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A B S T R A C T

Background and objective: Anterior cruciate ligament (ACL) reconstruction calls for artificial ligaments with better
bioactivity, however systematic reviews regarding bioactivity enhancement strategies, technologies, and per-
spectives of artificial ligaments have been rarely found.
Methods: Research papers, reviews, and clinical reports related to artificial ligaments were searched and sum-
marized the current status and research trends of artificial ligaments through a systematic analysis.
Results: Having experienced ups and downs since the very first record of clinical application, artificial ligaments
differing in material, and fabrication methods have been reported with different clinical performances. Various
manufacturing technologies have developed and realized scaffold- and cell-based strategies. Despite encouraging
in-vivo and in-vitro test results, the clinical results of such new designs need further clinical examinations.
Conclusion: As the demand for ACL reconstruction dramatically increases, novel artificial ligaments with better
osteoinductivity and mechanical performance are promising.
The translational potential of this article: To develop novel artificial ligaments simultaneously possessing excellent
osteoinductivity and satisfactory mechanical performance, it is important to grab a glance at recent research
advances. This systematic analysis provides researchers and clinicians with comprehensive and comparable in-
formation on artificial ligaments, thus being of clinical translational significance.
1. Introduction

CL is crucial for keeping the knee joint mechanically stable and
balanced. Damage to CLs is one of the commonest knee damage forms.
Indeed, severe CL injuries like tear or rupture may occur during traffic
accidents as well as athletic training, during which excessive stress gets
transferred to CL, thus patients can be found within a quite wide age
range [1]. Unrepaired CL damage may lead to irreversible articular
cartilage defects and osteoarthropathy [2]. Since the poor vasculariza-
tion of natural ligament tissue and the existence of synovial fluid within
the knee joint, it is hard for natural ligaments to regenerate after such
severe damage. Surgical intervention has proven to be an ideal approach
for ligamentous treatment.

The earliest ligamentous injury surgeries of ACL focused on restoring
the original native injured ligament, which is termed ACL repair.
Generally, ACL repair allows the natural anatomy of the ligament to be
maintained, which prevents from loss of native tissue that provides the
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proprioceptive protective function to the knee [3]. ACL repair became
the “golden standard” for ACL treatment in the 1970s and 1980s [4].
However, such satisfying initial clinical outcomes were followed by
concerning rates of re-rupture and reoperation, in midterm follow-ups
[5]. Recognition of the above-mentioned 1poor outcomes led to a para-
digm shift away from ACL repair in the 1980s and 1990s. What is worthy
to note recently is that, a few studies dig into ACL repair for potential
advantages, in a wish to avoid surgeries by adopting viable conservative
options also known as “biologic augmentation”. Such biologic augmen-
tation includes enhancement of the ligamentous healing process by
modulating the inflammatory response, downregulating the production
of matrix degradative enzymes after injury, and maximizing the regen-
erative potential of ACL in the cellular population [6,7]. In fact, a
growing interest in novel augmentation techniques has recently
emerged, including both biologic agents and biomaterials, which could
be even combined, inspiring designing novel ligamentous grafts with
biomimetic physiochemical performances [8].

Despite attempts to improve the outcome of ligament repair, primary
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Nomenclature

Abbreviations
ACL anterior cruciate ligament
bFGF Basic fibroblast growth factor
bMSC bone mesenchymal stem cell
CHI chitosan
CL cruciate ligaments
ECM extracellular matrix
ELD electrolytic deposition
GDF growth and differentiation factor
GO graphene oxide
HAP hydroxyapatite
HPC hydroxy-propyl cellulose
LAD ligament augment device

LARS ligament advanced reinforcement system
MSC mesenchymal stem cell
PCL poly(ε-caprolactone)
PEUU poly (ester urethane) urea
PGA polyglycolic acid
PLA polylactic acid
PLAGA polylactide-co-glycolide
PLCL copoly(lactic acid-co- (ε-caprolactone))
PLGA poly(lactic-co-glycolic acid
PNaSS poly(sodium styrene sulfonate)
PP polypropylene
PTFE polytetrafluoroethylene
rhBMP-7 recombinant human bone morphogenetic protein 7
TCP tricalcium phosphate
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arthroscopy-assisted ACL reconstruction has emerged as the premier
treatment strategy and is now considered the new “gold standard” [9].
ACL reconstruction can be attained by combined uses of several types of
equipment, including interference screws, adjustable fixation devices,
ligamentous grafts, etc. Interference screws fixation is practically adop-
ted in tendon transfer and is reported with high satisfaction rates and low
complication rates [10]. However, as commercial interference screw
products like Biosure Regenesorb™ are economically costly, research
regarding organic implant-less techniques for ACL reconstruction, like
Bone and Site Hold Tendon Inside (BASHTI) technique, are considered as
a substitute for interference screw fixation, especially where fast recovery
is expected [11]. Adjustable fixation devices like Ultrabutton™, on the
other hand, focus on providing fixation for ligamentous implantation by
string-loops and a metal button. Graft fixation by such devices demon-
strates higher failure stress than interference screw fixation, yet the risk
of exaggeration of the bungee-cord effect is undeniable following inac-
curate measurements during graft or tunnel preparation [12]. Moreover,
despite some research in favor of the clinical biomechanical outcome of
ACL reconstruction via adjustable fixation devices, systematic biome-
chanical investigations into clinical outcomes are still lacking from the
stage [13–15]. As for ligamentous graft, the artificial ligament has been
considered ideal for ACL reconstruction, if compared with autografts and
allografts for being free from concerns of disease transferring and lacking
ligament supply.

