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Abstract

Habitat availability determines the distribution of migratory waterfowl along their flyway,

which further influences the transmission and spatial spread of avian influenza viruses

(AIVs). The extensive habitat loss in the East Asian-Australasian Flyway (EAAF) may have

potentially altered the virus spread and transmission, but those consequences are rarely

studied. We constructed 6 fall migration networks that differed in their level of habitat loss,

wherein an increase in habitat loss resulted in smaller networks with fewer sites and links.

We integrated an agent-based model and a susceptible-infected-recovered model to simu-

late waterfowl migration and AIV transmission. We found that extensive habitat loss in the

EAAF can 1) relocate the outbreaks northwards, responding to the distribution changes of

wintering waterfowl geese, 2) increase the outbreak risk in remaining sites due to larger

goose congregations, and 3) facilitate AIV transmission in the migratory population. In addi-

tion, our modeling output was in line with the predictions from the concept of “migratory

escape”, i.e., the migration allows the geese to “escape” from the location where infection

risk is high, affecting the pattern of infection prevalence in the waterfowl population. Our

modeling shed light on the potential consequences of habitat loss in spreading and transmit-

ting AIV at the flyway scale and suggested the driving mechanisms behind these effects,

indicating the importance of conservation in changing spatial and temporal patterns of AIV

outbreaks.

Author summary

What are the possible consequences of extensive habitat loss on the spread and transmis-

sion of avian influenza viruses (AIVs)? We used a logistic regression model to select the

suitable habitats of Greater white-fronted goose Anser albifrons in the East Asian-
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Australasian Flyway, which has extensive habitat loss and seasonal passing waterfowl pop-

ulation. We treated these habitats as sites to construct 6 fall migration networks by remov-

ing sites in order of habitat loss (i.e., site removal). We then simulated geese migration in

these networks and explored the impacts of habitat loss on AIV spread and transmission.

We found that extensive habitat loss can cause relocation of the geese and outbreaks and

promote the AIV spread and transmission. Our modeling outputs also suggested a

“migratory escape” pattern for changing the spatial and temporal pattern of infection

prevalence in the population. Overall, our study showed that habitat loss can affect AIV

spread and transmission, suggesting the importance of habitat conservation in changing

the spatial and temporal pattern of disease prevalence.

Introduction

Migration is a common animal behavior in nature, accompanied by large ecological effects

[1,2]. As migrants, especially birds, are hosts of pathogens, their seasonal migration contributes

to pathogen spread and associates with the spatio-temporal patterns of the infection dynamics

[3,4]. Well-known examples include the interactions between birds migration and the emer-

gence of the West Nile virus [5], nematodes [6], malaria [7], Lyme borreliosis [8], and avian

influenza viruses (AIVs) [9]. For example, the West Nile virus was spread throughout the

North America within 4 years after its first detection in the US, mainly driven by seasonal bird

migration [5]. Better understanding the effect of host migration on pathogen spread and trans-

mission is of great importance for the prediction and prevention of disease emergence and

spread.

Changes in habitat availability can fundamentally alter bird migration, which subsequently

affects the interactions between pathogens and hosts [3]. For example, changes in habitat avail-

ability (and quality) may alter migration distance, duration or even establish sedentary popula-

tions [10–12]. Bird migration is flexible in responding to changes in habitat availability by

changing migration timing, routes, or by occupying new habitats [13,14]. These responses can

affect disease spread and transmission by changing birds’ distribution and congregation (i.e.,

local numbers and densities), but the specific relationships between pathogen distribution and

changes in migration patterns of hosts remain unclear.

Avian influenza viruses (AIVs) are well-known for their rapid global spreading and fre-

quent outbreaks over the past decades [15–17]. The transmission in the wild waterfowl popula-

tions is mainly attributed to the seasonal migration and congregation of the waterfowl [16].

First, some migratory waterfowl can migrate over long-distance while infected with AIVs

[18,19]. Second, the seasonally formed waterfowl congregations can facilitate AIVs transmis-

sion by increasing direct and indirect contacts between birds [20–22].

