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Regular exercise participation 
improves genomic stability in 
diabetic patients: an exploratory 
study to analyse telomere length 
and DNA damage
Ivan Dimauro   1, Antonella Sgura2, Monica Pittaluga1, Fiorenza Magi1, Cristina Fantini1,  
Rosa Mancinelli3, Antonio Sgadari4, Stefania Fulle   3 & Daniela Caporossi1

Physical activity has been demonstrated to be effective in the prevention and treatment of different 
chronic conditions, including type 2 diabetes (T2D). In particular, several studies highlighted how the 
beneficial effects of physical activity may be related to the stability of the DNA molecule, such as longer 
telomeric ends. Here we analyze the effect of exercise training on telomere length, spontaneous and 
H2O2-induced DNA damage, as well as the apoptosis level in leukocytes from untrained or trained T2D 
patients vs. age-matched control subjects (CS) (57–66 years). Moreover, expression analysis of selected 
genes belonging to DNA repair systems, cell cycle control, antioxidant and defence systems was 
performed. Subjects that participated in a regular exercise program showed a longer telomere sequence 
than untrained counterparts. Moreover, ex vivo treatment of leukocytes with H2O2 highlighted that: 
(1) oxidative DNA damage induced similar telomere attrition in all groups; (2) in T2D subjects, physical 
activity seemed to prevent a significant increase of genomic oxidative DNA damage induced by chronic 
exposure to pro-oxidant stimulus, and (3) decreased the sensitivity of leukocytes to apoptosis. Finally, 
the gene expression analysis in T2D subjects suggested an adaptive response to prolonged exercise 
training that improved the response of specific genes.

The biological processes linking aging and disease risk are poorly understood. Still, aging is considered to date as 
one of the main factors responsible for several complex diseases including cancer, cardiovascular diseases, and 
diabetes.

Particularly, type 2 diabetes (T2D) has become very prevalent all over the world, with a projected increas-
ing growth rate for the years ahead1. The pathophysiological mechanism that underlines diabetic complications 
suggests oxidative stress as a main factor. The increased oxidative stress in subjects with T2D is a consequence 
of several abnormalities (hyperglycemia, insulin resistance, hyperinsulinemia, and dyslipidemia) and induces 
enhanced susceptibility to damage of proteins, lipids and DNA2.

Several studies have already demonstrated that the overproduction of reactive oxygen species (ROS) can pro-
duce elevated levels of oxidative DNA damage3–5, including telomere attrition6, 7. The telomere is a region of 
repetitive nucleotide sequences at the end of each eukaryotic chromosome, which protects them from attrition 
and damage. Although the relationship between leukocyte telomere length (LTL) and diabetes is still questioned8, 
different studies have shown that T2D individuals have shorter leukocyte telomeres than non-T2D individuals9, 10  
that may be associated with disease progression11. Indeed, the decreased antioxidant capacity described in patients 
with diabetes results in greater exposure to oxidative stress and subsequent damage to macromolecules (DNA, 
proteins, lipids), primarily into cells of the circulation, specifically leukocytes12. Assuming that mechanisms of 
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DNA damage and repair are similar in different tissue types13, 14, leukocytes can serve as an excellent bio-marker 
because of their half-life and their presence in all body districts. Moreover, given the correlation and synchrony 
of telomere shortening between somatic cells, to date LTL is used as a proxy of TL in tissues that are affected by 
aging15–17.

Engagement in regular physical activity and increased physical fitness are recommended for the prevention 
and treatment of diabetes and other pathological conditions5, 18, 19. We recently demonstrated that four months of 
moderate physical training, besides being beneficial to glycemic control, was also effective in improving the redox 
homeostasis in diabetic patients, lowering the oxidant species production and/or increasing the endogenous anti-
oxidant defenses20. In the present study, we aimed to analyse the effect of regular engagement in moderate phys-
ical training on telomere length, spontaneous and H2O2-induced DNA damage, and apoptosis in purified blood 
leukocytes derived from untrained and trained T2D subjects, compared to age-matched untrained and trained 
controls. In addition, we examined whether exercise training affected the transcriptional level of a set of genes 
involved in DNA repairs systems, cell cycle control, as well as antioxidants and defence systems, by comparing 
untrained and trained T2D patients.

Results
Effect of training on basal leukocytes’ telomere length and spontaneous DNA damage in con-
trol and diabetic subjects.  Characteristics of subjects participating in the study are shown in Table 1. 
Figure 1 shows the results from Q-FISH analysis of telomere length in leukocytes of UT-CS and UT-T2D subjects. 
The statistical analysis revealed a significant difference in LTL between UT groups, the mean telomere length 
(Kb) in CS was ≈4% longer than in T2D (UT-CS 6.29 ± 0.57 vs. UT-T2D 6.06 ± 0.33, P = 0.03) subjects. When 
analysing the effect of training, all TR subjects exhibited increased telomere lengths than untrained counterparts, 
with mean averages of both trained groups being significantly greater than in UT groups (≈20–22%). In particu-
lar, TR-CS showed a higher average LTL as compared to both UT-CS (TR-CS 7.53 ± 0.49 vs. UT-CS 6.29 ± 0.57, 
P = 0.03) and UT-T2D (TR-CS 7.53 ± 0.49 vs. UT-T2D 6.06 ± 0.33, P = 0.01). Similarly, in the TR-T2D group the 
telomere length was significantly longer compared to both UT-CS (TR-T2D 7.40 ± 1.20 vs. UT-CS 6.29 ± 0.57, 
P = 0.04) and UT-T2D groups (TR-T2D 7.40 ± 1.20 vs. UT-T2D 6.06 ± 0.33, P = 0.03). No difference was identi-
fied in LTL between the TR groups (TR-CS 7.53 ± 0.49 vs. TR-T2D 7.40 ± 1.20, P > 0.05).

The analysis of spontaneous DNA damage by COMET assay showed no differences in mean average tail val-
ues in untrained (UT-CS 32 ± 10 vs. UT-T2D 30 ± 8.5, P > 0.05), or trained groups (TR-CS: 24 ± 10 vs. TR-T2D: 

T2D CS

UT (n = 6) TR (n = 6) UT (n = 6) TR (n = 6)

AGE (yrs) 61.1 ± 3.3 60.1 ± 2.1 62.1 ± 1.3 62.1 ± 4.3

BMI (kg/m2) 27.9 ± 2.0 26.9 ± 1.6** 27.8 ± 2.0 27.1 ± 1.3

BG (mg/dL) 116.3 ± 12.5 106.4 ± 6.1* 87.8 ± 8.4 90.3 ± 10.2

HbA1c (%) 6.7 ± 0.7 6.3 ± 0.5* 5.5 ± 0.2 5.4 ± 0.3

Duration of T2D (yrs) 6.2 ± 0.8 6.3 ± 1.2 — —

Table 1.  Subject characteristics. BMI, Body Mass Index; BG, Basal Glycaemia; HbA1c, Glycated Haemoglobin; 
T2D, Type 2 diabetes; CS, control subjects; UT, untrained; TR, trained. **p < 0.01 vs. UT, *p < 0.05 vs. UT. All 
values are shown as means ± SD.