The interest in artificial ligaments that emerged no later than the
1970s has been booming in the 1990s, as displayed in Fig. 1. The first
clinical application of artificial ligament on CL reconstruction can be
traced back to the 1970s when Food and Drug Administration (FDA)
Fig. 1. The published papers were searched on the Web of Science Core Collection,
number of publications and (B) the number of citations from 1990 to 2022 are pres
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approved the first series of artificial ligament products such as Pro-
plast™, which were soon withdrawn from the market due to severe
complications. Following were novel artificial ligaments, e.g., Leeds-
Keio™, Gore-Tex™, Stryker Dacron™, and LARS™, that varied in ma-
terials, constructions, or weaving methods. Indeed, though generally
regarded as candidates for clinical applications, most of them failed to
survive through long-term prognosis evaluations due to high complica-
tion and failure rates. Increasing evidence indicated that the poor
bioactivity of artificial ligaments may be the cause of implant failure [16,
17]. For example, PET, one of the most popular materials for artificial
ligaments, is considered the most adopted and reliable among different
polyester materials for its outstanding biomechanical properties and
biocompatibility [2]. However, the lack of osseointegration strongly re-
stricts the prognosis effect and clinical application of such candidates, as
in most cases it is fibrous scar structure, rather than desired autogenetic
ligament tissue, that forms between the prosthesis and the host organi-
zation [18]. Although facing a dispute over long-term prognoses, artifi-
cial ligaments are still available and popular in clinical applications, free
from donor-site morbidity and disease transmission if compared with
autografts and allografts [2,19]. That is to say, if mechanical and
bioactive performance should be significantly enhanced, artificial liga-
ments would be granted in potential clinical translation and applications.

Recently, several reviews have managed to discuss the clinical
outcome of artificial ligaments. For example, Zhang et al. and Sun et al.
systematically reviewed the postoperative performance of synthetic
grafts in ACL reconstruction by comparing autografts and synthetic grafts
in terms of postoperative knee stability and function [20,21]. Novel
materials with potential clinical application in ACL reconstruction are
using the phrases (ARTIFICIAL LIGAMENT*) as a topic on 1 July 2022. (A) The
ented.
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also discussed [22]. As mentioned above, bioactivity is also a key prop-
erty for the clinical applications of artificial ligaments but systematic
summarizations on this point are still far from enough.

This article is expected to fill the gap and offer research fellows in-
sights into the novel design of artificial ligaments with better osseoin-
tegration performance. In this paper, the root causes of postoperative
complications of artificial ligaments are elaborated on based on a review
of the current clinical performance of artificial ligaments. In addition,
methods to enhance the osseointegration of artificial ligaments are dis-
cussed based on categorized strategies and corresponding manufacturing
technologies.

2. Current artificial ligaments and their clinical performance

As it is expected to limit joint movement within a proper range,
artificial ligament should demonstrate excellent superior service dura-
bility. Therefore, artificial ligaments should perform excellent mechani-
cal and biological reliabilities throughout the autologous ligament
reconstruction process. Some representative artificial ligament products
and their properties were summarized and listed in Table 1. In this sec-
tion, an overall review of the clinical performance of current artificial
ligaments is provided in terms of mechanical and biological performance.
2.1. Biomechanical performance

Mechanical properties of materials such as strength, elongation, creep
performance, and fatigue behavior are of great significance for the
assessment of the clinical behavior of artificial ligaments, thus being
prior in prosthesis design. However, according to corresponding current
standards, the service duration of the ligament prosthesis is evaluated
based on in vitro tests and cannot completely present the synergetic effect
of the complex physiological environments under daily cyclic loading
conditions, thus the designed service duration of artificial ligaments
cannot be reached [31].

Natural ligaments consist of numerous fibrous bundles wrapped by
Table 1
Basic information of some representative artificial ligament products.

Commercial
name

Manufacturer Material Ultimate
tensile
strength (N)

Stiffness
(N/mm)

Elongati
break (%

Gore-Tex WL core
&Associates,
Arizona, USA

PTFE 5300 [23,
24]

322 [23,
24]

9 [23,24

LAD 3M, Minnesota, USA PET 1730 [23] 36 [23]

Stryker
Dacron

Stryker, Michigan,
USA

PET 3600 [27] 420 [27] 18.7 [27

Leeds-Keio Neoligamnet Ltd,
UK

PP 2200 [28] 280 [5,
28]

LARS Structural
instruments and
Devices, Arc-sur-
Tille, France.

PET 4700 [5,16] 200 [16]
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synovial membranes, and each bundle demonstrates a different second-
ary structure so that ligaments can move freely along different surfaces of
the joints. Such an elaborate structural hierarchy shaped the mechanical
response of natural ligaments into a non-linear form. ACL is loaded
throughout the bend and stretch process of knee joints. The maximum
loading, stiffness, and elongation of ACL are 1775 � 269 N, 182 � 33 N/
mm, and 15.9 � 3.5 mm, respectively. The stress–strain curve of the
ligament is generally characterized by a J-shaped dependence with a toe
region. From the perspective of anatomy, the non-linear behavior of
natural ligaments is effective in maintaining normal knee kinematics [30,
32]. When a progressive load is applied on the knee, alignment of
collagen fibers provides increased stiffness to limit excessive motions and
results in the typical J-shaped convex stress–strain curve. When all the
straightened collagen fibrils participate in the mechanical response, a
linear region occurs [2,33–35]. Apart from the J-shaped stress–strain
curve, another important characteristic is the viscoelastic behavior of
ligaments, which allows the relaxation of a certain amount of stress
during dynamic loading and is considered important in maintaining the
mechanical stability of the knee [36]. It is indicated that such dissipating
effects are due to modulus loss by interactions between collagen fibers
and the hydrated matrix of proteoglycans and glycoprotein [32,33].
Thus, it is expected that artificial ligaments should demonstrate various
mechanical responses at different phases of autologous ligament
recovery.