The East Asian-Australasian Flyway (EAAF) has been identified as a high-risk area for

AIVs outbreak [20,23,24] due to the considerable amounts of passing waterfowl and dense

congregation along the flyway [25,26]. For instance, on the migratory route of Swan goose

Anser cygnoides, there were more than 20 outbreaks of highly pathogenic AIVs between 2004

and 2017 [24]. Especially, the Yangtze River floodplain, the wintering region for many water-

fowl species, has become a well-known region for AIVs outbreaks [9,27].

Anthropogenic disturbances such as urban development and land reclamation have caused

rapid habitat loss and degradation in the EAAF, especially in the Yangtze River floodplain

[28,29]. Consequently, migratory waterfowl changed their distribution by using alternative

habitats for refueling and wintering [30,31]. For example, previous field surveys suggested that
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at least 27 waterbird species have changed the distribution [32] and concentrated in fewer

remaining habitats [33,34].

Greater white-fronted goose Anser albifrons is one of the main waterfowl hosts of AIVs,

and an important vector for the AIVs spread and transmission in the EAAF [17]. Since their

migration has been well documented by previous GPS telemetry tracking studies [35,36], The

Greater white-fronted goose is an ideal model species to examine the potential consequences

of habitat loss on AIVs spread and transmission in the EAAF. They breed as north as the Lena

Delta in Siberia and seasonally migrate to their wintering grounds in the Yangtze River flood-

plain, south Japan and South Korea [13,37]. Their suitable habitats form a relatively narrow-

long migration corridor, making the geese distribution sensitive to habitat loss [13]. Extensive

habitat loss in the wintering region may cause the Greater white-fronted goose to relocate and

concentrate, i.e., increase in numbers in remaining habitats [34], thereby affect AIVs spread

and transmission. Thus, we expect that the outbreak risks change spatially and temporally

under the influence of habitat loss [38], with the remaining habitats having a greater risk of

AIV outbreak.

In this study, we applied 6 different scenarios of habitat loss to fall migration networks of

the Greater white-fronted goose in the EAAF, integrated with an agent-based model (ABM) to

simulate the migration of waterfowl and with a susceptible-infected-recovered model (SIR) to

simulate the virus spread among habitats and the transmission in the population. We explored

the possible consequences of habitat loss on the spread and transmission of AIV. More specifi-

cally, we aimed to answer three questions: (1) How does habitat loss change the spatial distri-

bution of AIV outbreaks under influence of changes in the distribution of the Greater white-

fronted goose? (2) Does habitat loss facilitate AIV spread in remaining habitats? (3) Can habi-

tat loss increase virus transmission in a migrating population?

Results and discussion

Geese and outbreaks relocation

We removed sites in order of the descending area of habitat loss to generate network scenarios

(see Method). Generally, site removal causes the relocations of wintering geese and AIV out-

breaks (i.e., sites with R0>1). As the habitat loss was mainly concentrated at the Yangtze River

floodplain (Fig B in S1 Appendix), the wintering region drastically shrunk in the scenarios of

more than 20% of sites removal (Fig 1C–1F). Thus, the migratory geese and AIV outbreaks

were confined to smaller geographic areas. Particularly in the extreme scenario where 50% of

sites were removed (Fig 1F), the wintering geese and outbreaks were restricted in the area

above 35.9˚ N where the last wintering site was located (site ID = 86; also see Fig C in S1

Appendix for geese distribution at each site in each time step). In reality, the severity of habitat

degradation and loss in the Yangtze River floodplain has been called for attention since the

1990s, these processes are still ongoing [29,30]. Although we are here theoretically simulating

such an extreme level of site removal to explore the potential consequences, the northwards

relocation of wintering geese can happen before extensive sites disappear, especially for species

that are sensitive to changes in habitat availability. For example, a field survey suggested Bean

goose Anser fabalis, Ruddy shelduck Tadorna ferruginea, and Red-breasted merganser Mergus
serrator had started to shift their wintering habitats northwards already a decade ago in the

Yangtze River floodplain [32].

The relocation of wintering Greater white-fronted geese caused the northwards shift of AIV

outbreaks. Other waterfowl species that have similar narrow-long migration corridors such as

Bean goose, Lesser white-fronted goose Anser erythropus, Tundra swan Cygnus columbianus,
Common teal Anas crecca, and Northern pintail Anas acuta may lead to similar outbreak
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relocation in the EAAF [13]. However, waterfowl species such as Greylag goose Anser anser
and Swan goose may have different effects on the AIV spread because their migration corri-

dors are shaped differently (i.e., wide-short shaped corridor) [13]. Thus, future studies could

consider multiple migratory species to explore the effects of their interactions on AIV spread.