Figure 1.  Comparison of leukocytes telomere length in study participants: control subjects (CS) and diabetic 
patients (T2D) when untrained (UT) and trained (TR) respectively. *p < 0.05 vs. UT-CS, §§p < 0.01 vs. UT-T2D, 
§p < 0.05 vs. UT-T2D.
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17 ± 9, P > 0.05) (Fig. 2). Although the difference in DNA damage was not significant, the trained groups showed 
a trend toward a decrease in spontaneous DNA damage as compared to untrained subjects (P > 0.05).

Effect of training on H2O2-induced telomere shortening and DNA damage in leukocytes from 
control and diabetic subjects.  The Two-Way ANOVA indicated that an ex vivo treatment of leukocytes 
with H2O2 induced a similar effect on telomere length in both CS and T2D patients, (Fig. 3A and B). In com-
parison with untreated cells, all chronic treatments with H2O2 30 μM (48 and 72 h) induced a significant LTL 
(Kb) decrease of between 24% and 35% in both control and diabetic subjects (UT-CS: Untreated, 6.29 ± 0.57 
vs. H2O2(48h), 4.73 ± 0.40, P = 0.0003; vs. H2O2(72h), 4.91 ± 0.49, P = 0.001; TR-CS: Untreated, 7.53 ± 0.49 vs. 
H2O2(48h), 5.26 ± 0.63, P = 0.0001; vs. H2O2(72h), 5.78 ± 0.53, P = 0.0001; UT-T2D: Untreated, 6.06 ± 0.33 vs. 
H2O2(48h), 4.38 ± 0.67, P = 0.0002; vs. H2O2(72h), 4.73 ± 0.42, P = 0.04; TR-T2D: Untreated, 7.40 ± 1.20 vs. H2O2(48h), 
4.85 ± 0.82, P = 0.001; vs. H2O2(72h), 5.29 ± 0.51, P = 0.002) (Fig. 3A and B). The acute treatment of H2O2 100 μM 
for 0.5 h induced a slight decrease in LTL, significance was only found in the trained groups, of both control 
and T2D (TR-CS: Untreated, 7.53 ± 0.49 vs. H2O2(0.5h): 6.07 ± 0.79, P = 0.003; TR-T2D: Untreated, 7.40 ± 1.20 vs. 

Figure 2.  Leukocytes DNA damage in control subjects (CS) and diabetic patients (T2D) of untrained (UT) and 
trained (TR) groups.

Figure 3.  Fold change decrease of telomere length relative to untreated cells in leukocytes of untrained and 
trained controls (UT-CS: H2O2(0.5h) 0.86 ± 0.08; H2O2(48h) 0.76 ± 0.1; H2O2(72h) 0.78 ± 0.06; TR-CS: H2O2(0.5h) 
0.81 ± 0.13; H2O2(48h) 0.70 ± 0.09; H2O2(72h) 0.77 ± 0.09) (3A) or untrained and trained diabetic patients (UT-
T2D: H2O2(0.5h) 0.81 ± 0.09; H2O2(48h) 0.72 ± 0.08; H2O2(72h) 0.78 ± 0.07; TR-T2D: H2O2(0.5h) 0.74 ± 0.07; H2O2(48h) 
0.68 ± 0.19; H2O2(72h), 0.73 ± 0.15) (3B). **p < 0.01 and *p < 0.05 vs. corresponding untreated cells. Dashed 
horizontal line represents no change in telomere length.
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H2O2(0.5h): 5.42 ± 0.44, P = 0.003) (Fig. 3A and B). No differences between and within groups were identified in 
terms of fold decrease in telomere length in response to acute or chronic H2O2 treatment (P > 0.05).

A different result was found to the induction of DNA damage, where the statistical analysis failed to show any 
significant difference within and between groups, except for an exercise-disease interaction in untrained T2D 
subjects (Fig. 4A and B). Indeed, the Two-Way ANOVA analysis demonstrated a significant increase in DNA 
damage with respect to untreated values in leukocytes from the UT-T2D group exposed to 72 h of 30 μM H2O2 
(UT-T2D: Untreated, 30 ± 8.5 vs. H2O2(72h), 61 ± 15; P = 0.001). On the contrary, the sensitivity to oxidative DNA 
damage induced by H2O2 in leukocytes from TR-T2D was similar to that showed in leukocytes from untrained 
and trained controls (TR-T2D: Untreated: 17 ± 9; H2O2(0.5h), 32 ± 6; H2O2(72h), 35 ± 11; UT-CS: Untreated, 32 ± 10; 
H2O2(0.5h), 34 ± 13; H2O2(72h), 47 ± 10; P > 0.05; TR-CS: Untreated 24 ± 10, H2O2(0.5h): 30 ± 15, H2O2(72h): 39 ± 9), 
always not significant (P > 0.05).

Effect of training on H2O2-induced apoptosis in leukocytes from diabetic subjects.  To fur-
ther verify the effect of training and the sensitivity to oxidative stress of diabetic subjects, we analysed the 
H2O2-induction of apoptosis in leukocytes from UT- and TR-T2D at the same experimental points utilized 
for the COMET assay analysis. We found that chronic treatment for 72 h with H2O2 (30 μM) induced a signif-
icant increase of apoptotic cells in both UT- and TR-T2D groups (UT-T2D: Untreated, 12.8 ± 1.3 vs. H2O2(72h), 
24.8 ± 4.3, P = 0.0001; TR-T2D: Untreated, 10 ± 1.2 vs. H2O2(72h), 16.2 ± 2.0, P = 0.0002), while after acute expo-
sure to 0.5 h with H2O2 100 μM, only the UT-T2D subjects showed a significant induction of apoptosis (UT-T2D: 
Untreated, 12.8 ± 1.3 vs. H2O2(0.5h), 20.9 ± 2.1, P = 0.0001; TR-T2D: Untreated, 10 ± 1.2 vs. H2O2(0.5h), 14.4 ± 1.9, 
P > 0.05). Moreover, the percentage of TUNEL positive cells induced by H2O2 in UT-T2D subjects was always 
significantly higher than in TR-T2D subjects, for both acute and chronic treatments (H2O2(0.5h), P = 0.0002, 
H2O2(72h), P = 0.001) (Fig. 5).

Gene expression analysis in leukocytes of trained and untrained diabetic patients.  Table 2 sum-
marizes our findings with respect to the detectable genes in an RT-qPCR-array. With respect to significantly 
regulated genes, out of the 46 genes tested, trained T2D showed a decreased expression of both Uracil-DNA 
Glycosylase (UNG) (fold change 0.38, P = 0.04), and Oxidation Resistance 1 (OXR1) (fold change 0.35, 
P = 0.006), as well as an increased expression of H2A Histone Family Member X (H2AFX) (fold change 1.93, 
P = 0.04) and Growth Arrest And DNA Damage 45 (GADD45) (fold change 3.40, P = 0.003) (Table 2).