The design of artificial ligaments should adequately emulate the
mechanical and viscoelastic features to improve biomechanical
compatibility. Improvements in novel biomaterial manufacturing have
made available a new generation of artificial ligaments with better
biocompatible designs. Take LARS™ artificial ligament as an example,
potential machining residues and oils that could elicit synovitis have
been removed in advance, while a middle part consisting of a bunch of
pre-twisted free fibers was adopted to increase resistance to torsional
fatigue and wear and tear. Even though LARS™ is the most clinically
applied prosthesis for ACL reconstruction, a biomechanical evaluation of
LARS™ in a sheep model of ACL replacement claimed that LARS™ is not
on at
)

Limitation Clinical outcome Legend

] Limited issue
ingrowth wear
debris

The complication rate of
76% Market exit in 1993

[25]
Cannot solely
replace ACL

Stability and functional
outcome improved,
however not recommended
as an ACL substitute

[26]
] Prone to

anteroposterior
60% rapture rate Market
exit in 1994

[25]
Degenerative
changes

28% rapture rate after 10
years unsatisfactory
guarantee

[29]
Bone tunnel
enlargement

Excellent functional
outcomes, with higher knee
stability, yet long-term
results are still required

[30]



Fig. 2. Strategies to enhance bioactivity of artificial ligament categorized as
graft-based (A, B) and cell-based (C, D). (A) Biodegradable material implanted
into a bone tunnel gets adhered by fibroblasts secreting ECM, and with time
lapsing the original material gets replaced by autologous tissue that creeps back.
(B) Bioactive additives like TCP crystal and bioglass fiber get coated onto the
fabric and contribute to osteointegration formation. (C) Fibers with different
radii of curvature result in different cell polarization tendencies. A large radius
of curvature results in circumferential polarization while the small one results in
axial polarization. (D) 4-arm-PEG hydrogel network demonstrating different
physicochemical properties that mediate fibroblast behavior by cellular signals.
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suitable for ACL replacement as none of the reconstructions approached
the mechanical performance of the normal ACL in the ovine model. A
significant decrease in ultimate tensile strength was caused by partial
tearing of the artificial ligaments observed in 40% of the cases [19,37].

Aside from mechanical response for sheltering autologous ligament
recovery, the postoperative biomechanical interaction between the
prosthesis and the bone tunnel should also be taken into consideration in
biomechanical performance investigation. Bone tunnel enlargement is
one of the most witnessed complications associated with LARS™. Ac-
cording to clinical records, the bone tunnel enlargement rate is 7% due to
incorrect femoral tunnel replacement [38]. In some short- and
middle-term follow-ups, such incorrect replacement gave rise to knee
synovitis and indicated the poor remodeling of artificial grafts. Re-
searchers believed that it was the poor osseointegration between PET
graft and bone tunnel inwall that caused the “wiper effect”, leading to
enlargement of the bone tunnel. However, long-term follow-ups are
required for further evaluation. Another biomechanical complication is
associated with tibial and femoral screw loosening. The concern lies in
the cutting effect of the screw-on artificial ligament. Mostly, artificial
ligaments are fixed by interface screws at the end of bone tunnels.
Swinging or swiping of artificial ligaments in bone tunnels, also known as
the “wiper effect”, leave the prosthesis vulnerable to be cut by screws,
which causes fiber fracture and fabric loosening [30,39,40].

Inappropriate postoperative biomechanical interaction between the
prosthesis and the bone tunnel results in not only prosthesis failure but
also secondary damage to the host tissue. Wang et al. reported two cases
of knee synovitis out of 26 cases of ACL reconstruction with LARS after a
mean follow-up of 11.2 years, concluding that the loosening of the fix-
ation system is one of the heightened causes [41]. Meanwhile, Glezos
et al. studied a case with knee synovitis after LARS implantation with
preservation of the native ACL stump. No obvious rupture and infection
have been proven absent; however, the presence of associated focal
degenerate change was seen in the subsynovial layer on histological
analysis, indicating the initiation of an arthritic process resulting from
the foreign body synovitis [42]. One of the effective methods to tackle
these is by promoting the bioactivity of the implantation material.

2.2. Biological performance

Aside from biomechanical performance, satisfying biological perfor-
mance is also crucial to artificial ligaments for successful ACL recon-
struction. A biocompatible biomaterial must meet the requirement that
physiological reactions of host tissue be restricted within a clinically
reasonable range. Different applications call for different bio-
compatibilities. For artificial ligaments, synovial liquid and bone tunnel
compose the working environment for ligamentous grafts after ACL
reconstruction. In ACL reconstruction, autograft and allograft demon-
strate the best biocompatibility with excellent after-implantation
strength and firm osseointegration. However, complications including
hip ligament defect, local scar, hamstring deterioration, and post-
operative infection have been reported. Meanwhile, known as being free
from cross-infection and source shortage, most failures of artificial liga-
ments are caused by aseptic loosening according to follow-up studies [43,
44]. Thus, synthetic ligament grafts are clinically not recommended for
primary ACL reconstruction but could be used for revision procedures if
other options are not available, which leaves the bioactivity deficiency
problem as the most focus in the designing of artificial ligaments [45].

