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Loss of consciousness reduces the stability of brain
hubs and the heterogeneity of brain dynamics
Ane López-González 1,8✉, Rajanikant Panda2,3,8, Adrián Ponce-Alvarez 1, Gorka Zamora-López 1,

Anira Escrichs1, Charlotte Martial2,3, Aurore Thibaut2,3, Olivia Gosseries 2,3, Morten L. Kringelbach 4,5,6,

Jitka Annen 2,3, Steven Laureys 2,3,9 & Gustavo Deco 1,7,9

Low-level states of consciousness are characterized by disruptions of brain activity that

sustain arousal and awareness. Yet, how structural, dynamical, local and network brain

properties interplay in the different levels of consciousness is unknown. Here, we study fMRI

brain dynamics from patients that suffered brain injuries leading to a disorder of con-

sciousness and from healthy subjects undergoing propofol-induced sedation. We show that

pathological and pharmacological low-level states of consciousness display less recurrent,

less connected and more segregated synchronization patterns than conscious state. We use

whole-brain models built upon healthy and injured structural connectivity to interpret these

dynamical effects. We found that low-level states of consciousness were associated with

reduced network interactions, together with more homogeneous and more structurally

constrained local dynamics. Notably, these changes lead the structural hub regions to lose

their stability during low-level states of consciousness, thus attenuating the differences

between hubs and non-hubs brain dynamics.
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It is widely accepted that consciousness is decreased during
sleep, under anaesthesia, or as a consequence of major brain
lesions producing disorders of consciousness (DOC). In clin-

ical settings, different states of consciousness have been defined
depending on the level of wakefulness (i.e. arousal) and awareness
(i.e. the content of consciousness)1. Wakefulness is usually eval-
uated by eye opening, and awareness by the responsiveness of the
patients and their ability to interact with the environment, as a
proxy for subjective experience. The study of these different levels
of consciousness has proven to be essential to understand the
neural correlates of consciousness, yet, the underlying mechan-
isms remain largely unknown. Elucidating these mechanisms is
challenging since they seemingly rely on a non-trivial combina-
tion of alterations in local dynamics and network interactions.

During the last decades, the study of the organization of the
brain and its dynamics has provided increased understanding of
the healthy brain structure and function2–7. On the one hand,
analyses of electroencephalography (EEG), functional MRI
(fMRI), and magnetoencephalography (MEG) have shown that a
hallmark of healthy awake brain dynamics is the balance between
integration and segregation8–11. On the other hand, graph theory
studies have shown that the modular and hierarchical organiza-
tion of the human connectome facilitates the efficiency and
robustness of information transmission3,12. For these reasons,
consciousness has been considered to result from the interplay
between dynamics and connectivity allowing the coordination of
brain-wide activity to ensure the conscious functioning of the
brain13–16. In contrast, unconscious states are characterized by a
loss of integration14,17,18, a loss of functional complexity19,20, and
a loss of communication at the whole-brain level9,18,21,22. Inter-
estingly, it has been shown that functional connectivity deviates
from structural connectivity during conscious wakefulness but it
follows closer the organization of the anatomical connections
during unconscious states13,23–25. Along with these global net-
work effects, it has been proposed that some brain regions play an
important role in maintaining consciousness, e.g. fronto-parietal
regions, posterior cingulate, precuneus, thalamus and
parahippocampus1,26,27. To study how structural, dynamical,
local and network brain properties interplay in the different levels
of consciousness, theoretical models are needed that incorporate
all these levels of description.

In this study, we built whole-brain models with global and local
parameters to investigate the possible mechanisms underlying the
reduction of consciousness as a consequence of severe brain
injury and transient physiological modifications due to propofol
anaesthesia. For this, we studied the fMRI dynamics of patients
who have suffered brain injuries from various etiologies (i.e.
traumatic brain injury (TBI), anoxia, haemorrhage) affecting
different brain regions implicated in DOC. Specifically, we ana-
lyzed data from patients with Unresponsiveness Wakefulness
Syndrome (UWS; preserved arousal but no behavioural signs of
awareness)28 and in Minimally Conscious State (MCS; fluctuating
but reproducible signs of consciousness)29, and compared them
with healthy control subjects (CNT) during conscious wakeful-
ness i.e. resting-state. We also considered fMRI recordings of
healthy controls scanned during conscious wakefulness (W),
propofol-induced sedation (loss of responsiveness, S) and during
the recovery from it (responsiveness regained, R). To study the
brain dynamics, we performed phase-synchronization analyses
that capture the relationships between the phases of BOLD sig-
nals at high temporal resolution — a method that has proven to
effectively describe the spatiotemporal dynamics of fMRI
signals30.

To interpret these observations, we used a whole-brain model
based on Hopf bifurcations31. This model combines single-node
local oscillatory dynamics and network interactions. It is able to

generate different collective dynamics depending on the shape of
anatomical connectivity, the global strength of connections and
the local state of the network’s nodes. Importantly, the model
allows investigating the interplay between the network structure
and the dynamics at the local and global level. In particular, it
allows us to study how network dynamics depend on the local
activity of brain regions that have an important place in the
structural network, such as highly connected nodes, usually
referred to as “hubs”.

Results
We performed both data- and model-driven analyses to compare
different levels of consciousness in two neuroimaging datasets
comprising DOC patients and healthy subjects under propofol
sedation. The first dataset consisted of fMRI signals and diffusion-
MRI based structural connectivities (SC) from healthy subjects
during conscious wakefulness (n = 35), and MCS and UWS
patients (n = 33 and n = 15, respectively). The analysis was
complemented with an additional fMRI dataset from 16 healthy
controls scanned during conscious wakefulness (W), sedation (S)
and recovery from it (R).

Decreased brain phase dynamics complexity in low-level states
of consciousness. The first step in our analysis consisted of
searching for spatiotemporal signatures of loss of consciousness
from the whole-brain dynamics, as measured by the blood-
oxygen-level-dependent (BOLD) signals. For this, we calculated
the time-evolving functional connectivity based on the level of
synchrony between the signals. The instantaneous phases of the
BOLD were extracted in the 0.04–0.07 Hz frequency band6,30,32

using the Hilbert transform (Fig. 1a, b). The phase-interaction
matrix P(t) was then defined as the pairwise phase differences
between all regions of interest (ROIs, Fig. 1c). A P(t) matrix is
defined at every time point t, thus allowing us to define the phase-
interaction matrices at the same temporal resolution as the
BOLD. A variety of spatiotemporal properties were then quan-
tified from the phase-interaction matrices.