Discussion
Based on available data, it is still unclear if a faster rate of telomere attrition and the consequent premature cell 
senescence can be a cause or a consequence of type 2 diabetes8. Although telomere length in different cell types 
may better reflect specific diseases, tissue-specific aging, or cell-specific adaptations, several studies have shown 
not only a significant association between LTL shortening and T2D10, but also a correlation with time of onset, 
duration of disease and increasing number of diabetes related complications6, 21–23. Indeed, the attrition of this 
chromosome region seems to be attenuated in patients with well-controlled diabetes24. Therefore, telomere short-
ening in leukocytes may correspond to a similar shortening of telomeres in organs and tissues such as islet β-cells, 
which lead to premature senescence and subsequent impaired insulin secretion and glucose tolerance25, 26.

Figure 4.  DNA damage analysis in leukocytes of (A) control (CS) untrained (UT) and trained (TR), and 
(B) diabetic patients (T2D) UT and TR, following an acute (100 μM for 0.5 hrs) or a chronic (30 μM for 72 h) 
treatment with H2O2. **p < 0.01.
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On the other hand, many studies show that physical activity seems to confer a beneficial effect on LTL main-
tenance in healthy and diseased elderly people19, 27–31.

In 2012, Hovatta and colleagues32 reported that subjects with impaired glucose tolerance, who received an 
intensive lifestyle intervention (i.e., dietary advice, guidance to increase their level of physical activity), showed 
an increase in the TL over the 4.5 year follow-up period. However, the lack of a population-based control group 
without any intervention makes the contribution of physical activity difficult to identify. In this exploratory study, 
we highlight how regular participation in a supervised exercise program determined a significant reduction of 
telomere attrition in both control and T2D subjects. In addition, while untrained diabetic subjects showed shorter 
telomeres (−4%) with respect to untrained CS, no differences were observed between trained groups, irrespective 
of their diabetic or healthy status. Thus, besides confirming the correlation between shorter LTL and diabetes9, 10, 
our results argue in favor of a clear and beneficial role of regular exercise training in counteracting both aging- 
and T2D-related telomere shortening. Similarly to previous papers analyzing age-matched groups, we found that 
our training regime preserved about 20% and 22% of LTL in control and T2D subjects, respectively33, 34.

Since leukocyte DNA from subjects with T2D is also characterized by increased susceptibility to oxidative 
damage6, and high levels of oxidative stress are known to shorten telomeres7, 35, one plausible and potentially test-
able explanation resided in the capacity of a regular, long-lasting training regime to buffer telomere shortening by 
affecting the balance between oxidative stress and antioxidants28, 29.

According to our previous finding20, and differently from the LTL data, no differences were detected in spon-
taneous DNA damage between UT-CS and UT-T2D groups. It is known that DNA damage measured by the 
COMET assay in leukocytes correlates with very poor glycaemic control36 and our result is not surprising when 
considering the T2D patients recruited in this study, as well as those who participated in other studies, showed a 
stabilized glycaemic control37. Nevertheless, the training regime produced a decrease, although not significant, in 
spontaneous DNA damage in both trained groups, possibly due to a decrease of the pro-oxidant cellular environ-
ment and increase of endogenous antioxidant defences induced in both diabetic and non-diabetic subjects by this 
type of exercise, as recently demonstrated by our group20.

Physical activity has demonstrated an induction of an adaptive response of several stress-proteins/molecules 
(anti-oxidants, heat shock proteins)38–42, and thereby could modify the susceptibility to subsequent pro-oxidant 
stimuli14, 28, 43. Our results from ex vivo treatment with exogenous hydrogen peroxide seem to verify the hypoth-
esis that telomere attrition is dependent upon oxidative damage. Indeed, H2O2 exposure induces a similar 
LTL decrease in control and T2D subjects. Although we did not find differences in the telomere sensitivity to 
H2O2-shortening between and within groups, we cannot exclude the possibility that longer periods of exposure 
and/or different concentrations of hydrogen peroxide may determine a different sensitivity that depends on the 
length of telomere ends.

Differently from LTL, DNA damage evaluated by COMET assay highlighted an enhanced sensitivity to 
chronic oxidative stress exposure in untrained T2D subjects as compared to those that were trained.

It is known that cellular DNA response to genotoxic stress depends on a combination of different factors, such 
as the nature of the stress, DNA repair efficiency, presence of telomerase, length of telomeres, and others44. In 

Figure 5.  Apoptosis analysis in leukocytes of diabetic patients (T2D) trained (TR) and untrained (UT) 
following an acute (100 μM for 0.5 hrs) or chronic (30 μM for 72 h) treatment with H2O2. Apoptosis percentage 
was evaluated by scoring the number of TUNEL positive nuclei on at least 1000 cells analyzed ×100. **p < 0.01.
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this study, exposure to ROS can induce chemical alterations anywhere in the genome and to the free-nucleotide 
pools45. One form of DNA damage induced by oxidative stress is the alteration of DNA bases, including the com-
mon lesion 8-oxoguanine (8-oxoG). It has been recently demonstrated that 8-oxoG has a dual role in inhibiting 
or stimulating telomerase, depending on whether the free dNTPs are oxidized and inserted during extension, or 
the telomeric DNA is directly oxidized by free radicals45. In particular, the authors proposed that under normoxic 
conditions unrepaired 8-oxoG lesions promoted telomere lengthening, whereas oxidative stress and pro-oxidant 
conditions promoted telomere dysfunction and shortening7, 35, 45. Considering also that telomeres are particularly 

Cellular Pathway Gene T2D TR vs. UT (Fold changes)

Base Excision Repair

APEX1 0.84

FEN1 0.83

LIG1 0.76

LIG3 0.67

MPG 0.70

OGG1 0.53

PARP1 0.66

PCNA 1.02

PNKP 0.67

POLB 1.41

TDG 0.87

UNG 0.38*

CCNO N/A

XRCC1 0.81

Damaged DNA Binding

BRCA1 N/A

ERCC1 0.81

ERCC2 0.74

H2AFX 1.93*

MSH2 0.56

MSH3 0.56

RAD1 0.93

RAD51 0.65

RAD51C 1.19

XRCC2 N/A

XPA 0.60

XPC 0.70

MUTYH 0.98

NTHL1 0.53

Double Strand Breaks Repair

BRCA2 0.75

MRE11 0.51

PRKDC 0.73

RAD52 0.76

XRCC6 0.95

Cell Cycle Checkpoints and Apoptosis

TP53 0.70

ATM 0.59

BAX 0.89

BCL2 0.91

CASP3 0.76

CHECK1 1.29

GADD45 3.40**

Antioxidants and Defence Systems

CAT 0.71

SOD1 1.05

GPX1 0.59

GSR 0.72

OXR1 0.35**

HSPA4 0.72

Table 2.  Gene expression analysis in human leukocytes. Calculated fold changes of 46 PCR gene products 
derived from RT-qPCR-array. *p < 0.05, **p < 0.01. T2D, Type 2 Diabetes; UT, untrained; TR, trained; N/A, 
not available.
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prone to oxidative damage at a GGG sequence compared with the rest of chromosomal DNA35, 46, and are repaired 
less efficiently than the rest of the genome47, it is thus possible that experimental conditions here resulted in oxi-
dative stress-induced single- and double-strand DNA breaks that were translated preferentially into accelerated 
leukocytes telomere shortening48.