AIV spread in sites

Site removal caused migratory geese to visit fewer sites in the migration networks, accompa-

nied by fewer sites with AIV outbreak (Fig 2A and 2B), however, it also caused a higher out-

break risk in remaining sites (Figs 2C and 3A). Although the geese can use alternative sites for

migration (e.g., sites ID = 13, 14, 34, 58, 59, etc., Fig 1, and also see Table A in S1 Appendix for

changes in visiting geese and R0 at each site), they also formed larger congregations in the

remaining sites (e.g., sites ID = 12, 39, 67, 86 and 97, etc., Table A and Fig C in S1 Appendix).

Thus, the geese relocation and larger congregations in remaining sites promoted AIV spread

and transmission, increasing outbreak risk, and even converted low-risk sites to high-risk sites

(e.g., sites ID = 13, 14, 34, 57, etc., Fig 1 and Table A in S1 Appendix). In fact, waterfowl can

occupy alternative habitats when their prime habitat is no longer available [10], increasing

Fig 1. The visited migration networks generated by the simulated geese movement according to the agent-based model. A) the complete network, and

B-F) the network scenarios of 10%, 20%, 30%, 40% and 50% site removal. Dots are sites visited by geese, colors represent the maximum R0 that occurred at sites

during the simulation, and numbers are site IDs. Yellow and blue shadows depict breeding and wintering regions. The base layer maps were generated in R

environment using the “maps” package (Original S code by Richard A. Becker, Allan R. Wilks. R version by Ray Brownrigg. Enhancements by Thomas P

Minka and Alex Deckmyn. (2016). maps: Draw Geographical Maps. R package version 3.1.1. http://CRAN.R-project.org/package=maps).

https://doi.org/10.1371/journal.pcbi.1009577.g001
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congregations at these alternative habitats between scenarios [34]. For example, about 95% of

the Swan goose population is nowadays confined to only three of their major habitats [33],

other species such as the Greylag goose, Tundra bean goose Anser serrirostris, Lesser white-

fronted goose, and Greater white-fronted goose are showing similar trends, with larger congre-

gations in fewer remaining prime habitats [34].

The basic reproduction number R0 increased with weighted in-degree (Fig 3B; also see Fig

D in S1 Appendix for the regressions for wintering sites and non-wintering sites separately),

indicating that highly connected sites with more arriving geese have a larger AIV outbreak

risk, because they are more likely to receive infected geese. In reality, the well-connected habi-

tats with better connections and more visiting waterbirds are commonly recognized as crucial

habitats for foraging and resting of migratory waterbirds [39,40]. Well-known examples

include Delaware Bay and Poyang Lake [20,41], which are also hotspots for AIV outbreaks

[20]. Field surveillance at crucial habitats is important for understanding the epidemiological

dynamic in wild waterbirds [15]. However, many habitats, especially those located in remote

areas, received little attention [15,42], largely because their importance is not sufficiently evalu-

ated. Recent studies used network analysis, integrated with GPS telemetry, to study the impor-

tance of remote habitats in terms of their connectivity to other sites and waterbirds use

[40,43]. Future studies can implement these approaches to evaluate the importance of these

remote habitats and identify potential AIVs hotspots.

Furthermore, our simulations also suggested that, although the geese migrated within

smaller networks due to increasing level of site removal (Fig 2A and 2D and Fig B in S1

Fig 2. The basic metrics (mean ± SD) of the visited networks under increasing site removal. On the x axis, from left to right, the scenario of the complete

network, and the network scenarios of 10%, 20%, 30%, 40% and 50% site removal. The lowercase annotations indicate the statistic difference according to

Kruskal-Wallis tests (p< 0.05).

https://doi.org/10.1371/journal.pcbi.1009577.g002
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Appendix), the resulting migration generated networks with higher link densities (Fig 2E),

indicating that connections among the remaining sites is enhanced, which can contribute to

more rapid AIV spread and transmission [3,44–46]. Our simulation outputs suggested that

local habitat loss can trigger changes in geese distribution and AIV spread at flyway scale, so

planning habitat conservation at flyway scale is required when formulating efficient control

actions.