The earliest stages of artificial ligament design have witnessed the
exploration of bioactivity enhancement. The earliest reported case of
ligament reconstruction with artificial material was silver strings being
applied to ACL reconstruction, however, failed due to a strong rejection
reaction within two months [46]. Clinical application of artificial liga-
ment was suspended until the invention of novel polymer materials in the
1950s. During this time, new artificial ligament products like PTFE
net-shape prosthesis, multi-strand nylon-PET hybrid wire, and Proplast™
artificial ligaments [47–50]. However, these products were reported with
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poor biomechanical performance. Later when came the 1970s, the clin-
ical application of artificial ligaments in ligament reconstruction reached
its peak with the presence of novel products like Gore-Tex™, Leed-
s-Keio™, 3M Kennedy LAD™, and LARS™, among which LARS™ is by
far the most reliable [19].

Clinical results after long-term follow-ups confirmed LARS™ artificial
ligament with efficacy in fast functional recovery of ACL [44,45,51]. In
most cases, the complication of ACL reconstruction with LARS is attrib-
uted to biological failure, which induces mechanical instability, instead
of mere mechanical failure [17]. It is worth pointing out that, biological
performance and mechanical performance are practically interlocked as
the promotion of either side cast brightness on the other. In the early
phases after implantation, a mechanical stable graft shelters autologous
ligament recovery, which is crucial for firm osseointegration with the
host bone. In return, a bony connection between the graft and host bone
provides a stable biomechanical work environment for the graft.

3. Strategies for promotion of artificial ligament bioactivity

Based on the above discussion, current clinical available artificial
ligaments have been known as biomechanically reliable within a certain
duration, however likely to induce complications due to biological
inertia. Thus, different strategies have been proposed to enhance the
bioactivity of artificial ligaments (Fig. 2) and are reviewed in this section.
3.1. Scaffold-based strategy

Traditional synthetic grafts made for ligament treatment are expected
to stay biomechanically and biochemically stable throughout the service
life, leaving no chance for ligamentization. However, the latest research
shed light on the transition of ligamentous graft from synthetic material
to autologous tissue by introducing biodegradable material or bioactive
additives to the scaffold system.

In the initial stages of artificial ligament design, the graft was simply
regarded as a replacement for natural ligament tissue and thus remains
permanent after implantation. After the first few attempts, artificial lig-
aments have been widely clinically accepted in the 1980s and 1990s,
during which artificial ligaments showed quite encouraging primary
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outcomes with low complication rates and good postoperative recovery
[48]. These permanent artificial ligaments are composed of
non-degradable materials, like carbon fiber, PET, or PTFE. Carbon fiber
artificial ligament was one of the first-generation products in the early
1980s [36]. It populated for a while for satisfying tensile strength and
was considered qualified in short-term follow-ups. However, later reports
claimed poor biocompatibility of carbon fiber that host organizations fail
to grow into pores among fibers. In long-term clinical observations,
carbon fiber artificial ligaments were found to be vulnerable to abrasion,
slack even fracture, leading to severe synovitis. Similarly, PTFE was also
once popular as artificial ligament materials however ended up being
eliminated from the market [52]. Gore-Tex™ is representative of PTFE
artificial ligaments. The root cause for implant failure was believed to be
poor biocompatibility of PTFE as host organizations completely failed to
grow into the prosthesis [53,54]. Compared with carbon fiber and PTFE,
PET possesses satisfying mechanical properties but also biocompatibility
thus considered the most promising in artificial ligament fabrication. The
most applied artificial ligaments today, such as LARS™ and Leed-
s-Keio™, take PET as raw material. However, poor bioactivity of PET
artificial ligaments has been massively reported. Thus, novel prosthesis
materials development and corresponding modification strategies have
been a hot spot in the artificial ligament field.

3.1.1. Biodegradable material
Rather than non-degradable materials to compose permanent scaf-

folds, biodegradable materials degenerate in surgically created bone
tunnels after implantation and leave space for natural tissue to creep
back, thus have been employed in artificial ligament fabrication in recent
years. Biodegradable materials used in artificial ligament composition,
including natural polymers like collagen, silk, CHI, HA, synthetic poly-
mers such as PLA, PGA, PLGA, PCL, and biodegradable based polymeric
composites, have been used to produce scaffolds for biodegradable
tendon and ligament tissue engineering as gels, membranes, or three-
dimensional fibrous scaffolds [55–57]. Although these biodegradable
scaffolds have been confirmed with good histocompatibility and
osteoinductivity by previous research claiming that these scaffolds could
promote healing between the graft and bone tunnels by leaving space for
autologous tissue creep replacement, poor biomechanical properties
have restricted them from further clinical application. Such a mechanical
deficiency owes to the inherent strength of the material itself, but also
inappropriate in-vivo degradation speed. As it takes weeks for autologous
tissue to complete creeping replacement, a fast in-vivo degradation rate
causing significant loss in graft strength would lead to the absence of
effective mechanical support, which will eventually fail ACL recon-
struction operation. Thus, the process of biodegradable ligament graft
losing rigidity and newly formed autologous ligaments gaining rigidity
must keep pace with each other.