We first examined the spatial properties of the phase-
interaction matrices. To estimate the level of specialization and
coordination in the network, we used measures of integration and
segregation. The level of integration—cohesiveness in the network
—was calculated by hierarchically scanning through the forma-
tion of connected components in the time-averaged phase-
interaction matrix 〈P〉8,9,33,34 (see “Methods”). To quantify
segregation, we applied community detection methods on the
matrix 〈P〉 to detect functional clusters of ROIs35. The quality of a
partition of ROIs into clusters is evaluated by the modularity
function (see “Methods”). A large modularity implies that ROIs
are divided into well-defined clusters, indicating strong segrega-
tion. On one hand, we found that the average integration across
time was significantly lower for MCS and UWS, compared to
CNT, for S and R compared to W, and for S compared to R
(Fig. 1d, see Table 1 for statistics). On the other hand, we found
that the average segregation was significantly stronger for UWS
compared to CNT, and for S compared to W (Fig. 1e, see Table 1
for statistics). Thus, low-level states of consciousness were
characterized by a decrease of integration and an increase of
segregation.

Second, we evaluated the temporal fluctuations of the mean
phase-interaction. For this, at each time t, we computed the phase
interaction averaged over ROIs, i.e., r(t), see “Methods”. The
standard deviation of r(t) provides an estimate of how much the
average synchronization fluctuates in time. We found a
significant reduction of phase-interaction fluctuations in low-
level states of consciousness compared to conscious states (Fig. 1f;
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Fig. 1 Changes in global properties of phase dynamics induced by loss of consciousness. a BOLD band-pass signals (0.04–0.07 Hz) for two sample ROIs.
The instantaneous phases, ϕj(t) and ϕk(t), of each signal were computed using the Hilbert transform. b At each time frame, the interaction between ROIs was
given by the instantaneous phase difference, Δϕjk(t)= ∣ϕj(t)−ϕk(t)∣, which can be represented as vectors in the unit circle of the complex plane. c Phase-
interaction matrices Pjk(t) were calculated as the cosine of the phase difference, cosðΔϕjkðtÞÞ, at time t. All global measures used afterwards were based on the
phase-interaction matrices. d–e The structure of phase interactions was described in terms of the integration and the segregation of the time-averaged phase
interaction matrix (see “Methods”). fWe quantified the temporal fluctuations of the mean phase synchrony (i.e., the average over ROIs of matrix P(t)) through
its temporal standard deviation. g To detect the existence of recurrent synchronization patterns, we computed the FCD comparing phase-interaction matrices at
different times (see “Methods”). Briefly, the FCD represents the (cosine) similarities between phase-interaction matrices at times t and t0 for all possible pairs
(t, t0). The panel shows the average similarity for each experimental condition. In panels (d–g), each dot represents a participant and the boxes represent the
measure’s distribution. Boxplots represent the mean of the measures' values with a 95% confidence interval (dark) and 1 SD (light). Differences between groups
were assessed using one-way ANOVA followed by FDR p-value correction. *: p < 0.05; **: p < 0.01; ***: p < 0.001 (see Table 1 for details).

Table 1 Descriptive statistics and group comparisons of the global measurements of cerebral organization.

Integration Segregation Phase interaction fluctuations Mean FCD

DOC datatsets
CNT 0.65 ± 0.01 0.26 ± 0.01 0.15 ± 0.01 0.38 ± 0.02
MCS 0.56 ± 0.01 0.31 ± 0.01 0.09 ± 0.01 0.28 ± 0.02
UWS 0.54 ± 0.03 0.35 ± 0.03 0.07 ± 0.02 0.27 ± 0.03
ANOVA p < 0.001 p=0.006 p < 0.001 p < 0.001

F2,80= 18.51 F2,80= 5.65 F2,80= 17.81 F2,80= 10.90
Multiple comparisons
pCNT−MCS <0.001 0.207 <0.001 0.014
pCNT−UWS <0.001 0.016 <0.001 0.023
pMCS−UWS 0.241 0.223 0.420 0.594
Propofol anaesthesia datasets
W 0.71 ± 0.02 0.27 ± 0.03 0.14 ± 0.03 0.47 ± 0.04
S 0.59 ± 0.01 0.45 ± 0.02 0.07 ± 0.01 0.28 ± 0.01
R 0.65 ± 0.01 0.36 ± 0.02 0.12 ± 0.02 0.38 ± 0.02
ANOVA p < 0.001 p < 0.001 p < 0.001 p < 0.001

F2,45= 18.80 F2,45= 12.86 F2,45= 12.77 F2,45= 16.83
Multiple comparisons
pW−S <0.001 0.001 <0.001 <0.001
pW−R 0.029 0.057 0.184 0.022
pS−R 0.006 0.039 0.014 0.017

The table shows the mean values and standard error of the empirical measures of integration, segregation, phase interaction fluctuations and mean FCD. Group comparison statistics were computed with
a one-way ANOVA, followed by FDR correction (adjusted p-values are shown).
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see also Table 1 for statistics), i.e. indicating that synchronization
patterns in low-level states of consciousness fluctuate less than in
conscious states.

Temporal fluctuations of the average phase-interaction matrix
indicate excursions of the total level of synchrony over time but,
alone, they do not capture the presence of connectivity patterns
which re-occur over time. Therefore, we next evaluated the
temporal recurrence of the phase-interaction matrices, referred as
functional connectivity dynamics (FCD, see “Methods”), that
describes how recurrent in time the synchronization patterns
were. Briefly, this method computes the phase-interaction
matrices averaged over sliding time windows and measures the
similarity across all pairs of time windows, which is summarized
in the FCD matrix. We found that low-level states of
consciousness presented a significantly lower average FCD than
in normal wakefulness (Fig. 1g; see also Table 1 and Supplemen-
tary Fig. S1). This suggests that the phase synchronization
patterns were less recurrent in time for low-level states of
consciousness.