Virus transmission in population

Site removal changed the temporal infection patterns and the prevalence estimates in the

migratory population (Fig 4). Specifically, site removal caused the AIV to transmit faster

between geese due to larger congregations, increasing virus accumulation in the environment

(Fig E in S1 Appendix for the virus accumulation) so that the indirect transmission increased,

which contributed more to AIV prevalence (Fig 4C and 4D). Particularly in the extreme sce-

nario, the removal of wintering sites in the Yangtze River floodplain caused the geese to

migrate 426.3 km less (Figs 1A, 1F and 2F) and terminate their migration 11 days earlier com-

pared to the complete network (see Fig F in S1 Appendix for arrival geese at wintering sites),

shifting the second infection peaks drastically, as they started earlier and grew larger.

Moreover, the infection prevalence showed one striking infection peak followed by another

gentle peak in different scenarios (Fig 4A–4D), indicating that migration can temporally

decrease infection prevalence. Additional simulations confirmed that migration behavior

reduced the infection peak by 35% (see Fig G in S1 Appendix for infection comparison

between migratory and sedentary populations), because the migration lowered direct and indi-

rect environmental transmission while migrating, by allowing susceptible geese to escape from

infection [47]. It was in line with the concept of “migratory escape” [3], i.e., the migration

Fig 3. The effects of A) increasing sites removal and B) weighted in-degree on the basic reproduction number R0 at each site. A) x-axis labels are the

scenario of the complete network, and network scenarios of 10%, 20%, 30%, 40% and 50% removal of sites; B) black line represents the GLM fit, and grey

shaded area represent the 95% confidence interval. The asterisk represents the levels of statistical difference (� for p<0.05, and ��� for p<0.001), compared to

the complete network scenario. Colored dots are the maximum R0 values generated by agent-based model simulations under different network scenarios.

https://doi.org/10.1371/journal.pcbi.1009577.g003
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allows the host to “escape” from the location where pathogen infection risk is high [48].

Although these “escaped geese” were eventually infected, longer migration distance can lead to

a later congregation and more recoveries, postponing the outbreaks and lowering the maxi-

mum prevalence at wintering sites. However, larger congregations and significantly shorter

migration distances caused by the extreme habitat loss largely neutralize the effect of migration

escape.

The migratory escape has been found in various host-pathogen relationships, such as war-

ble fly in reindeer [3] or protozoan parasites in butterflies [49]. Although only a few studies

mentioned the migratory escape for the interactions between waterfowl migration and AIVs

spread and transmission [47,50,51], its effects are worth examining. For example, previous

studies found that some waterfowl populations have no AIV infection during their migration,

suggesting their role spreading AIV over long distances was overestimated [18,52,53]. So, what

role does migratory escape play in determining the spatial and temporal patterns of AIV

spread and transmission, especially in well-preserved migration network? To answer this

Fig 4. The dynamics of infection prevalence in the migratory population. A) number of infections; B) number of infections at the wintering sites; C) number

of infections caused by direct transmission; D) number of infections caused by indirect environmental transmission. Line colors represent the infection

dynamics under different network scenarios.

https://doi.org/10.1371/journal.pcbi.1009577.g004
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question, we call for a more extensive sampling effort, i.e., with a larger sampling period and

size [54,55] and with a broader spatial and species coverage to better capture the spatial and

temporal dynamics of AIV infection at a flyway scale.

Adding age structure and varying initial population in the model slightly changed the AIV

transmission patterns but did not affect the general effect of habitat loss on AIV spread. Specif-

ically, immunological naïve geese in the population slightly increased AIV transmission (Fig H

in S1 Appendix), and the smaller population size led to fewer infections (Fig I in S1 Appendix).

However, the immunological naïve geese and smaller population size did not qualitatively

change our conclusions about the relationship between the AIV outbreak risk, site connectiv-

ity, and number of visiting geese, or about the effects of site removal on increasing AIV out-

break risk (Fig L, J, and K in S1 Appendix).

In summary, our study explored the potential consequences of habitat loss, i.e., site

removal, on spatial and temporal patterns of the AIV spread and transmission. Our simulation

showed that habitat loss affects AIV distribution and prevalence. Our study emphasizes the

effects of habitat loss on epidemiological dynamics in migratory waterbirds populations, and

thereby on the relationships between conservation and pathogen spread. This relationship can

be better understood if we combine animal tracking studies, field surveillance, and network

analyzes at flyway scale in future studies.