However, the fabrication of slowly degradable biomaterial with
satisfying biomechanical performance has always been significantly
challenging. In spite, some researchers attempted to fabricate mechani-
cally available artificial ligaments with biodegradable materials. Okada
et al. [54] prepared CHI-HAP composite mono-fiber for ACL recon-
struction using the coagulation method. The results showed that the
addition of HAP inhibits swelling of the fibers compared with chitosan
fiber, thus an improvement in bone-bonding of PET rope could be ex-
pected. However, HAP lowered the overall toughness. Meanwhile, Ran-
gel et al. designed PNaSS/PCL-based graft material with a four-year
degradation time and obtained suitable mechanical properties for
native ACL replacement after surface functionalization [33]. Kawakami
et al. fabricated artificial grafts using wet electrospinning processes using
PEUU and evaluated them in vitro and in vivo in a rat model of ACL
reconstruction with an emphasis on cellular filtration and remodeling
along with any changes in the tensile strength of the graft [58]. Ac-
cording to the results, the synthetic wet PEUU grafts promoted cellular
infiltration and neovascularization while also alleviating inflammation
and increasing tensile strength. Rather than fiber modification, Yang
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et al. applied HPC in synthesizing coating for PET artificial ligament,
reporting that graft osseointegration in the bone tunnel was enhanced
without obvious loss in mechanical performance [59]. Li et al. put efforts
into accessories by applying partially biodegradable TCP/PEEK anchors
to assist a silk-based ACL graft to shelter from prompt mechanics loss
[60]. According to biomechanical evaluations and histological observa-
tions in a porcine model, firm incorporation of the silk graft to the bone
tunnel was identified as well as naturally similar histological transitions
from the silk graft to bone.

3.1.2. Bioactive additive
Bioactive additives being incorporated with structural meshmaterials

have also been proven effective to endow artificial ligaments with
bioactive properties. Such materials include polymers and bio-ceramics.
Bioactive additives join the artificial ligament system in the forms of
comonomer, and coating, being either injectable or rigid depending on
the intended use [61,62].

Bioactive additives provide the matrices with the ability to stimulate
bioreactions between materials and host tissue. One of the most used
additives is bioactive glasses first discovered by Hench in the early 1970s
[63]. Bioactive glasses, also known as bioglasses, mainly composed of
silica tetrahedron, tend to form HAP when immersed in body fluid, thus
considered promising in promoting graft-bone osseointegration. Chen
et al. modified the PET sheet by coating bioglass on the surface. Ac-
cording to in vivo tests, bioglass-coated PET sheets behave significantly
better in the max load-to-failure test, and distinct new bone formation
was observed only in the bioglass-PET group [63]. Apart from osteo-
genesis additives like bioglass, HAP, and TCP, cell-oriented bioactive
additives seek to mediate the cellular behavior of human MSCs. Human
MSCs are multipotent cells that are known to be recruited to bone frac-
ture sites and play a significant role in bone regrowth, thus intriguing
researchers about recruiting endogenous human MSCs to promote the
healing of bone tunnels. Anseth et al. fabricated thiol–ene photo-
polymerized hydrogels and governed human MSC migration within the
in vivo microenvironment [64]. Such hydrogels can be coated onto
artificial ligament fabrics by electrospinning or 3D printing [65,66].
Rather than non-organic gels, the physiologically active substance has
also been enveloped to function as bioactive additives and reported with
a bright prospect of improving graft-bone osseointegration [67]. Chen
et al. designed an ECM/GelMA hydrogel scaffold via 3D printing with
bMSC exosome as the bioactive additive. Such a scaffold enhanced
chondrocyte migration and significantly facilitated cartilage regenera-
tion in the animal model [68]. Most recently, living cells encapsulated or
enveloped as additives to form the so-called “bioink” for 3D printing have
been catching researchers’ eyes. Such a method is especially effective in
bioactivity enhancement of artificial ligaments as newly formed tissues
can be self-assembly and self-organizing owing to cellular microenvi-
ronmental cues provided by cells in the bioink, which will be discussed in
the next part [69–71].

3.2. Cell-based strategy

Scaffold-based strategies discussed above have been experiencing
tremendous progress and have proven effective in artificial ligament
fabrication for bioactivity promotion. Meanwhile, some researchers
relate bioactivity promotion to the postoperative behavior of cells sur-
rounding the ligamentous grafts after implantation, providing that, based
on tissue engineering principles, some cell-based strategies are supposed
to efficiently enhance postoperative follow-ups of scaffolds [72,73].

Cell-based strategies are established on the fact that ample bMSCs in
the bone tunnel possess the differentiation potential to meet the in-
adequacy of the healing capacity of the natural tendon and ligament
tissues. Biomechanical cues function by adjusting cellular adherence and
matrix formation, which further interferes with ECM secretion, and the
mutual shape effect between ECM and scaffold will work together to
meet tissue engineering demands for ligamentization as cells
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demonstrate morphological transformation according to the external
stimulus, including biomechanical cues and biological cues, provided by
the ECM in the organism [74]. Such cues provided by biomaterials may
facilitate the restoration of the structure and function of damaged or
dysfunctional autologous tissues, both in cell-based therapies and acel-
lular therapies [75]. In this section, cell-based strategies are categorized
as biophysical cues and biological cues are then discussed.