Altogether, the above results show that, in both pathological
and pharmacological low-level states of consciousness, the
patterns of phase-synchronization were less connected, more
segregated and less recurrent in time than in healthy conscious
states.

Decreased global coupling in low-level states of consciousness.
To gain insights into the possible mechanisms underlying the
changes in the time-evolving functional connectivity reported in
the previous sections, we used a computational model to describe
the whole-brain dynamics. In this model, brain regions were
modelled as oscillators, allowing the study of phase-
synchronization patterns. Specifically, the local dynamics of
individual brain regions were modelled by noisy Stuart-Landau
oscillators, see Eqs. (7) and (8) in “Methods”. This model captures
the so-called Hopf bifurcation, a transition from noisy to oscil-
latory signals by the variation of a single parameter, and it has
shown to fit the resting-state BOLD dynamics quite accurately31.
In this case, the bifurcation parameter is the parameter aj,
representing the decay or growth rate of the system and thus
controlling its stability. When aj < 0, ROIs produce noisy signals
and when aj > 0 their signals become sustained oscillations, see
Supplementary Fig. S2. At the transition, when aj ~ 0, ROIs dis-
play flexible noisy oscillations of low amplitude, a regime in
which ROIs are most susceptible to the inputs from other ROIs.
The natural frequency of oscillations for each ROI was estimated
from the peak of the power spectra estimated from their BOLD in
the frequency band 0.04–0.07 Hz. Then, the N= 214 brain
regions were coupled through the connectivity matrix Cjk, which
is given by the structural connectivity of healthy subjects. The
brain regions were defined according to the Shen atlas, ignoring
the cerebellum36. The matrix Cjk was scaled by a global coupling
g. Thus, the large-scale network was weakly or strongly connected
for small or large values of g, respectively (Fig. 2a). In summary,
at this level of description the network dynamics depended on
three ingredients: the local parameters for each node (aj), the
global strength of connections (g) and the network’s structure
(Cjk).

First, we studied the network dynamics for the homogeneous
case, in which we set aj= 0 for all nodes. This choice was based
on previous studies which suggest that the best fit to the empirical
data arises at the brink of the Hopf bifurcation where a ~ 031. In
this case, the network dynamics were determined by a single free
parameter: the global coupling strength g. This parameter was
estimated by fitting the FCDs from the empirical data with the
FCDs calculated from the simulated signals at various values

of g31,37. Specifically, empirical and simulated FCDs were
compared using the Kolmogorov-Smirnov distance of their
values (KS-distance, Fig. 2b). For low and high values of g, large
KS distance indicates differences between the mean values of the
FCD distributions. In the intermediate range of g shorter KS
distance evidenced a closer similarity between the empirical and
the simulated FCDs (Fig. 2c). We considered the g where KS
distance is minimized as the optimal working point of the
model31,37,38. Notably, although the fit of the model was based on
the FCD, the models also maximized the fit of other data statistics
including Pearson correlation functional connectivity and phase-
interaction fluctuations (Supplementary Fig. S3).

We found that the optimal value of g was smaller for states of
low-level states of consciousness than for conscious wakefulness
(Fig. 2c-d, see Table 2). This is consistent with the observation
reported in the previous section that the correlation between
structural and functional connectivity increases in states of low-
level states of consciousness (Supplementary Fig. S4). The global
coupling g is a scaling parameter that controls for the
conductivity of the fibres given by the SC. At low g the network
interactions are mainly restricted to ROIs directly connected by
high strength links. Thus, increasing the global coupling favours
the propagation of recurrent activity within the network allowing

Fig. 2 Fitting of global coupling parameter in the whole-brain network
model. a The global coupling model parameter g scales the weights of the
SC matrix. Low and high values of g represent networks where the functional
connectivity is weakly and strongly coupled to the structural networks,
respectively. b To estimate this global parameter, we sought the model that
best reproduced the distribution of FCD values (fixing all other model
parameters). c KS-distance between the empirical and the model FCD
distributions, as a function of g, for one participant of each subject group
(top: healthy controls and DOC patients; bottom: awake and anaesthetized
subjects). Solid lines and shaded areas represent the mean and the standard
error of the fitting curves over simulation trials. d Optimal global coupling g
for all participants. In each panel, each dot represents a participant and the
boxes represent the distribution of g. Boxplots represent the mean of the
measures' values with a 95% confidence interval (dark) and 1 SD (light).
Differences between groups were assessed using one-way ANOVA
followed by FDR p-value correction. *: p < 0.05; **: p < 0.01; ***: p < 0.001. In
panels (c) and (d), we used the healthy structural connectivity as the
underlying connectivity of all models.
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for correlations to emerge between nodes that are not directly
connected with each other via structural connections. These
results showed that in low-level states of consciousness, the brain
dynamics were more constrained by the pairwise structural
connections while in conscious awake—characterized by stronger
levels of g— brain dynamics decouple from the purely direct
anatomical constraints.

Loss of regional heterogeneity in low-level states of con-
sciousness. We next asked whether we can obtain additional
information by relaxing the homogeneity constraint on the local
bifurcation parameters. In this case, the global coupling parameters
g were fixed to the ones estimated in the previous section—the
homogeneous model in which all aj= 0—but the local parameters
aj were allowed to vary, thus introducing heterogeneity in the
working point of the ROIs. The individual aj were estimated from
the data using a gradient descent method (see “Methods”).

We compared the resulting bifurcation parameters across
nodes within and across groups. We found that bifurcation
parameters in normal wakefulness (CNT and W groups) tended
to be more negative as compared to those in low-level states of
consciousness, Fig. 3a–d. This implies that the behaviour of ROIs
in normal wakefulness are characterized by noisy oscillations—
that are more stable—than their corresponding behaviour in low-
level states of consciousness. This was especially the case for the
dynamics of the structural hub ROIs, i.e. the nodes with the
highest values of SC strength (Sj=∑kCjk), which showed strong
negative values of aj in normal wakefulness, Fig. 3a–d. Notice that
in Fig. 3 ROIs are sorted by their SC strength in descending order.
Comparing normal wakefulness (W) before and after sedation
(recovery, R), both cases showed a similar distribution of aj. In
particular, the negativity of aj was reestablished for hubs in the
recovery stage (Fig. 3d). This tendency was also observed when
comparing MCS and UWS (Supplementary Fig. S5). We note that

Table 2 Estimated global coupling parameters (means and standard deviations) for all experimental conditions.