While telomere length resulted significantly decreased in UT-T2D vs. UT-CS, no difference was detected in 
DNA damage. Actually, the COMET assay highlighted that the %DNA in tail was significantly increased only in 
leukocytes of UT-T2D subjects exposed chronically to H2O2. An increased susceptibility to oxidative DNA dam-
age in T2D is well recognized3; however, it is interesting to note that %DNA in tail was similar between trained 
subjects, irrespective of their diabetic or non-diabetic status. In agreement with our previous research20, we can 
reasonably assume that the adaptive mechanisms (i.e. increasing endogenous antioxidant defence) induced by 
regular physical activity may be responsible for a significant reduction of the oxidative DNA damage induced by 
H2O2.

The DNA damage detected by COMET assay represents a steady state between induction of lesions and their 
repair49. Therefore, our results cannot exclude the possibility of differences in DNA repair efficiency between 
trained and untrained T2D subjects. Nevertheless, it is known that genomes cannot be uniformly repaired and 
that some genomic loci, such as telomeric tracts, resist DNA-damage repair despite a global cellular competence 
for DNA repair. In particular, experiments conducted by Fumagalli et al.50 confirm the preferential localization of 
persistent DNA damage response (DDR) at telomeres and that even long telomeres may be a target for the accu-
mulation of irreparable DNA damage. Therefore, DDR activation either at critically short telomeres or caused by 
persistent telomeric DNA damage represents the trigger of replicative cellular senescence or apoptosis48, 50. The 
analysis of apoptosis by TUNEL assay showed that leukocytes from untrained T2D subjects were more sensitive 
to H2O2-induced cell death than leukocytes from trained T2D subjects, both after acute or chronic exposure. A 
previous finding showed that moderate exercise attenuates induction of leukocyte apoptosis by oxidative stress by 
improving the intracellular anti-oxidative capacity51. Although we cannot exclude the participation of other stress 
response proteins, we propose that the capacity of this exercise protocol to improve the status of redox homeosta-
sis could be a main mechanism for the preventative role of physical activity in spontaneous and/or H2O2-induced 
apoptosis in leukocytes of T2D patients52.

It is also interesting to note that, although in leukocytes of trained T2D patients the treatment with H2O2 did 
not induce a significant change of %DNA in tail, a statistical increase of apoptosis was observed in the leukocytes 
from the same subjects following the chronic exposure to oxidative stress. A possible explanation is that the oxi-
dative DNA damage induced by a chronic exposure to H2O2, mainly targeted telomere sequences, and overcomes 
all adaptive mechanisms induced by physical activity to prevent DNA damage. Therefore, chronic exposure to 
oxidative stress could compromise the capability of leukocyte cells to withstand damage, thereby inducing a 
persistent telomeric DNA damage response leading to cellular apoptosis50. Nevertheless, apoptosis levels in leu-
kocytes of trained subjects were significantly lower than those found in leukocytes of untrained subjects, both 
following acute or chronic exposure to ROS.

Despite ROS produced by hydrogen peroxide representing one of the main stressors inflicted by endogenous 
processes in vivo53, we have to consider that several other factors could be contributing to increased DNA oxida-
tive susceptibility in the T2D group. In particular, the presence of non-enzymic glycation of DNA bases54, differ-
ences in paraoxonase activity55, generation of lipid peroxidation products56, and elevated glucose concentration57 
have been shown to be associated with DNA damage.

However, the results obtained here by our acute and chronic treatment with hydrogen peroxide, suggest that: 
(1) irrespective of the original length of telomeric ends, leukocytes exhibit as a main outcome of the oxidative 
DNA damage a similar telomere attrition in all groups; (2) in T2D subjects, physical activity seemed to prevent 
a significant increase of genomic oxidative DNA damage (%DNA in tails) induced by a chronic exposure to 
pro-oxidant stimuli and (3) a decreased sensitivity to apoptosis in H2O2-treated leukocytes.

To better understand the beneficial effect of moderate, regular exercise in counteracting oxidative stress sus-
ceptibility of T2D subjects, we analysed in leukocytes from untrained and trained diabetic patients the expres-
sion of genes belonging to signalling pathways related to DNA repair systems, cell cycle control, as well as to 
antioxidants and defence systems. Out of 46 genes tested, only the expression of 4 genes was significantly modu-
lated in TR-T2D patients vs. UT-T2D: specifically, growth arrest and DNA damage (GADD45) and histone H2A 
(H2AFX) genes were up-regulated, while uracil-DNA glycosylase (UNG) and Oxidation Resistance 1 (OXR1) 
were down-regulated.

It is know that GADD45 is considered a “stress sensor” to physiological or environmental stressors and it is 
involved in cell cycle arrest, DNA repair, cell survival and senescence, or apoptosis58. Moreover, GADD45 func-
tion in either cell survival or apoptosis depends on the extent of cellular/DNA damage in a given cell type that 
dictates its association with particular partner proteins59. Regarding the H2AFX gene, evidence suggests that this 
protein might serve as a docking site for DNA damage/repair proteins and functions to promote double-strand 
break repair and genome stability60. Similarly to other DNA glycosylases, UNG protein recognizes a damaged or 
inappropriate base both in a base pair, in a mismatch, and even in single-stranded DNA61, whereas OXR1 protein 
provides protection against oxidative DNA damage produced by endogenous and exogenous oxidative agents62.

Although this result requires further investigation, it is in line with the hypothesis that the outcome of the 
exercise program used in T2D subjects here results in a better management of oxidative stress through the regula-
tion of genes involved in the intricate pathway of the oxidative DNA damage response. In particular, the increased 
expression of GADD45 and H2AFX could reflect both a greater genomic stability and a more prompt response to 
oxidative DNA damage of leukocytes from trained subjects with a consequent lower susceptibility to apoptosis63, 

64, while the expression of genes related to DNA damage recognition and protection from oxidative DNA damage 
(UNG and OXR1) would be down-regulated65.
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Study strength, limitations and conclusions.  Given the importance of DNA stability in cellular func-
tions, our findings may have broad relevance highlighting the role of physical activity during physiological and 
pathological aging. This study represents a new piece of the puzzle proving the beneficial effects of prolonged 
exercise training on DNA stability in T2D patients. In particular, our results suggest that exercise training may 
regulate the telomere length in control and T2D subjects and reduce diabetic patients susceptibility to genomic 
DNA damage induced by a chronic pro-oxidant stimulus.

Although these are preliminary findings and should be interpreted with caution, here we present an explora-
tory study where a well-trained group of T2D patients were compared to a cohort of age-matched control subjects. 
Except for exercise training status, the characteristics of subjects within experimental groups were comparable. 
Moreover, the exercise intervention was well structured (type, frequency, intensity) and supervised from experts 
to ensure its correct execution from each participant.