Methods

Our model and simulations were composed of four sections, including 1) the identification of

suitable habitats, 2) migration network construction, 3) simulation of goose migration and 4)

simulation of AIV transmission. First, we identified the suitable habitats for the Greater white-

fronted goose by performing logistic regression analysis between the goose observation record

in wetlands and environmental predictors. Second, we treated the suitable habitats as sites and

used goose migration step length as maximum connection distance to construct migration

network of all sites. We then removed sites from the network with intervals of 10% sites, and

thus generated 6 scenarios of migration networks. Third, we used agent-based model (ABM)

to simulate individual migration behavior of the Greater white-fronted goose in each network

scenario. Forth, we used susceptible-infected-recovered (SIR) model to simulate the AIV

transmission in the population.

Suitable habitats identification

The distribution range of the Greater white-fronted goose in the EAAF covers a large area

from 70˚ N in Russia to 29˚ N in China, which includes Mongolia, Japan, the Korean Penin-

sula, and the Yangtze River floodplain. We obtained the classification of breeding region, stop-

over region, and wintering region from the species distribution maps that generated by the

Birdlife International [56]. Since stopover region and wintering region partly overlap, we clas-

sified the wintering region as between 36˚N and 29˚N.

All potential wetland habitats were extracted from the Global Lakes and Wetlands Database

[57], and land cover maps for 1992 and 2012 were obtained from the European Space Agency

CCI 300-m annual global land cover products (http://www.esa-landcover-cci.org/). Moreover,

the suitability of each potential habitat was estimated by predicting the probability of water-

birds occurrence from a logistic regression model, based on the relationship between the

binary observation record (i.e., presence or absence of the Greater white-fronted goose) and

several environmental predictors, including water body area, elevation, longitude, and suitable

foraging areas (i.e., grassland and cropland). The habitat selection followed the procedure
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described in a previous study [13]. We considered habitats to be suitable when the predicted

probability of the goose presence exceeded 75%.

Migration network construction

All the suitable habitats were treated as sites in the network construction. We used the coordi-

nate of the geometric center of each site as the geographic location, and then calculated the

geographic distances between all coordinate pairs. The coordinates and distances were calcu-

lated with the azimuthal equidistant projection, while the area of each site was calculated with

a cylindrical equal area. Moreover, we assigned attributes, including geographic coordinates,

area size and type (i.e., breeding, stopover, or wintering), to each site, and calculated the per-

centage of wetland habitat loss between 1992 and 2012. The suitable sites with their attributes

are described in the Table B in S1 Appendix.

We only generated fall migration networks to test the effect of habitat loss, because the

waterfowl migration is more likely to spread the AIV southwards [17,18]. We constructed

directional links from sites with a higher latitude to sites with a lower latitude between centers

of each pair, if the geographical distance Dij (i.e., geographic distance between site i and j) was

shorter than the migration step length Lstep (i.e., the maximum migration distance without

rest). In 50 sites (out of 98 suitable sites) area loss occurred, we generated 6 theoretical migra-

tion networks in total, by removing sites in order of the descending area of habitat loss. These

theoretical networks are the complete network, and network scenarios with removal of 10%,

20%, 30%, 40%, and 50% of these sites. Each scenario had 10 sites less than the preceding sce-

nario (See Fig B in S1 Appendix, with their corresponding basic network metrics listed in

Table C in S1 Appendix).

Simulation of goose migration

We applied a migratory flow network to simulate the geese movement over the sites [58]. Each

site was assigned a variable, site attractiveness Ait to represent the suitability of the site i at

given time t. Each link was assigned two variables, migration resistance Rij to represent the dif-

ficulty for travelling from site i to j, and the migration probability MPij to represent the likeli-

hood for travelling from site i to j. Moreover, we assumed the attractiveness Ait was negatively

influenced by goose density λi
t, whereas the migration resistance Rij was positively influenced

by geographical distance Dij [58]. These variables at time step t were calculated as:

MPij ¼ ðAj � AiÞ=Rij ð1Þ

Ai ¼ � e
k1li ð2Þ

Rij ¼ ek2Dij ð3Þ

where k1 and k2 are scaling parameters. In general, the decision was determined by goose den-

sity and distance between the sites (see supplementary method in S1 Appendix for details),

and the goose prefers to select the link with greatest migration probability MPij.
A total of 10,000 geese were simulated as agents in our model. Each goose was randomly

assigned body mass m, according to a gaussian distribution at the beginning of simulation. At

each time step t, the body mass dynamic was calculated as:

mt ¼
mt� 1 þ a; if resting

mt� 1 � c� s; if flying
ð4Þ

(
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where a is the accumulation rate during resting at a site, c is the body mass consumption rate

during flying, s is the flying speed. When a resting goose cumulated enough body mass (i.e.,

above a threshold φ), the goose selected a site to migrate to in next time step.

GPS telemetry tracking revealed that Greater white-fronted goose migrates within a narrow

corridor (i.e., longitude range) and makes stops for rest and refueling during fall migration

[35,36]. Therefore, we setup two variables, the corridor width w, and the expected number of

rests n, to constrain the sites selection. The corridor width w constrains the geese to migrate

within a range of longitudes, and the number of rests n regulates the number of stopover sites

before arriving at the wintering site. The detailed decision-making rules are explained in the

supplementary method (Fig A in the S1 Appendix). For simplification, we did not include any

goal-oriented behavior or mortality or reproduction in the model.

Simulation of AIV transmission

We applied an SIR model to simulate the AIV transmission in the migratory population. A

susceptible goose can become infected via either direct transmission, caused by direct contact

between susceptible and infected geese, or indirect environmental transmission, caused by

viruses in the environment. An infected goose recovered when it has been infected for a certain

period Tinfection. Following previous studies [22,59], we assumed that the geese remained

immune after recovery from the infection, as the antibodies to AIV can last for months in

waterfowl [60].

Moreover, previous studies found that integrating frequency-dependent transmission and

environmental transmission in the model best fitted the observed infection dynamics [59,61].

We therefore followed a previous framework [47], assuming that the direct transmission

among geese is frequency-dependent, and the infection probability ρ for each susceptible

goose at site i and time step t was calculated as:

r ¼
bðI þ EÞ

N
ð5Þ

where β is the transmission rate parameter, I the number of infected geese, N the number of

geese, E the amount of environmental virus at the goose scale (see below).

The amount of virus Vt in the environment at site i is calculated as:

Vt ¼ Vt� 1 � ZVt� 1 þ εIt� 1 � ZεIt� 1 ð6Þ

where η is the virus decaying rate in the environment, and ε is the virus shedding rate. We

divided the equation by shedding rate ε to obtain:

Et ¼
Vt

ε
¼ 1 � Zð Þ

Vt� 1

ε
þ It� 1

� �

ð7Þ

Therefore, we can use the variable E to represent the amount of viruses at the scale of goose,

for reducing the number of variables [62]. In addition, we only modelled a single AIV strain

and one goose population, to avoid the complex infection dynamics caused by cross-immune

responses to multiple strains. We further assumed that the infection did not change the migra-

tion behaviors of infected geese. The simulations ended after all geese stopped migrating and

no infected geese existed in the population, which allowed us to capture the full migration and

complete prevalence dynamics.
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Model parameterization

A GPS telemetry tracking study suggested that Greater white-fronted goose in the EAAF

acquire necessary body mass stores before starting fall migration [36], and we assume that the

resting replenish the energy cost of migration. Therefore, the body mass consumption rate c
was generally calculated as:

c ¼
a�Tresting

Dns
ð8Þ

where Tresting is the number of days that Greater white-fronted goose rest on stopover sites, Dns

is the geographic distance between the northernmost and southernmost sites. As the transmis-

sion rate parameter β of AIV in populations of wild goose is largely unknown [63], we used the

value 0.15 (Table 1), which translates to a basic reproduction number R0 = 1.03 at the begin-

ning of simulation when no virus existed in the environment, and increasing maximally to

5.97 due to the geese congregation and virus accumulation in the environment. In addition,

we also conducted a sensitivity analysis for the parameter β by varying the value by 20% (Fig L

in S1 Appendix). Other parameters were extracted from published studies (Table 1).