Conditions CNT MCS UWS W S R

Global coupling g 1.7 ± 0.1 1.2 ± 0.1 0.8 ± 0.2 2.0 ± 0.2 0.9 ± 0.1 1.4 ± 0.2

p-values: pCNT−MCS= 0.015, pCNT−UWS= 0.019, pMCS−UWS= 0.7984; pW−S < 0.001, pW−R= 0.031, pR−S= 0.080. Values are explicitly provided for reproducibility, i.e. the simulations can be repeated
with the global coupling strength’s exact value.

Fig. 3 Local bifurcation parameters of the whole-brain model. a–d Estimated bifurcation model parameters a for each of the 214 nodes (sorted by node
strength). Bars indicate the mean ± standard deviations across simulation trials. Results for low-level states of consciousness (MCS and UWS) are
compared against the healthy controls in a and b. Results for anaesthesia and recovery (S and R states) are compared to the initial awake state (W) in c
and d respectively. e Ranked absolute parameter difference, Δa, for all the comparisons. f Spatial distribution of Δa > 0.15 in the brain for each of the group
comparisons. g Relationship between the absolute difference Δa and the strength of each node. The absolute difference of the parameter a values between
different groups as a function of the strength of the nodes extracted from the SC of the healthy controls. ρ corresponds to the Pearson correlation.
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the resulting distribution of aj contributed to network collective
dynamics, since shuffling the values of across brain regions lead
to worse fits of the network statistics (Supplementary Fig. S6).

To identify the regions with the largest alterations in the local
dynamical properties, we computed the absolute difference in
local parameters, i.e. Δa, between patients and controls and
between sedation/recovery and wakefulness (Fig. 3e–g). The
largest differences in local parameters between controls and MCS/
UWS patients were found in subcortical regions (thalamus,
caudate, hippocampus and amygdala) and in some cortical
regions (calcarine, insula, fusiform, frontal superior orbital,
precuneus, cingulum, and temporal areas), see Fig. 3f left and
Supplementary Tables S1-S2. When comparing the local para-
meters between wakefulness and sedation, the regions with largest
differences included subcortical regions (thalamus, caudate,
hippocampus, parahippocampal and putamen), and cortical
regions (cingulum, insula, some frontal regions, paracentral and
precentral), Fig. 3f top right and Supplementary Table S3. The
main differences between wakefulness and recovery were found in
the hippocampus, the cingulum and the precuneus, Fig. 3f bottom
right and Supplementary Table S4. Interesting, Δa and the
connectivity strength of the brain regions significantly correlated
(correlation: 0.40−0.94, p < 0.001, Fig. 3g), indicating that the
regions with the largest difference in the local bifurcation
parameters were mostly the hubs.

Furthermore, we investigated the role of the regional dynamics
in the stability of the system. For this, we studied the linear
stability of the system by decomposing the Jacobi matrix A into
eigenvectors (see “Methods”). Figure 4 shows the eigenvectors of
A as a function of the node structural strengths and the real part

of the eigenvalues associated with the eigenvectors, Real(λ). Since
the system is stable, Real(λ) < 0 for all eigenvalues. Clearly, the
network hubs contribute the most to the most stable eigenvectors,
i.e., those with lowest Real(λ). This indicates that the hubs are key
nodes to stabilize the system. Moreover, the stability of these
dominant eigenvectors was reduced for models estimated from
data corresponding to low-level states of consciousness, see Fig. 4.
Thus, these results showed that the hubs lost their stabilizing role
in low-level states of consciousness.

Disentangling regional and network effects. When observing
the temporal activity of a brain region, as we do here via their
BOLD signals, this activity is representative of the behaviour of
the ROI embedded in the whole-brain network. In other words,
we do not have access to the intrinsic activity of brain regions in
isolation, as if they were separated from the rest of the network.
Therefore, all ROI-specific parameters we estimated are neces-
sarily affected by the network interactions. For example, the local
bifurcation parameters presented in Fig. 3 incorporate effects
coming both from the local dynamics and originated from the
network interactions. In the following, we used a strategy to
disentangle the changes in local parameters due to network effects
from those due to local modifications. This analysis provides
information about the origin (local or network-related) of the
different dynamics of the ROIs for the different states of
consciousness.

We defined an effective local parameter that is composed of the
bifurcation parameter (aj) and the connectivity strength of each
node (Sj=∑kCjk), given as aeffj ¼ aj � gSj, (see “Methods”). For

Fig. 4 Eigendecomposition of the Jacobi matrix. The eigenvectors of the Jacobi matrix (N-dimensional vectors) were sorted according to the real part of
the associated eigenvalues (top insets), Real(λ), and the strength of the nodes (right insets).
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the family of homogeneous models (aj= const. ), the effective
parameter is linearly related to the connectivity strength, while in
the heterogeneous case deviations from this linear relation are to
be expected. In other words, in the homogeneous case differences
in effective local dynamics are fully explained by the network
connections. In contrast, the heterogeneous model can produce
additional diversity of local dynamics.

To disentangle the network effects from changes in local
dynamics, we evaluated the deviations from the expected linear
relation between effective local parameters and node strength in
the different levels of consciousness. First, we estimated aeffj from
the data in each brain state using gradient descent with fixed g for
each condition (the values of g were those of Fig. 2d). Note that,
in this case, instead of estimating aj, the method estimates directly
aeffj (see “Methods”, Eq. 11). Next, we evaluated the linear

regression deviation between aeffj and the strength of the nodes
(Fig. 5a, b). We found that the residuals of a linear regression
were larger for control subjects and during healthy wakefulness
than for DOC patients and sedation (Fig. 5c–d, p < 0.002 for all
comparisons in both datasets computed with a one-way-

ANOVA, followed by FDR correction). These results indicated
that conscious states are associated with collective dynamics
emerging from regional heterogeneity—variance in the working
point of the ROIs. In contrast, low-level states of consciousness
are associated with dynamics generated by a network of ROIs
with homogeneous working points. In this case, the observed
dynamical differences across ROIs are predominantly explained
by differences in connectivity strength. These results provided
additional evidence that dynamics in low-level states of
consciousness are strongly constrained by structural connections.