At the start of study, we did not have information about the effect size and therefore any sample size estimation 
and power calculation as an a priori have been performed. However, we report difference in mean telomere length 
with 90% confidence interval among groups because a priori power estimations are immaterial at the end of study, 
and it is the size of effect estimates and the width of the confidence interval that is important66. Nonetheless, the 
small sample size and the presence of only male participants prevent the possibility of making adjustments for 
confounding variables, representing a limitation of the study.

In conclusion, we strongly believe that the prevention of age-related diseases is an adaptation conferred by 
engagement in regular exercise training. To date the molecular mechanisms are still poorly understood, thus 
analysis on specific pathways such as telomerase activity, shelterin complex as well as epigenetic modifications 
and non-coding RNAs are recommended. For this reason, further studies are needed to establish those molecular 
mediators by which a regular exercise ensures a “healthy ageing”.

Material and Methods
Study design.  A total of 24 male subjects, 12 with type 2 diabetes (T2D, 62.1 ± 4.3 years) and 12 as “control 
subjects” (CS, 61.7 ± 3.9 years) have been recruited for this study at the Fitness Center for the Aged, Department 
of Gerontological, Geriatric and Physiatric Sciences, Catholic University of Sacred Heart. On the basis of the 
actual training status, both T2D and CS were divided in untrained (UT) and trained (TR) groups (Table 1). 
Specifically, 6 T2D and 6 CS have been practicing a supervised long-term, moderate physical training (three 
times/week of 30 min moderate aerobic activity and 30 min callisthenic gym), for at least one year, while the 
6 T2D and 6 CS subjects included in untrained groups were those that have never participated in any training 
program in the last 5 years.

All participants were fully informed of the research design and associated benefits and risks of the investiga-
tion before signing an informed consent approved by the Medical Ethics Committee of the University of Sacred 
Heart. All experimental protocols were approved by the University of Sacred Heart, and performed in accordance 
with their guidelines.

Inclusion criteria for the diabetic patients selection were at least 5 years disease duration and therapy with 
metformin alone or in combination with repaglinide or gliclazide. Exclusion criteria were presence of metabolic 
unbalance (HbA1c ≥ 7.5), high level neuropathy, high level vasculopathy, cutaneous ulcers, and insulin therapy.

For all subjects, exclusion criteria were as follows: obesity (BMI ≥ 30), severe cardiovascular diseases (ischemic 
heart disease or heart failure), chronic obstructive pulmonary disease, severe hypertension (diastolic blood pres-
sure ≥100, systolic blood pressure ≥200), smoke habits, alcohol abuse, RX treatments, or diagnostics in the 3 
months previous to the blood sampling.

Leukocytes isolation and treatment.  Fasted blood samples were collected in presence of anticoagulants 
(EDTA or heparin) from all trained and untrained T2D and CS subjects. Peripheral blood leukocytes were iso-
lated by density-gradient centrifugation of whole blood on Ficoll-Paque (Amersham Biosciences). After centrif-
ugation at 1800 rpm for 30 min at room temperature, leukocytes were collected from the interface, rinsed twice 
in phosphate buffered saline (PBS 1×) (EuroClone) and re-suspended in RPMI 1640 medium with L-Glutamine 
(EuroClone) with antibiotics Penicillin (100 U/mL)/Streptomycin (0.1 mg/mL) (Sigma-Aldrich) (no serum). 
Leukocytes were cultured at density of 5 × 105 cells/mL, in RMPI medium supplemented with 10% fetal calf 
serum FBS (Gibco) and 2% phytohemagglutinin PHA (Gibco). Cell cultures were grown for 48 or 72 h at 37 °C 
under a 5% CO2 atmosphere and 85% air. A dilution of 10 mM hydrogen peroxide (H2O2) (Sigma-Aldrich, St. 
Louis, MO) was prepared in PBS immediately before use and then added to medium culture at final concentration 
of 100 μM (acute treatment) or 30 μM (chronic treatment). For chronic treatment, medium culture with H2O2 
30 μM was replaced every 24 h for 2 days (48 h treatment) or 3 days (72 h treatment); for acute treatment, cells 
grown for 24 h were collected by centrifugation, exposed to H2O2 100 μM for 0.5 h in fresh medium), rinsed in 
PBS and re-suspended in conditioned, drug-free, medium for additional 24 h. From each culture, three different 
aliquots have been collected and processed independently for telomere, COMET and apoptosis analyses. All 
cultures have been performed in duplicate and proper untreated cultures have been settled for each experimental 
point.

Measurement of telomere length: Quantitative-Fluorescent In Situ Hybridization (Q-FISH).  To 
evaluate telomere length in untreated as well as in H2O2 treated leukocytes (100 μM for 0.5 h or 30 μM for 48 h 
and 72 h), Quantitative Fluorescence in Situ Hybridization (Q-FISH) analysis was performed on interphase nuclei 
using a Cy-3 labeled (CCCTAA)3 PNA (Peptide Nuclei Acid) telomeric probe specific for (TTAGGG)n sequences 
as described in Sgura et al.67.

Telomere size was estimated by using a dedicated computer program TFL-TELO program (gift from Dr Peter 
Lansdorp, British Columbia Cancer Centre, Vancouver, Canada). In short, telomeres were identified through 
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segmentation of the DAPI image and the Cy3 image, respectively. Both images were combined and corrected 
for pixel shifts. The integrated fluorescence intensity for each telomere was calculated after correction for back-
ground, based on the values of the surrounding pixels and is proportional to the number of probe molecules that 
hybridize to the region.

To correct for daily variations in lamp intensity and alignment, images of fluorescent beads (orange beads, 
size 0.2 mm; Molecular Probes) were acquired and similarly analysed using the IMAGE ANALYSIS computer 
program, as detailed in Poon and Lansdorp68. Telomere fluorescence values were extrapolated from the tel-
omere fluorescence of LY-R and LY-S lymphoma cell lines69 of known lengths of 80 and 10 Kb70. There was 
a linear correlation (r2 = 0.998) between the fluorescence intensity of the R and S telomeres with a slope of 
35.43. The kb length of each telomere was calculated according to the following formula: (Bea1/Bea2) × (TFI/
slope) where Bea1 is the fluorescence intensity of beads when LY-R and LY-S were analyzed, Bea2, the fluores-
cence intensity of beads when sample x was analyzed, and TFI, the unmodified telomere fluorescence intensity 
in sample x.

Telomere fluorescence intensities were measured at 100× magnification in 50 nuclei per experimental point.