In addition, we simulated AIV transmission within a sedentary population for illustrating

the effects of migration. We analyzed the influence of a difference in age structure (i.e., juve-

nile/adult ratio) by dividing the population into juvenile and adult groups and setting the juve-

nile group had higher infection probability (Table 1). According to previous studies, the

proportion of juvenile geese was set as 35% in the migratory population [64–66], and the juve-

nile geese have a 22% greater risk to be infected, compared to the adult geese [67]. We also ana-

lyzed the influence of a declining population size with habitat loss, by estimating the

population size in each scenario. We estimated the population sizes by implementing a modi-

fied regression relationship between ratio of population change and ratio of functional connec-

tivity change to estimate the population sizes, in line with a previous study [30]. The

Table 1. Parameters in the agent-based model, with their abbreviation, definition, value, unit, and reference.

Parameter Definition Value Unit Reference

N population size 10,0000 goose [22]

mμ average body mass 2075 (2075–3000) g [68]

mσ standard deviation of body mass 215 g [68]

φ migration threshold of body mass 15% (12%-17.5%) - [69]

a body mass accumulation rate 24.6 (24.6–30) g day-1 [69]

c body mass consumption rate 0.09 g km-1 -

s flying speed 526 (±155) km day-1 [36]

Tresting resting period 17 (17–29) day1 [36]

n expected number of rests 2.1 (±0.8) - [36]

Dns geographic distance between the northernmost and the southernmost site in the complete network 4509 km -

Lstep step length 1710 (±476) km [36]

ϕ ratio of the initial infection 0.01 - -

β transmission rate parameter 0.15 day-1 -

η virus decaying rate in environment 0.03 (0.02–0.2) - [22,59]

Tinfection max infection period 7 day [70]

k1 scale parameter for attractiveness 0.00001 - -

k2 scale parameter for resistance 0.01 - -

σ proportion of juvenile geese 0.35 - [64–66]

ε Excess infection probability for juvenile geese 0.22 - [67]

https://doi.org/10.1371/journal.pcbi.1009577.t001
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description of the regression relationship and the estimated functional connectivity and corre-

sponded population sizes are summarized in Table D in S1 Appendix.

Model analysis

In each network scenario, we initiated the model with all geese at the northernmost site, with

an initial infection prevalence 1%. No virus pre-existed in environment at any site at the begin-

ning of the simulations. In the simulation, one time step was equivalent to one day.

To investigate the infection dynamics during migration, we counted the number of infected

geese via direct transmission and indirect environmental transmission. We also calculated the

effective reproduction number R0 (i.e., the sum of the average number of new infections) for

each site at each time step as below, R0>1 indicates an outbreak [22]:

R0 ¼ bT
S
N
þ b

1

Z

S
N

ð9Þ

For each network, the simulation iterated 1,000 times and all outputs were averaged. For each

iteration, we exported the selected link of each goose at each time step, which were used to gen-

erate the visited migration network for performing further analysis. Moreover, we used the

average link repetitions (i.e., over 1000 iterations) as weight score for calculating the weighted

in-degree of each site to represent both the connection with other sites and the number of

geese arriving on the focal site for resting. We also calculated the average travelling distance of

the population and the number of sites, the number of links, and the link densities as network-

level metrics to study the effects of site removal on network connectivity [71].

Statistical analysis

We performed a generalized linear model (GLM) to examine whether the habitat loss can

increase the outbreak risk in remaining sites. We selected the maximum R0 across time steps at

each site to represent the outbreak risk. The independent predictors were the weighed in-

degree and network scenario. Data generated from all six network scenarios were integrated to

perform the GLM analysis. We used the Kruskal-Wallis test to examine the difference in basic

metrics of the visited network in different scenarios, and the t-test to examine the difference in

the basic reproduction number R0 at each site in the different scenarios. In this study, the envi-

ronmental factors were extracted in ArcMap 10.2.1, the agent-based model was constructed in

Netlogo 6.1.1 (S2 Appendix), the background map of the East Asian was extracted from pack-

age “maps” in R environment [72], the numerical data used in figures are included in S3 Data.

All the data processing and statistical analysis were performed in R 4.0.5.

Supporting information

S1 Appendix. Supplementary method, figures and tables (PDF).

(PDF)

S2 Appendix. The agent-based model for simulating geese migration and AIV transmis-

sion (Netlogo).

(ZIP)

S1 Data. The numerical data used in figures (Rdata).

(ZIP)
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