Alteration of the structural core in DOC patients. In the pre-
vious section, we have shown that under conditions of loss of
consciousness the dynamical heterogeneity of the ROIs is reduced
and that these changes affect specially the ROIs with largest node
strength (Fig. 3a–d). In order to close the loop, our goal is now to
investigate possible alterations in the structural connectivity of
patients due to brain injuries that could cause the changes
observed at the dynamic level. Therefore, we took a closer look at
the hierarchical organization of the ROIs and their structural
interconnections. We compare the strength of the ROIs—the sum

Fig. 5 Disentangling structurally and dynamically driven heterogeneity of local nodes. a-b The effective local bifurcation parameters, aeffj , were estimated
using the heterogeneous model. In this model, the parameters aeffj were optimized, after fixing g to that obtained for the homogeneous model (see
“Methods”). The obtained parameters were compared to the strengths of the nodes Sj, for healthy controls and DOC patients (a) and for awake and
sedation conditions (b). In each panel, each dot represents one node. The red lines indicate the linear fits. c Distribution of the absolute residuals of each
node given by the squared difference between the value of aeffj and the estimated linear relationship between aeffj and Sj, for each group. d Same as (c) but
for W, S and R states.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02537-9 ARTICLE

COMMUNICATIONS BIOLOGY |          (2021) 4:1037 | https://doi.org/10.1038/s42003-021-02537-9 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


of connection weights per node—to search for highly connected
ROIs (hubs). Notice that the models performed in the previous
sections were constrained using the structural connectivity of the
healthy subjects, see Fig. 6a. Using only the SCs of controls
allowed comparing the optimal parameters of the model between
groups and interpreting the alterations in the system.

The node strength across ROIs is heterogeneous in the control
subjects with the strength of some ROIs notably standing out
from the rest (Fig. 6b, blue line). However, the strength of ROIs in
DOC patients (Fig. 6b, green and red lines) is rather
homogeneous and no ROI stands out; implying that the presence
of hubs is suppressed in DOC patients due to brain lesions.
Regions with significantly decrease strength compared to controls
(p < 0.05, Wilcoxon rank-sum test with FDR correction) in MCS

patients include the thalamus, the posterior and the anterior
cingulum, hippocampus, the frontal medial, motor areas, caudate,
precuneus, insula and precentral, for MCS patients (Fig. 6c left,
see also Supplementary Table S5). In UWS patients, it included
the aforementioned regions plus the fusiform, the parahippo-
campal, the cuneus, the lingual and the temporal areas (Fig. 6c
right, and see details in Supplementary Table S6). Figure 6d
shows the distribution of node strengths in the population
average SCs for the three cases: control subjects (blue), MCS
patients (green) and UWS patients (red). As seen, the presence of
hub regions in the controls is characterized by a slow decay of the
distribution at the higher end while the distributions for MCS and
UWS patients rapidly decay. Hub regions with strength S > 4.5 in
the controls are depicted in Fig. 6e. They comprise the insula,

Fig. 6 Disruption of the structural connectivity in DOC patients. a SC matrices were averaged over subjects for each clinical group (CNT, MCS, and
UWS). b Average node strength of each node for each group. Shaded areas represent the standard error across subjects. The grey dashed line corresponds
to the threshold, S= 4.5, which determines the hub regions. c ROIs with significant decrease of strength in patients as compared to controls (Wilcoxon
rank-sum test, followed by FDR correction). Left (green): CNT-MCS comparison; Right (red): CNT-UWS comparison. d Distribution of the node strength in
the population average SCs. The distribution in controls displays a longer tail corresponding to hub regions, depicted in e. f k-density curves – average
weight of links between regions with strength S > S0 – show the loss of a rich-club structure in MCS and UWS patients. g Average link weight between hubs
(i.e. regions with S > 4.5) in yellow and the average link weight between non-hubs regions (i.e. S < 4.5) in violet. h Distribution of the estimated bifurcation
parameters aj using the average SC for each clinical group (healthy, MCS, and UWS). i The variance of the distribution of parameters aj for each clinical
group. j Median of the absolute residuals of the linear relationship between the aeff vs strength. ***: p < 0.001, Wilcoxon rank-sum test, followed by FDR
correction.
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thalamus, caudate, hippocampus, parahippocampal, calcarine,
precuneus and cingulum mid.

Next, we examined the interconnections between the hub ROIs. A
network is said to contain a rich-club if (i) it contains hubs and (ii)
those hubs are densely interconnected among themselves forming a
cluster. The presence of a rich-club is often regarded as the structural
core that helps maintain the integration of cross-modular informa-
tion, thus potentially facilitating consciousness25,39,40. As already
shown, the presence of hubs is disrupted in the DOC patients and
thus according to the first condition, without hubs no rich-club can
be formed. We confirmed the disruption of the rich-club in DOC
patients in two manners. First, we computed the weighted k-density
on the population average SCs. This metric evaluates the average link
weight between the regions with node strength S larger than a given
strength S0, scanning for all values of strength from zero to Smax. For
healthy controls, the weighted k-density grown monotonically
evidencing that the larger the strength of the nodes, the stronger
were the links between them (Fig. 6f, blue curve). However, the lack
of hubs in MCS and UWS patients led to an early cutoff of the
k-density (green and red curves) evidencing the absence of a rich-
club in these cases. Second, we compared the average link weight
between the hub regions (previously selected from the SC of healthy
controls as ROIs with S > 4.5) and non-hub regions, Fig. 6g. Clearly,
the SC hubs were connected by stronger links than non-hubs in the
three cases, and those links were strongest in the SCs of healthy
controls.