Measurement of DNA damage: COMET assay.  To evaluate DNA damage induction in purified 
leukocytes, alkaline (pH >13) COMET assay was performed following the Tice-Vasquez procedure71. Briefly, 
at the end of the protocol, leukocytes from acute and chronic (72 h) treatments with H2O2, as well as proper 
untreated cultures, were centrifuged for 10 min at 1100 rpm and the pellet re-suspended in PBS. A freshly pre-
pared suspension of cells in 0.75% low melting point agarose (LMA Sigma Chemicals) dissolved in PBS w/o 
Ca++ and Mg++ was cast onto microscope slides pre-coated with 0.5% normal melting point agarose (NMA 
Sigma Chemicals). The cells were then lysed for 1 h at 4 °C in a lysis buffer consisting of 2.5 M NaCl, 100 mM 
EDTA, 1% Triton X-100, 10% DMSO, 10 mM Tris, pH 10. After the lysis, DNA was allowed to unwind for 
40 min in electrophoretic solution consisting of 300 mM NaOH, 1 mM EDTA, pH >13. Electrophoresis was 
conducted at 4 °C for 30 min at electric field strength 0.73 V/cm (30 mA). The slides were then neutralized 
with 0.4 M Tris, pH 7.5, fixed with methanol and stored. The slides were examined at 20× magnifications in 
an Eclipse fluorescence microscope (Nikon, Tokyo, Japan). The images were analysed by Komet 5.5 Image 
Analysis System (Kinetic Imaging Ltd, Liverpool, UK). Fifty images were randomly selected from each sample 
and the comet tail DNA was measured. Each experiment was repeated two times. Percentage of DNA in the 
tail (%DNA tail) was analyzed. The mean value of the % tail DNA in a particular sample was taken as an index 
of DNA damage in this sample.

Apoptosis analysis: TUNEL assay.  Leukocytes from acute and chronic (72 h) treatments with H2O2, as 
well as proper untreated cultures, were rinsed twice with PBS and fixed with paraformaldehyde (4% in PBS) at 
4 °C for 1 h. After incubation, cells were permeabilized in 0.1% Triton X100/0.1% sodium citrate solution for 
2 min on ice. Cell apoptosis was evaluated by TUNEL assay using the In situ Cell Death Detection Kit (Roche 
Applied Sciences, Germany), according to the manufacturer’s instructions. Apoptosis percentage was evaluated 
by scoring the number of TUNEL positive nuclei on at least 1000 cells analyzed ×100.

RNA extraction and Gene Expression Profiling.  Gene expression was examined using customized 
TaqMan Array Plates (Applied Biosystems) (see supplementary Material). Expression of 46 different genes 
involved in Base Excision Repair (n = 14), Damage DNA Binding (n = 14), Double Strand Breaks Repair (n = 5), 
Cell Cycle and Apoptosis (n = 7), Antioxidants and Defense Systems (n = 6) were targeted for detection by 
RT-qPCR (Table 2).

Briefly, RNA was isolated by Trizol (Invitrogen) according to the manufacturer’s recommendations. For cDNA 
synthesis, 10 μL of total RNA (2 μg) was directly processed with the High-Capacity cDNA Archive Kit (#4374966, 
Applied Biosystems). For each sample, 10 μL of total RNA was added to 10× RT Buffer 2 μL, 25 × dNTP mix 
0.8 μL, 10× RT Random primers 2 μL, Reverse Transcriptase 1 μL, RNase Inhibitor 1 μL, Nuclease-free water 
3.2 μL to reach a final volume of 20 μL. The reactions were incubated in a GeneAmp PCR System 9700 (Applied 
Biosystems) at 25 °C for 10 min, 37 °C for 2 h, 85 °C for 5 sec and then at 4 °C. Gene expression data was obtained 
using TaqMan Low Density Array (TLDA) (Applied Biosystems). One hundred of ng (1 μL) cDNA was used in 
each sample. 49 μL nuclease-free water and 50 μL 2 × TaqMan Universal PCR Master Mix (#4324018, Applied 
Biosystems) was added for the Real-Time PCR measurements. This mixture was divided over sample-loading 
ports of the TLDA. The arrays were centrifuged twice (2 min, 1200 rpm at room temperature). Subsequently, the 
card was sealed. RT–PCR amplification was performed using an Applied Biosystems Prism 7900HT Sequence 
Detection System with the following thermal cycler conditions: 2 min at 50 °C and 10 min at 94.5 °C, followed by 
40 cycles of 30 sec at 97 °C and 1 min at 59.7 °C. The instrument was connected to Sequence Detector Software 
(SDS version 2.0; Applied Biosystems) for collection and analysis of data.

Statistical analysis.  All statistical analysis was performed using GraphPad Prism 5.0a (GraphPad Software, 
Inc). Data are shown as means ± standard deviation (SD). Normality of data distribution was determined using 
Shapiro–Wilk test, changes in all dependent variables were evaluated using a Two-Way ANOVA. In the case 
of non-homogeneity of variances revealed by the Mauchly sphericity test (p < 0.05), the Greenhouse–Geisser 
correction was used to assess significant main effects. Where significant main effects were observed, Bonferroni 
post-hoc correction (p < 0.05) was used to aid interpretation of any interaction. In the “ex vivo” H2O2-treated 
protocols, the telomere length was calculated for each subjects as fold change by the formula: H2O2-treated LTL/
untreated LTL.
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An unpaired t-test was used to analyse the differences in gene expression data, obtained by RT-qPCR array, 
between UT- and TR-T2D patients; *p < 0.05 and **p < 0.01 were considered to indicate significant and highly 
significant values, respectively.

Data Availability.  The datasets generated and analysed during the current study are available from the cor-
responding author on reasonable request.

References
	 1.	 Rathmann, W. & Giani, G. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 27, 

2568–2569 (2004).
	 2.	 McDaniel, C. F. Diabetes: a model of oxidative accelerated aging. Age (Omaha) 22, 145–148 (1999).
	 3.	 Sampson, M. J. et al. Increased DNA oxidative susceptibility without increased plasma LDL oxidizability in type II diabetes: effects 

of alpha-tocopherol supplementation. Clin Sci (Lond) 101, 235–241 (2001).
	 4.	 Dincer, Y., Akcay, T., Alademir, Z. & Ilkova, H. Assessment of DNA base oxidation and glutathione level in patients with type 2 

diabetes. Mutat Res. 505, 75–81 (2002).
	 5.	 Xavier, D. J. et al. One-week intervention period led to improvements in glycemic control and reduction in DNA damage levels in 

patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 105, 356–63 (2014).
	 6.	 Sampson, M. J., Winterbone, M. S., Hughes, J. C., Dozio, N. & Hughes, D. A. Monocyte telomere shortening and oxidative DNA 

damage in type 2 diabetes. Diabetes Care. 29, 283–289 (2006).
	 7.	 Coluzzi, E. et al. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in 

mammalian cells. PLoS One. 9, e110963 (2014).
	 8.	 Menke, A., Casagrande, S. & Cowie, C. C. Leukocyte telomere length and diabetes status, duration, and control: the 1999-2002 

National Health and Nutrition Examination Survey. BMC Endocr Disord. 15, 52 (2015).
	 9.	 Shen, Q. et al. Association of leukocyte telomere length with type 2 diabetes in mainland Chinese populations. J Clin Endocrinol 

Metab. 97, 1371–1374 (2012).
	10.	 Zhou, Y., Ning, Z., Lee, Y., Hambly, B. D. & McLachlan, C. S. Shortened leukocyte telomere length in type 2 diabetes mellitus: genetic 

polymorphisms in mitochondrial uncoupling proteins and telomeric pathways. Clin Transl Med. 5, 8 (2016).
	11.	 Zhao, J. et al. Short leukocyte telomere length predicts risk of diabetes in American Indians: the Strong Heart Family Study. Diabetes. 

