)

Direct

DAT1 Hey1 Luc, Y1H Binding 30 UTR Repression of endogenous
gene; upregulation in
Hey1�/� mice

(156,157)

Vegfr2 Hey1 ChIP, Luc Interference with initiator
element

Repression of endogenous
gene in endothelial cells

(95,96)

Continued
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At least some studies have already employed more
rigorous tests to show that e.g. Hes1 binds to the Mash1
and p27(KIP1) promoters to regulate their activity (see
Table 3). Importantly, these functions are well in line with
the phenotypes observed in Hes1 or Hes5 knockout mice.
Loss of Hes1 leads to premature neuroendocrine differ-
entiation due to absence of Hes1-mediated inhibition of
the promoter of the neurogenic gene Mash1 (68,114,115).
In the context of this promoter Hes1 may even function as
an integrator of additional signals and become the core of
an activator complex in later developmental steps (68).
Another link to explain gene knockout phenotypes comes
from the reduced inhibition of the cyclin-dependent kinase
(CDK) inhibitor p27(KIP1), which seems to be a key
factor leading to strongly reduced thymocyte proliferation
and reduced thymus size in Hes1�/� embryos (43,116).

For Hes5, the direct and indirect repressive effects on
the myelin basic protein (MBP) promoter correlate well
with the upregulation of MBP in Hes5�/� brains. This on
the other hand is consistent with the limited remyelination
in patients with multiple sclerosis, where Hes5 is highly
expressed in immature oligodendrocytes of lesions (117).
These examples clearly suggest that a set of several direct
Hes or Hey target genes will be needed to fully explain the
phenotypes of gain or loss of function alleles in various
tissues.

CONCLUDING REMARKS

Almost thirty years of research on Hairy and related
factors, lead to the publication of a few hundred papers,

Table 3. Continued

Target gene Hes/Hey protein Method Mode of action/binding site Comment References

Indirect

aMyHC Hey1,2,L Luc Binding to GATA4 represses
transcriptional activity

(72)

ANF Hey1,2,L EMSA, Luc Binding to GATA4/6 represses
transcriptional activity. DNA
binding of GATA can occur
(72), or is prevented (88)

Repression of endogenous
gene in cardiomyocytes.
Ectopic expression in
Hey2�/- hearts

(72,73,88)

APRE (acute phase
resp. element)

Hey1,2 Luc Promotion of STAT3
phosphorylation by
interaction with
JAK2/STAT3

Activation (11)

E-box promoter Hey1,2 Luc Prevent dimer formation of
Mash1/E47 and Math3/E47

Interference with neural
differentiation

(158)

GATA-binding elements Hey1 EMSA, Luc Binding to GATA1. No
interference with DNA
binding of GATA1

Inhibition of erythroid
differentiation of K562 cells

(83)

Myogenin Hey1,2 EMSA, Luc Binding to MyoD prevents
MyoD/E47 complex formation

Hey1 inhibits myogenic
conversion of 10T1/2 cells
induced by MyoD

(52)

Nkx2.5 Hey1,2,L Luc Binding to GATA4 represses
transcriptional activity

(72)

Osteocalcin Hey1 Luc Binding to Runx2 represses
transcriptional activity

Hey1 downregulation enhances
mineralization of MC3T3 cells

(4,91)

Probasin Hey1,2 Luc Binding to AR and SRC1
interferes with AR/SRC1-

transcriptional activity

Downregulation of Hey1
inhibits repression of
AR-driven gene expression

(74)

Ptf1-binding elements Hey1 EMSA, Luc Binding to Ptf1-p48 interferes
with Ptf1-p48 DNA binding

Repression of acinar cell
differentiation

(53,152)

SM22a SM-MHC Hey1,2 Luc Binding to Myocardin or
GATA6 represses transcript.
activity or prevents SRF
binding to CArG box

Repression of endogenous
gene in smooth muscle cells
and 10T1/2 cells

(76,84,89)

VEGF Hey2 EMSA, Luc Binding to ARNT prevents
ARNT/EPAS DNA binding

(28)

Unknown

Coup-TFII Hey1,2 Luc Downregulation under
hypoxia (Hey induction)

(9)

GATA4,6 Hey1,2,L Luc (73)
Hey1,2,L Hey1,2,L Luc Indirect: Binding to RBPJk (29,38,75)
Hypoxia response element Hey1,2 Luc (9,159)
Mdm2 Hey1 Luc Hey1 causes p53 upregulation (154)
RTA (virus) Hey1 ChIP, Luc Independent of DNA binding (160)
Tbx2 Hey1 Luc ND Tbx2 repression in Hey1 or

Hey2 overexpressing mice
(161)

Abbreviations: CAT, chloramphenicol acetyl transferase assay; ChIP, chromatin immunoprecipitation; EMSA, electrophoretic mobility shift assay;
FP, DNA footprint; Luc, luciferase assay.
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providing a wealth of information. This survey gathers
data on the progress on mouse models, protein–protein
and protein–DNA interactions to faciliate future studies
and to highlight questions that are still unresolved.
Although quite a number of cofactors are now known

that are recruited by Hairy-related proteins, little is known
about the dynamics of these interactions. While the
Hes1/TLE1 interaction is necessary for neural stem cell
maintenance, it dissociates during neuronal differentiation
and Hes1 is turned from a repressor into an activator,
which is at least partly mediated by post-translational
modifications like phosphorylation (68). In addition, the
repressive functions of Hes6 can be blocked by phosphor-
ylation of a specific serine residue by CK2 (65). It appears
obvious that such strategies might also be employed for
tightly regulated complex formation and dissociation of
Hes and Hey proteins with other factors dependent on
the cellular context.
Furthermore, DNA-binding affinities of Hes and Hey

factors may be regulated by kinases. Phosphorylation of
a residue in the basic domain of Hes1 decreases DNA-
binding affinity (118), implying that Hairy-related factors
can be influenced by growth factor signaling cascades.
During the last years it already became clear that there is
a crosstalk between Notch and the BMP/TGF-beta,
JAK/STAT, Ras and hypoxia signaling cascades in the
regulation of Hes and Hey genes (7–11). Elucidation of
the biological effects as well as the associated post-
translational modifications of those interactions will be a
challenge in the future.
The question of how Hes and Hey factors act as

repressors when they bind to other transcription factors is
also not fully answered. We have schematically summa-
rized the current models in Figure 2. Another possible
mode of repression, which was not explicitly mentioned so
far, is Hes/Hey-mediated protein degradation of tran-
scriptional activators. It has been proposed that the
WRWP peptide of Hes6 mediates proteins degradation
and Hes1 seems to induce rapid degradation of the Mash1
transcription factor (68,114,115). Furthermore, the half-
life of BMP-induced Id1 is reduced upon Hey1 binding
(119). Again, knowledge of protein modifications like
ubiquitinylation or SUMOylation is elusive.
Finally, it will be challenging to analyze the cellular

localization of these factors in more detail. It already
became clear that Hey1 is located in the cytoplasm and the
nucleus of benign prostate hyperplasia, but is excluded
from the nucleus in many malignant prostate cancers
(74). The cytoplasmic functions of bHLH transcription
factors are unknown. It will be interesting to see, if
these proteins possess additional functions besides
transcriptional regulation.
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