Last, we remind that the whole-brain modelling performed in
the previous sections were performed using the structural
connectivity of the healthy subjects to constrain the model. We
repeated the simulations for the cases of MCS and UWS patients
using the injured connectomes from the patients. In these
simulations, we did not find significant differences in the global
coupling parameter g in comparison with the values identified
before (Supplementary Fig. S7). This was due to the high inter-
individual variability of the structural connectivities. Also,
consistent with the results above, we found that the heterogeneity
of local bifurcation parameters was reduced for the models
corresponding to DOC patients (Fig. 6h, i and Supplementary
Fig. S8). Moreover, the dynamically based heterogeneity was
significantly reduced as compared to the control case (Fig. 6j and
Supplementary Fig. S9), indicating that local parameters were
strongly determined by structural connections. These effects were
stronger using injured SCs than using the healthy SC for all
conditions, implying that structural damage in patients causes a
rather homogeneous dynamical behaviour across ROIs.

Discussion
In the present study, we have analyzed and modelled brain
dynamics from patients with reduced consciousness due to brain
damage (MCS and UWS), and from healthy participants under
propofol-induced sedation. We have shown that reduction of
consciousness is characterized by brain dynamics with less
recurrent, less connected and more segregated patterns of phase-
synchronization than for conscious states. Using whole-brain
network models constrained upon healthy and injured structural
connectivities, we could show that both pathological and phar-
macological low-level states of consciousness present altered
network interactions characterized by closer global resemblance
between the phase synchronization patterns and the structural
connectivity than in conscious wakefulness. Furthermore, low-
level states of consciousness also manifest more homogeneous
dynamical behaviour across regions. This effect was especially
prominent in the structural hub regions—the most structurally
connected ROIs—whose local dynamics shift towards unstable
oscillatory regimes with a loss of their stability and disentangling

from the constraints to the anatomy in low-level states of
consciousness.

The whole-brain network model used here allows us to
understand how structural, dynamical, local and network prop-
erties interplay in the different levels of consciousness. Within
this model, the network dynamics depend on three ingredients:
(i) the global strength of connections, (ii) the regional bifurcation
parameters and (iii) the organization of the structural con-
nectivity. We allowed these features to vary in the different model
versions we used here. First, assuming homogeneous local
dynamics across brain regions, we found that low-level states of
consciousness had lower global coupling strength than conscious
states. This finding is consistent with the observation that func-
tional connectivity decreases in states of low-level states of
consciousness13,24,39 and it explains why in this case functional
connectivity follows closer to structural connectivity. Indeed, the
global coupling is a scaling parameter that controls for the con-
ductivity of the structural connections in the model. At low
coupling, the propagation of activity is mainly restricted to ROIs
connected by links with large strength. Increasing the global
coupling favours the propagation of activity through direct and
indirect connections within the network, thus allowing for cor-
relations to emerge also between nodes that are not directly
connected with each other.

Second, we used a model where the local bifurcation para-
meters (a) were allowed to vary individually for each region.
These parameters were estimated from the data, resulting in a
more heterogeneous distribution of their values in conscious
wakefulness than in low-level states of consciousness. In parti-
cular, we found that during conscious wakefulness the behaviour
of structural hubs is characterized by noisy oscillations (a < 0)
that are more stable than for the rest of the regions. In contrast, in
low-level states of consciousness, all regions display oscillations
close to the transition (a ~ 0) without differentiation between
hubs and non-hubs. Interestingly, linear stability analysis showed
that the stable noisy oscillations of the hubs primarily determine
the network stability. These results suggest that in order to release
the structural constraints on local dynamics, while ensuring the
global stability of the system, hubs play an important role by
diminishing their variability. In contrast, unstable hubs would
propagate noise to the rest of the network, thus degrading the
communication among brain regions. Furthermore, we showed
that differences in local parameters could arise by different local
dynamics or by different connectivity to the rest of the network.
We disentangled these two possible origins of variability by
estimating the effective local parameters. Our analysis showed
that, for low-level states of consciousness, the estimated local
dynamics were strongly determined by the structural connections,
impeding any additional heterogeneity arising from dynamics,
which is consistent with the weaker coupling previously
discussed.

The relevance of the results presented here shall be framed
under various aspects. Theories of consciousness such as Inte-
grated Information Theory11 or the Global-Workspace
Theory10,26 propose that higher-level associations and con-
sciousness require the dynamic integration of sensory informa-
tion processed previously by specialized brain regions
(segregation). Thus, an imbalance of this coexistence between
integration and segregation could lead to different pathologies.
Consistent with this view, we found an alteration of integration-
segregation of functional phase interactions during low-level
states of consciousness caused by brain damage, propofol
anaesthesia, and anaesthesia’s long-lasting effects during recovery
(Fig. 1). Here, we showed that the diversity of phase synchroni-
zation patterns and their recurrence in time were also reduced in
low-level states of consciousness, presumably leading to a failure
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to dynamically balance integration and segregation. These results
are in line with previous studies showing differences in the syn-
chronized states both in space and time during altered states of
consciousness14,17,18,24,39–42.

From an anatomical point of view, the study of brain con-
nectivity in the recent decades has shown that large-scale struc-
tural connectivity is modular and hierarchically organized, with
the multiple communication pathways centralized by a set of
highly connected brain regions (the hubs) that are densely
interconnected forming a rich-club7,43,44. This architecture, also
known as core-periphery networks, is expected to facilitate the
coexistence of integration and segregation of information in the
brain. It has been proposed that the imbalance between integra-
tion and segregation can lead to loss of consciousness17,45,
impairing the neural communication across specialized brain
modules or subnetworks46–48 or impeding the integration of that
information by the core hubs. Here, we showed that structural
breakdown of core-periphery architecture, as observed in injured
structural connectivity, leads to a reduction of dynamical het-
erogeneity (Fig. 5). Including the damaged structural con-
nectivities due to brain injuries in the DOC patients into the
model showed a further limitation of the diversity of local
dynamics in pathological low-level states of consciousness.

From a dynamical point of view, our results show that the
breakdown of an additional dynamic-based heterogeneity
observed in conscious states leads to an attenuation of the sta-
bility properties of the hubs during low-level states of con-
sciousness. We believe that the dynamical stability of the hubs is a
signature of consciousness and has functional implications.
Indeed, the stability of hubs is required to maintain a functional
core-periphery architecture. Such core-periphery architecture is
essential to achieve a trade-off between stability and flexibility49,
with the network periphery supporting more responsivity and
plasticity while the network core aids in maintaining the
robustness of the system50–53. Consistent with this view, previous
works on whole-brain fMRI have observed core-periphery orga-
nization during resting state54 and a stable core together with a
variable periphery during learning55. In conclusion, we find that
functional disruption in low-level states of consciousness might
partly be caused by an attenuation of core-periphery structure
induced by (i) the structural damage of the hubs or (ii) the loss of
stability of the hubs.