63, 354–362 (2013).
	12.	 Johansen, J. S., Harris, A. K., Rychly, D. J. & Ergul, A. Oxidative stress and the use of antioxidants in diabetes: linking basic science 

to clinical practice. Cardiovasc Diabetol. 29, 4–5 (2005).
	13.	 Bonassi, S., El-Zein, R., Bolognesi, C. & Fenech, M. Micronuclei frequency in peripheral blood lymphocytes and cancer risk: 

evidence from human studies. Mutagenesis. 26, 93–100 (2011).
	14.	 Norppa, H. et al. Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutat. Res. 600, 37–45 (2006).
	15.	 Müezzinler, A., Zaineddin, A. K. & Brenner, H. A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev. 

12, 509–19 (2013).
	16.	 Daniali, L. et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun. 4, 1597 (2013).
	17.	 Friedrich, U. et al. Telomere length in different tissues of elderly patients. Mech. Ageing Dev. 119, 89–99 (2000).
	18.	 Warburton, D. E., Nicol, C. W. & Bredin, S. S. Health benefits of physical activity: the evidence. CMAJ. 174, 801–809 (2006).
	19.	 Østhus, I. B. et al. Telomere length and long-term endurance exercise: does exercise training affect biological age? A pilot study. PLoS 

ONE. 7, e52769 (2012).
	20.	 Pittaluga, M. et al. Physical exercise and redox balance in type 2 diabetics: effects of moderate training on biomarkers of oxidative 

stress and DNA damage evaluated through comet assay. Oxid Med Cell Longev 2015, 981242 (2015).
	21.	 Zee, R. Y., Castonguay, A. J., Barton, N. S., Germer, S. & Martin, M. Mean leukocyte telomere length shortening and type 2 diabetes 

mellitus: a case- control study. Transl Res. 155, 166–169 (2010).
	22.	 Tentolouris, N. et al. White blood cells telomere length is shorter in males with type 2 diabetes and microalbuminuria. Diabetes Care. 

30, 2909–2915 (2007).
	23.	 Verzola, D. et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. American Journal of Physiology 

295, F1563–1573 (2008).
	24.	 Uziel, O. et al. Telomere dynamics in arteries and mononuclear cells of diabetic patients: effect of diabetes and of glycemic control. 

Experimental Gerontology. 42, 971–978 (2007).
	25.	 Ihara, Y. et al. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. Diabetes 48, 

927–932 (1999).
	26.	 Ludlow, A. T., Spangenburg, E. E., Chin, E. R., Cheng, W. H. & Roth, S. M. Telomeres shorten in response to oxidative stress in 

mouse skeletal muscle fibers. J Gerontol A Biol Sci Med Sci. 69, 821–830 (2014).
	27.	 Ornish, D. et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven 

low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 14, 1112–20 (2013).
	28.	 Dimauro, I. et al. Resistance training and redox homeostasis: Correlation with age-associated genomic changes. Redox Biol. 10, 

34–44 (2016).
	29.	 Denham, J., O’Brien, B. J. & Charchar, F. J. Telomere Length Maintenance and Cardio-Metabolic Disease Prevention Through 

Exercise Training. Sports Med. 46, 1213–37 (2016).
	30.	 Cherkas, L. F. et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med 168, 

154–8 (2008).
	31.	 Ludlow, A. T., Ludlow, L. W. & Roth, S. M. Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere 

lengthand telomere-related proteins. Biomed Res Int. 2013, 601368 (2013).
	32.	 Hovatta, I. et al. Leukocyte telomere length in the Finnish Diabetes Prevention Study. PLoSOne 7, e34948 (2012).
	33.	 LaRocca, T. J., Seals, D. R. & Pierce, G. L. Leukocyte telomere length is preserved with aging in endurance exercise-trained adults 

and related to maximal aerobic capacity. Mech Ageing Dev. 131, 165–7 (2010).
	34.	 Sjögren, P. et al. Stand up for health–avoiding sedentary behaviour might lengthen your telomeres: secondary outcomes from a 

physical activity RCT in older people. Br J Sports Med. 48, 1407–9 (2014).
	35.	 von Zglinicki, T. Oxidative stress shortens telomeres. Trends in Biochemical Sciences 27, 339–344 (2002).
	36.	 Lodovici, M. et al. Oxidative DNA damage and plasma antioxidant capacity in type 2 diabetic patients with good and poor glycaemic 

control. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 638, 98–102 (2008).
	37.	 Ibarra-Costilla, E. et al. DNA damage evaluated by comet assay in Mexican patients with type 2 diabetes mellitus. Acta Diabetologica 

47, S111–S116 (2010).
	38.	 Connolly, P. H. et al. Effects of exercise on gene expression in human peripheral blood mononuclear cells. J Appl Physiol. 97, 

1461–1469 (2004).
	39.	 Campbell, P. T. et al. Effect of exercise on oxidative stress: a 12-month randomized, controlled trial. Med Sci Sports Exerc 42, 

1448–1453 (2010).



www.nature.com/scientificreports/

1 1Scientific Reports | 7: 4137  | DOI:10.1038/s41598-017-04448-4

	40.	 Beltran Valls, M. R. et al. Explosive type of moderate-resistance training induces functional, cardiovascular, and molecular 
adaptations in the elderly. Age (Dordr) 36, 759–72 (2014).

	41.	 Beltran Valls, M. R. et al. Protein carbonylation and heat shock proteins in human skeletal muscle: relationships to age and 
sarcopenia. J Gerontol A Biol Sci Med Sci. 70, 174–81 (2015).

	42.	 Dimauro, I., Mercatelli, N. & Caporossi, D. Exercise-induced ROS in heat shock proteins response. Free Radic Biol Med. 98, 46–55 
(2016).

	43.	 Ceci, R. et al. Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance 
training. Redox Biol. 2, 65–72 (2014).

	44.	 Milic, M. et al. DNA damage in non-communicable diseases: A clinical and epidemiological perspective. Mutat Res. 776, 118–127 
(2015).

	45.	 Fouquerel, E. et al. Oxidative guanine base damage regulates human telomerase activity. Nat Struct Mol Biol. 23, 1092–1100 (2016).
	46.	 Petersen, S., Saretzki, G. & von Zglinicki, T. Preferential accumulation of single- stranded regions in telomeres of human fibroblasts. 

Exp Cell Res. 239, 152–160 (1998).
	47.	 Oikawa, S. & Kawanishi, S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. 