3.2.1. Biophysical cue
Biophysical signals include hardness, ductility, topographical factors,

etc., which have been reported with the ability to motivate ligament
healing and relieve osteoarthritis [76,77]. Thus, in artificial ligament
design, these signals are supposed to be converted to bMSCs by proper
ECM construction.

Stiffness: materials with different hardness and ductility mediate
cellular behaviors by altering the cellular skeleton, thus being efficient in
promoting osseointegration between the graft and host bone. Generally
speaking, cells are prone to migrate towards hard regions, characterized
by relatively higher young's module, which has been well-reviewed in
some works [78–80]. Ito et al. reported a strengthening effect of elastin
coating on the artificial ligament, resulting from enhancement of carti-
lage formation and bone formation around bone tunnels [81].

Topography: in terms of topographical factors, two-dimensional
contact between the cell and matrix is the dominant contact form for
artificial ligaments without postprocessing like coating or blending. Like
the traditional cell culture method, artificial ligaments get implanted and
work to provide a substrate for surrounding cells to adhere to. Re-
searchers managed to fabricate micropatterns including grooves or
humps arranged in spatial orders, which contributes to changes in hy-
drophilicity, surface energy, and consequently cell interactions [82].
Meanwhile, topographical variations are found in fibers that compose
ligamentous grafts. The radius of curvature of fibers must also be taken
into consideration. Ji et al. set up a series of research works on collective
cell polarization and alignment, claiming that the nematic order
parameter of substrate generates a spatial distribution of mechanical
forces that function as a stress-driven mechanism to mediate the polar-
ization–contraction relation of cells by developing direction- and
position-dependent behaviors [83–85]. Also, artificial ligaments with
postprocessing like coating or sol–gel process usually generate a relative
layer, rather than merely a substrate, for cells to penetrate, providing
cells with 3D contacts on a micrometer scale. Such a penetrable layer
works in the same way as a culture medium in 3D cell culture.

3.2.2. Biochemical cue
Analogic to bone fracture, biochemical signals regulate histological

morphology during graft healing [86]. Such biochemical signals, usually
referring to cell growth factors, integrins, or pharmaceuticals, guide the
different early healing phases including the proliferation phase, and
maturation phase, throughout the graft healing process [87].

Integrins: integrins like Arginyl-glycyl-aspartate (RGD) sequence is
known as the integrin-binding site of ECM proteins such as fibronectin
and collagen, thus considered contributive in founding osseointegration.
Khorolsuren et al. investigated periodontal ligament cells (PDLCs) on
RGD-synthetic polypeptide conjugate coatings through cell surface
characteristics and concluded that cyclic RGD conjugates can be adopted
as a biocompatible material to strengthen the cell adhesion inducer effect
of artificial cell-substrate coating, thus might be suitable for therapeutic
applications when adopting orthopaedic scaffolds [88].

Growth factors: The growth factor is important for the smart
incorporation of tissue regeneration and repairing process to regulate
cellular behaviors, which can be used for promoting the formation of
ligamentous tissue [89]. Furumatsu et al. conducted a combined use of
bFGF and GDF-5 to enhance the healing of medial collateral ligament
injury. Peptide hydrogels were adopted to fabricate a self-assembling
biodegradable scaffold to provide delivery of growth factors to injured
tissue. Physiological characterization indicated that not only
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proliferation and migration of ligament fibroblast got enhanced, but also
collagen synthesis and fiber alignment got regulated [90].

Pharmaceuticals: Some researchers managed to promote the
bioactivity of the artificial ligament by the application of pharmaceuti-
cals to restrain postoperative inflammations. Conventional pharmaco-
logical agents with a relatively short duration of action results in
vulnerability to non-adherence, thus long-acting preparations have been
proposed such as long-term implants with active substances with a
sustained-release rate [91]. Bishop et al. [92] adopted vancomycin as an
addition to orthopedic bone cement and reported that vancomycin
contributed to eliminating the most common causative orthopedic
implant pathogens without obvious mechanical property loss. Yet, little
research is reported concerning pharmaceuticals application on artificial
ligament design.

4. Manufacturing technologies for artificial ligament bioactivity
promotion

Based on the strategies discussed above, various manufacturing
technologies for artificial ligament bioactivity promotion have been
developed focusing on different aspects (Fig. 3). In this section,
manufacturing technologies involved in recent research works will be
reviewed according to a fiber-textile-scaffold category.

4.1. Fiber modification

Fiber modification, which alters the chemical composition of fabrics
from the fiber level by stem grafting or blending modification, has been
adopted to enhance the bioactivity of ligament grafts. Han et al. [93]
investigated the effects of graphene modification on the bioactivation of
PET-based artificial ligaments and claimed that graphene exhibits
considerable potential for enhancing the surface bioactivation of mate-
rials. Mei et al. [94] managed to blend GO with PET aggregates to
fabricate 2% GO/PET fiber via a twin-screw extruder and melt spinning.
The as-fabricated fiber was reported with ease of weaving, and the fabrics
demonstrated better hydrophily without scarifying mechanical strength
compared to the control group. Meanwhile, human bMSCs were
co-cultured with GO/PET fiber woven fabrics, and enhancement in cell
growth, proliferation, and differentiation was observed.

4.2. Textile design

Textile designs cast an influence on the bioactivity of artificial liga-
ments by varying topographical cues like the fiber orientation and pore
size of scaffolds [55]. Popular artificial ligaments are woven, knitted, or
braided in various ways and possess different textiles, which largely ac-
counts for prostheses' overall behavior. For artificial ligament prostheses,
an interconnected pore network, in an order to allow the adhesion and
migration of cells and growth of autologous tissue that creeps back, has
been considered the essential morphological requirement aside from
mimicking mechanical responses of native ACL [57,94].