Overall, our results suggest that, during healthy wakefulness, in
order to allow a dynamically based heterogeneity of local
dynamics across the brain, resulting in diverse collective activity
patterns, while preserving stability and a core-periphery archi-
tecture, the hubs are required to “anchor” the dynamics by
increasing their stability.

It is well known in clinical literature that loss or reduction of
consciousness is related to the impairment of certain key brain
regions that are dynamically and/or structurally altered during
low-level states of consciousness. These areas have been proposed
previously to be involved in the thalamo-cortical loop and are
thought to down-regulate the activity of the cortical network
which is impaired in loss of consciousness1,26,27,56. The results
presented here evidence that the regions characterized by altered
dynamical and structural properties coincide with the structural
hubs. Among these areas, we found stronger effects in subcortical
areas, such as the thalamus and hippocampus, and the precuneus
and the posterior cingulate areas, for both pathological and
physiological low-level states of consciousness. Our results not
only indicate the areas affected by the loss or reduction of con-
sciousness but also give a mechanistic explanation, such as loss of
heterogeneity, loss of stability and higher constraint to the
anatomy, of the underlying brain dynamics in low-level states of
consciousness.

Indeed, the methodology and results presented here provide
new insights into the understanding of the brain network beha-
viour after applications of interventions. The observed decrease in
global connectivity is consistent with previous studies of EEG
signals after a transcranial magnetic stimulation (TMS)-mediated
perturbation, showing that the brain was less responsive in low-
level states of consciousness than in conscious states19,20,57. A
prediction of our study is thus that, under localized external
stimulation, hub regions should be less responsive during con-
scious states compared to low-level states of consciousness. A
current hypothesis in the field is that the enhancement of neural
excitability in the affected regions through therapeutic procedures
may improve the conscious recovery process58. However, current
stimulation protocols using TMS to investigate the network
response during different states of consciousness in
humans19,20,57 cannot achieve the required localization of the
perturbation propagation to test our predictions. TMS is a strong
external perturbation that indirectly activates several cortical and
subcortical areas, producing a global perturbation of ongoing
activity. Furthermore, the measurement of the response using
EEG is not described with enough spatial resolution to measure
the effect on hubs directly. Nevertheless, at the moment, in-silico
perturbation of diverse computational models33,59 might be
useful to test this prediction.

Our study is restricted to the comparison between conscious
wakefulness and low-level states of consciousness, i.e. DOC
patients and propofol-induced anaesthesia state, which are dis-
tinguished by the levels of awareness and wakefulness. Interest-
ingly, although the underlying physiology for loss of
consciousness differs between DOC patients and propofol seda-
tion, the dynamics at the whole-brain level and the alterations in
local dynamics seem to be similar. Future work should study in
more detail the differences in the local mechanism altering the
global state of consciousness. Indeed, the relatively similar
phenomenology60 of the two different states may have a shared
cellular basis, at the level of pyramidal neurons, underlying the
observed alterations in the global dynamics61,62.

Given the patient inclusion criteria of the present study, gen-
eralization of our results to a broader spectrum of DOC patients,
such as those presenting larger brain structural damage, remains
to be corroborated. Future studies should consider the con-
firmation of the results to other anaesthetics agents besides pro-
pofol, such as ketamine and sevoflurane, whose effect takes place
through different molecular pathways. Also, other theories have
proposed a multi-dimensional definition of consciousness which
include additional factors such as visual perception, cognition or/
and experience of unity63. Those dimensions show different levels
in states of altered consciousness, such as under psychedelic drugs
or meditation. In the light of our results, we would expect that
under a drug-induced psychedelic state, where the conscious
content seems to increase and the brain shows higher entropy in
the local firing rates64, the whole-brain models will show an
increase of heterogeneity and a larger decoupling from the
structural connectivity, while the hubs should lose the stability
present during resting state and the entropy associated with the
repertoire of states would increase.

In this study, we intended to study a whole-brain model that is
able to produce oscillations, as needed to represent the syn-
chronization statistics of the data. Thus, we chose the
Stuart–Landau model to characterize the local, regional dynamics.
This model represents the normal form of a Hopf bifurcation, i.e.,
the universal behaviour around a bifurcation producing oscilla-
tion through a limit-cycle. Despite its simplicity and non-
biological origin, the model has shown to generate a rather
accurate fit to the BOLD dynamics, beyond the success of other
models in the past31,37,65. However, many alternative mean-field
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or population models exist that could be chosen for the regional
dynamics. Therefore, the generalization of the results here pre-
sented shall be confirmed in future studies, which employ dif-
ferent local models.

Using global synchronization measures, we found significant
differences for different levels of consciousness (CNT and DOC
patients and W, S, and R), but these measures mostly failed to
identify a significant difference between patients groups (MCS vs.
UWS) (Fig. 1). However, our model-based analysis of local
dynamics was able to distinguish between patients groups
(Figs. 3e–g, 5c, d, 6i, j). This highlights the clinical translation
potential of multi-parameter whole-brain models and the need
for further studies that consider region-specific measures for
clinical predictions.

Electrophysiological, fMRI and MEG studies have shown that
heterogeneous local dynamics, differing between sensory and
association brain regions, contribute to the hierarchical speciali-
zation across areas at the functional level66–70. Recently, it has
been shown that extending models to include heterogeneous
information of local dynamics, e.g., as given by positron-emission
tomography (PET) maps of neurotransmitter receptor density68

or by Tw1/Tw2 maps as proxies of microcircuit properties69,
increases model performance to fit empirical data. Our model
could be extended to include these and other axes of hierarchy to
explore the brain mechanism of consciousness.

In conclusion, our results show that pathological and phar-
macological low-level states of consciousness presented altered
network interactions, more homogeneous, structurally con-
strained local dynamics, and less stability of the network’s core
compared to conscious states. These results provide relevant
information about the mechanisms of consciousness both from
the theoretical and clinical point of view.