FEBS Lett. 453, 365–368 (1999).
	48.	 von Zglinicki, T., Pilger, R. & Sitte, N. Accumulation of single-strand breaks is the major cause of telomere shortening in human 

fibroblasts. Free Radic Biol Med. 28, 64–74 (2000a).
	49.	 Collins, A. R. Measuring oxidative damage to DNA and its repair with the comet assay. Biochimica et Biophysica Acta 1840, 794–800 

(2014).
	50.	 Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol. 14, 

355–65 (2012).
	51.	 Wang, J. S. & Huang, Y. H. Effects of exercise intensity on lymphocyte apoptosis induced by oxidative stress in men. Eur J Appl 

Physiol. 95, 290–7 (2005).
	52.	 Golbidi, S., Badran, M., Laher, I. Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Exp Diabetes Res. 941868 

(2012).
	53.	 Beckman, K. B. & Ames, B. N. Oxidative decay of DNA. J. Biol. Chem. 272, 19633–19636 (1997).
	54.	 Pischetsrieder, M., Seidel, W., Munch, G. & Schinzel, R. Carboxyethyl deoxyguanosine, a nonenzymatic glycation adduct of DNA, 

induces single-strand breaks and increases mutation frequencies. Biochem. Biophys. Res. Commun. 264, 544–549 (1999).
	55.	 Malin, R., Rantalaiho, V. & Huang, X. H. Association between M’L55-polymorphism of paraoxonase enzyme and oxidative DNA 

damage in patients with type 2 diabetes mellitus and in control subjects. Hum. Genet. 105, 179–180 (1999).
	56.	 Park, J. W. & Floyd, R. A. Lipid peroxidation products mediate the formation of 8-hydroxydeoxyguanosine in DNA. Free Radical 

Biol. Med. 12, 245–250 (1992).
	57.	 Lorenzi, M., Montisano, D. F., Toledo, S. & Barrieux, A. High glucose levels cause DNA damage in cultured human endothelial cells. 

J. Clin. Invest. 77, 322–355 (1986).
	58.	 Tamura, R. E. et al. GADD45 proteins: central players in tumorigenesis. Curr Mol Med 12, 634–51 (2012).
	59.	 Liebermann, D. A. & Hoffman, B. Gadd45 in stress signaling. J Mol Signal 3, 15 (2008).
	60.	 Celeste, A. et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell. 114, 371–383 (2003).
	61.	 Jacobs, A. L. & Schär, P. DNA glycosylases: in DNA repair and beyond. Chromosoma. 121, 1–20 (2012).
	62.	 Durand, M. et al. The OXR domain defines a conserved family of eukaryotic oxidation resistance proteins. BMC Cell Biol. 8, 13 

(2007).
	63.	 Magimaidas, A. et al. Gadd45b deficiency promotes premature senescence and skin aging. Oncotarget 7, 26935–48 (2016).
	64.	 Banath, J. P., Klokov, D., MacPhail, S. H., Banuelos, C. A. & Olive, P. L. Residual gammaH2AX foci as an indication of lethal DNA 

lesions. BMC Cancer. 5, 10–4 (2010).
	65.	 Yang, M. et al. Transcriptome analysis of human OXR1 depleted cells reveals its role in regulating the p53 signaling pathway. Sci Rep. 

30, 5–17409 (2015).
	66.	 Walters, S. J. Consultants’ forum: should post hoc sample size calculations be done? Pharm Stat. 8, 163–169 (2009).
	67.	 Sgura, A. et al. Telomere length in mammalian cells exposed to low- and high-LET radiations. Radiat Prot Dosimetry 122, 176–9 

(2006).
	68.	 Poon, S. S. & Lansdorp, P. M. Measurements of telomere length on individual chromosomes by image cytometry. Methods Cell Biol. 

64, 69–96 (2001).
	69.	 Alexander, P. & Mikulski, Z. B. Differences in the response of leukaemia cells in tissue culture to nitrogen mustard and to dimethyl 

myleran. Biochem Pharmacol. 5, 275–82 (1961).
	70.	 McIlrath, J. et al. Telomere length abnormalities in mammalian radiosensitive cells. Cancer Res. 61, 912–5 (2001).
	71.	 Tice, R., Vasquez, M. Protocol for the application of the pH < 13 alkaline single cell gel (SCG) assay to the detection of DNA damage 

in mammalian cells Integrated Laboratory Systems, Durham, NC (1998).

Acknowledgements
We thank Prof. Paolo Parisi and Dr. Timothy Pearson for the critical reading of the manuscript and Dr. Paola 
Teti from University of Rome “Foro Italico”, for the English revision. This work was supported by grants from 
MIUR (PRIN2012) to D.C. Further, we thank the “Veronesi Foundation” for the fellowships given to Dr. Ivan 
Dimauro.

Author Contributions
I.D. and D.C. interpreted the data and wrote the manuscript; A.S. and F.M. developed and supervised the Q-FISH 
experiments; M.P. an F.M. designed and carried out the COMET assay; C.F. and I.D. designed and carried out 
the cell culture experiments and RNA extraction; R.M. and S.F. developed and supervised the gene expression 
profiling experiments; F.M. developed TUNEL assay experiments; A.S. recruited and examined all participants; 
D.C. supervised all experiments. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-04448-4
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/s41598-017-04448-4


www.nature.com/scientificreports/

1 2Scientific Reports | 7: 4137  | DOI:10.1038/s41598-017-04448-4

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Regular exercise participation improves genomic stability in diabetic patients: an exploratory study to analyse telomere le ...
	Results

	Effect of training on basal leukocytes’ telomere length and spontaneous DNA damage in control and diabetic subjects. 
	Effect of training on H2O2-induced telomere shortening and DNA damage in leukocytes from control and diabetic subjects. 
	Effect of training on H2O2-induced apoptosis in leukocytes from diabetic subjects. 
	Gene expression analysis in leukocytes of trained and untrained diabetic patients. 

	Discussion

	Study strength, limitations and conclusions. 

	Material and Methods

	Study design. 
	Leukocytes isolation and treatment. 
	Measurement of telomere length: Quantitative-Fluorescent In Situ Hybridization (Q-FISH). 
	Measurement of DNA damage: COMET assay. 
	Apoptosis analysis: TUNEL assay. 
	RNA extraction and Gene Expression Profiling. 
	Statistical analysis. 
	Data Availability. 

	Acknowledgements

	Figure 1 Comparison of leukocytes telomere length in study participants: control subjects (CS) and diabetic patients (T2D) when untrained (UT) and trained (TR) respectively.
	Figure 2 Leukocytes DNA damage in control subjects (CS) and diabetic patients (T2D) of untrained (UT) and trained (TR) groups.
	Figure 3 Fold change decrease of telomere length relative to untreated cells in leukocytes of untrained and trained controls (UT-CS: H2O2(0.
	Figure 4 DNA damage analysis in leukocytes of (A) control (CS) untrained (UT) and trained (TR), and (B) diabetic patients (T2D) UT and TR, following an acute (100 μM for 0.
	Figure 5 Apoptosis analysis in leukocytes of diabetic patients (T2D) trained (TR) and untrained (UT) following an acute (100 μM for 0.
	Table 1 Subject characteristics.
	Table 2 Gene expression analysis in human leukocytes.