Two-dimensional textile: Two-dimensional textile is by far the most
industrially adopted and efficient method to fabricate artificial liga-
ments. Two-dimensional textile is to arrange the fibers in the warp and
weft directions according to a certain law with a crisscross textile
structure is obtained to meet different use purposes. At present, artificial
ligament products used in ACL reconstruction in the world, such as
Neoligaments™, Ligastic™, and LARS™, are prepared by two-
dimensional weaving methods [95]. LARS™ is the most adopted in
China among commercial artificial ligaments as mentioned above with
two-dimensional textiles. According to initial clinical cases of artificial
ligaments, friction caused by uneven stress between meridional fibers
and parallel fibers was reported in joint flexion and extension, which
eventually led to fatigue wear. To shelter from such a tribological prob-
lem, LARS™ adopted a three-stage design: parallel fibers are taken away
from the middle stage and pre-twisted for 90� (i.e., free fibers), while



Fig. 3. Manufacturing technologies to enhance
bioactivity of artificial ligament categorized as fiber
(A), textile (B), and scaffold (C). (A) Bioactive addi-
tives and matrix aggregates are put into the charging
barrel of a twin-screw extruder and produced blended
composite aggregates, which enables the production
of composite fiber with bioactivity. (B) Diagram of 2D
textile, 3D textile, and non-woven textile. (C) Diagram
of coating forming on rolling graft via electrospinning,
artificial tissue being bioprinted, sol–gel method and
ELD process.
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both ends are normally woven [96]. Follow-up reports indicate satisfying
therapeutic effect in early and middle terms as patients were able to
regain athletic ability, confirming that LARS™ works even better than
autologous hamstring graft at stabilizing the knee joint. Though regarded
as clinically effective with such a bionic free-fiber structure, it proved
hard to maintain the tensile property of LARS™ due to weaving method
limitations [19,36].

Three-dimensional textile: Three-dimensional textile introduced
the z-axis into the textile system by employing special three-dimension
weaving machines to produce integral fabrics spreading in three di-
mensions without additional tailoring or sewing by simply configuring
Fig. 4. PGA three-dimensional woven scaffolds (A) Microstructure of a 3D orthogona
two perpendicularly oriented sets of in-plane fibers with the third set of fibers in the th
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corresponding parameters as illustrated in Fig. 4. Cooper et al. [98]
designed a fiber-based tissue-engineered scaffold for ligament replace-
ment and conducted in vitro evaluation. Biodegradable PLAGA fibers
were adopted to fabricate 3D-construct artificial ligaments with different
predesigned braiding angles. The final product was a 48-yarn 3D circular
braid and 48/60-yarn 3D rectangle braids with a construct. According to
the observation, changes in braiding angle can alter the mode pore
diameter, porosity, mechanical properties, and geometry. The maximum
and ultimate tensile strength of the scaffolds was found to be a function of
scaffold geometry, fiber number, and yarn density, and the stress–strain
profile was found to be similar to natural ligament tissue in the 48-yarn
lly woven structure. 3D structures were woven by interlocking multiple layers of
rough-plane direction; (B) SEM image from the top surface of the construct [97].
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rectangle group. Following was in vitro evaluation, during which the
attachment morphology of ACL fibroblasts indicates that the optimal
pore parameter for cells to grow into is 100–300 μm. As a 3D braided
flexible interconnected network helps to transport oxygen and nutrients
throughout the implant site, the scaffold demonstrates better bioactivity
than previous ligament prostheses in intriguing cell proliferating [58].
However, as the number of knots greatly increases with the participation
of the Z-axis, the risk of fabric disintegration also rises. Model simulation
of 3D textiles contributes to optimizing braiding parameters design to-
wards mechanical performance enhancement, yet research related to
bioactivity enhancement is rarely found [99–101].

Non-woven textile: Other than investigations of weaving procedure,
non-woven fabrication methods like electrospinning, low-temperature
sintering method, and model casting have been reported to introduce
geometrical topography to the surface of polymer biomaterials like PET,
PLA, and PLGA. Expected is that non-woven fabric should, however,
studies concerning non-woven artificial ligament fabrication, interaction
with biology systems, toxicity, and in-vivo studies are still in their infancy
[66,102,103].

Textile design of artificial ligament should consider not only me-
chanical stability but also cytocompatibility. Studies of novel textiles
with satisfying biocompatibility have been extensively reported, how-
ever, only a minority investigated biomechanical responses. Elmarzougui
et al. investigated the impact of polyurethane yarns on the mechanical
properties of braid artificial ligaments and concluded that incorporating
elastic fibers leads to mechanical performances very close to those of the
natural ACL [104]. Elmarzougui et al. measured hysteresis of dynamic
fatigue of textile artificial ligaments and claimed that the preconditioning
braided prosthesis is essential for decreasing energy dissipation and re-
sidual deformation [105]. Meanwhile, manufacturing technologies other
than weaving equipment, such as computer simulation like the Finite
Element Method, non-woven fabrication methods like electrospinning,
low-temperature sintering method, and model casting. Some researchers
tend to take advantage of computational simulation when deciding on
optimal weaving parameters, which benefits patient-specific prosthesis
design. Laurent et al. [32] studied the biomechanical behavior of a
multilayer braided scaffoldmade of PLCL fibers with braiding parameters
set up by using a dedicated Finite Element code. The report claims that
the scaffold architecture is predictable with adjustable design parameters
while the mechanical properties and biological performance are tailor-
able by adjusting the braiding angle, number of layers of the scaffold, or
the diameter of the braided fibers. Still, further work is highly needed
concerning the characterization and modeling of the effect of cyclic
loading on the mechanical behavior of the manufactured prosthesis.

4.3. Scaffold modification

Some research seeks to fabricate a coating layer onto ligamentous
prosthesis for bioactivity enhancement. Such coating layers contribute to
bioactivity enhancement by providing both physical support and chem-
ical cues to evoke tissue–material reactions. Commonly adopted coating
technologies will be discussed in this section.

Sol–gel method: The sol–gel process is used to obtain a variety of
high-purity inorganic oxides or hybrid inorganic-organic materials,
based on the hydrolysis and condensation of metal or silicon alkoxide
[106]. The sol–gel method allows for coatings with controlled stoichi-
ometry and particle size, thus considered promising in ligamentous graft
coating fabrication. Saito et al. [107] attained titania coating by sol–gel
method and investigated the effect of titania-based surface modification
of PET on bone-implant bonding and peri-implant tissue reaction. Ac-
cording to the test results, the bone-bonding ability was effectively
achieved in PET materials by titania-based surface modification, owing
to obvious HAP deposition induced by titania coating.

ELD: ELD is another frequently adopted coating method. Wang et al.
[108] fabricated a composite coating consisting of collagen protein and
calcium phosphate mineral silicon substrate by ELD. Self-assembly of
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collagen fibrils and the deposition of calcium phosphate minerals were
observed, providing novel methods to coat inert artificial ligament fab-
rics for osseointegration promotion.

Bioprint: Following principles of tissue engineering, living cells or
cell-derived bioactive matters are encapsulated in matrices like hydrogel
to establish a cytocompatible composite and maintain mechanical
properties by supporting 3D interaction and allowing tissue regeneration,
which is called “bioink” [109]. Merceron et al. fabricated a 3D integrated
muscle-tendon unite construct by bioprinting. The artificial muscle was
fabricated by thermoplastic polyurethane co-printing with C2C12
cell-laden hydrogel-based bioink, while the artificial tendon was fabri-
cated by poly(ε-caprolactone) co-printing with NIH/3T3 cell-laden
hydrogel-based bioink [110]. Such a complex structure guaranteed cell
viability as well as satisfying stiffness, providing a bright perspective in
orthopedic use. Yet, no ligament-specific decellularized ECM bioink has
been reported, which also leaves a vacancy for future efforts [111].

Electrospinning: Electrospinning allows the production of long
continuous fibers with a controlled diameter ranging from nanometers to
microns, mimicking the nanoscale structure of tendon and ligament ECM,
providing topographical cues, mechanical cues as well as biochemical
cues [22]. Chen et al. designed a “Swiss roll”-like bio bioactive hybrid
scaffolds for promoting bone tissue ingrowth and tendon-bone healing
after ACL reconstruction consisting of PCL electrospun nanofiber mem-
branes loaded with recombinant rhBMP-7 and PET fiber mesh fabric
[112]. Post-implant histological observation confirmed that such scaf-
folds enhanced osteogenesis at the tendon-bone interface and shortened
the time of ligament-bone healing, thus offering better mechanical
properties. It's worth noting that even though bioactive coating has been
proven efficient in promoting osteointegration of artificial ligament
fabrics and bone tunnels, long-term follow-ups for clinical reliability
examination.

5. Perspective and outlook

In this mini-review, we have introduced the status of artificial liga-
ment clinical performance and summarized current strategies for the
enhancement of the bioactivity of artificial ligaments. Strategies to
enhance the bioactivity of artificial ligaments have been categorized into
two interpenetrating groups: one is to focus on the prosthesis design
towards the creeping back of autologous tissue, and the other one is to
focus on the behavior of bone-formation-related cells.

In a word, the final purpose of artificial ligament design is complete
ligamentization, both engineers and clinicians are on the same page.
Thus, cellular reaction with the ligamentous grafts is the best foothold
and the combination of ligament prosthesis design and tissue engineering
has been regarded as the most promising direction in developing the next
new generation of artificial ligaments. The cell-based strategies,
including biomechanical cues and biochemical cues, enable direct
cellular reactions with synthetic grafts thus beneficial to osseointegration
between the graft and host bone. Specifically, biomechanical cues, like
topographical designs and stiffness variation, have been reported with
the ability to modify the spatial contribution of cells, thus is expected to
solve the problems of the random spatial distribution of collagens in early
post-implant phases. Biochemical cues, on the other hand, mediating
cellular behavior by interfering with intracellular and intercellular
chemical reactions, provide another direct control on cell reactions with
synthetic grafts. In fact, current commercial ligamentous graft products
are lacking the ability to directly intrigue expected cellular reactions for
osseointegration. Hence, deeper investigations and translations are
needed to make such cell strategies from bench to applications.

Moreover, the establishment of simulation models for artificial liga-
ments’ performance under various physiological environments has been
considered time- and labor-saving in graft design, thus relevant research
fields should also be paid close attention to Refs. [113–116]. It is worth
pointing out that despite all the strategies and technologies mentioned
above, to obtain an ideal market reception, a good balance of
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manufacturing costs and clinical benefits should be underlined
throughout the design and manufacturing process.
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