Methods
Participants. This study includes a cohort of healthy controls and patients suf-
fering from disorder of consciousness (DOC), and a cohort of healthy subjects
undergoing anaesthesia-induced loss of consciousness. The study was approved by
the Ethics Committee of the Faculty of Medicine of the University of Liège. Written
informed consent to participate in the study was obtained directly from healthy
control participants and the legal surrogates of the patients.

We selected 48 DOC patients, 33 in MCS (9 females, age range 24–83 years;
mean age ± SD, 45 ± 16 years) and 15 with UWS (6 females, age range 20-74 years;
mean age ± SD, 47 ± 16 years) and 35 age and gender-matched healthy controls (14
females, age range 19-72 years; mean age ± SD, 40 ± 14 years). The DOC patients
data was recorded 880 ± 35 days after injury. The healthy controls data was
collected while awake and aware. The diagnosis of the DOC patients was confirmed
through repeated behavioural assessment with the Coma Recovery Scale-Revised
(CRS-R) that evaluates auditory, visual, motor, sensorimotor function,
communication and arousal71. The DOC patients were included in the study, if
MRI exam was recorded without anesthetized condition and the behavioural
diagnosis was carried out at least five times for each patient using CRS-R
examination72. 5 CRS-R assessments were performed within a period of 14 days,
usually within one week. The best CRS-R diagnosis was used for clinical diagnosis.
One CRS-R assessment was performed before the MRI acquisition on the same
day, yet the clinical diagnosis was made based on the best out of 5 CRS-R’s. The
exclusion criteria of patients were as follows: (i) having any significant neurological,
neurosurgical or psychiatric disorders prior to the brain insult that lead to DOC,
(ii) having any contraindication to MRI such as electronic implanted devices,
external ventricular drain, and (iii) being not medically stable or large focal brain
damage, i.e. >2/3 of one hemisphere. Details on patients’ demographics and clinical
characteristics are summarized in Supplementary Table S7-S8.

For the propofol anaesthesia, 16 healthy control subjects (14 females, age range,
18–31 years; mean age ± SD, 22 ± 3.3 years) were selected in three clinical states
including normal wakefulness with eyes closed (W), propofol anaesthesia-induced
sedation (S) and recovery from propofol anaesthesia (R). Propofol was infused
through an intravenous catheter placed into a vein of the right hand or forearm
and an arterial catheter was placed into the left radial artery. During the study
ECG, blood pressure, SpO2 and breathing parameters were monitored
continuously. Sedation was achieved using a computer-controlled intravenous
infusion of propofol to obtain constant effect-size concentrations (for details on the
procedure, see ref. 73). The propofol plasma and effect-size concentrations were
estimated using the three-compartment pharmacokinetic model74. After reaching
the appropriate effect-site concentration, a 5-min equilibration period was allowed

to insure equilibration of propofol repartition between compartments. Arterial
blood samples were then taken immediately before and after the scan in each
clinical state for subsequent determination of the concentration of propofol and for
blood-gas analysis. The level of consciousness was evaluated clinically throughout
the study with the Ramsay scale75. The subject was asked to strongly squeeze the
hand of the investigator; she/he was considered fully awake or to have recovered
consciousness if the response to verbal command (‘squeeze my hand!’) was clear
and strong (Ramsay 2), in mild sedation if the response to verbal command was
clear but slow (Ramsay 3), and in sedation if there was no response to verbal
command (Ramsay 5–6). For each consciousness level assessment, Ramsay scale
verbal commands were repeated twice. Before and after each scanning session, a
reaction time task was also performed to provide additional information on the
clinical state of the volunteers. Three clinical states were defined in this study:
normal wakefulness (Ramsay 2), sedation (Ramsay 5) and recovery of
consciousness (Ramsay 2). It should be noted that during the recovery of
consciousness, R, subjects showed clinical recovery of consciousness (i.e., same
score on Ramsay sedation scale as during wakefulness) but they showed residual
plasma propofol levels and lower reaction times scores. The healthy subjects did
not have MRI contradication, any history of neurological or psychiatric disorders
or drug consumption, which have significant effects in brain function. It shall be
noted that the anaesthesia dataset has a gender imbalance of 70–30% female
to male.

MRI acquisition and data analysis. For the healthy controls and DOC patients,
structural and functional MRI (fMRI) data were acquired on a Siemens 3T Trio
scanner (Siemens Inc, Munich, Germany). The BOLD fMRI resting state (i.e. task
free) was acquired using EPI, gradient echo with following parameters: volumes =
300, TR= 2000 ms, TE= 30 ms, flip angle= 78∘, voxel size= 3 × 3 × 3 mm3, FOV=
192 × 192 mm2, 32 transversal slices, with a duration of 10minutes. Subsequently,
structural 3D T1-weighted MP-RAGE images with were acquired with following
parameters: 120 transversal slices, TR = 2300 ms, voxel size = 1.0 × 1.0 × 1.2 mm3,
flip angle = 9∘, FOV = 256 × 256 mm2. Last, diffusion weighted MRI (DWI) was
acquired in 64 directions (b-value =1,000 s/mm2, voxel size = 1.8 × 1.8 × 3.3 mm3,
FOV = 230 × 230 mm2, TR = 5,700 ms, TE = 87 ms, 45 transverse slices, 128 × 128
voxel matrix) preceded by a single unweighted image (b0). The DWI was
acquired twice.

The propofol dataset was acquired on a 3T Siemens Allegra scanner (Siemens
AG, Munich, Germany). The fMRI resting state were acquired using the following
parameters: EPI, gradient echo, volumes = 200; TR = 2460 ms, TE = 40 ms, voxel
size = 3.45 × 3.45 × 3 mm3, FOV = 220 × 220 mm, 32 transverse slices,
64 × 64 × 32 matrix size. The structural images were acquired using 3D T1-
weighted MP-RAGE with following parameters: 120 transversal slices, TR = 2250
ms, TE = 2.99ms, voxel size = 1 mm3, flip angle = 9∘, FOV = 256 × 240 × 160mm.

Preprocessing of MRI data was performed using MELODIC (Multivariate
Exploratory Linear Optimized Decomposition into Independent Components)
version 3.1476, which is part of the FMRIB’s Software Library (FSL, http://
fsl.fmrib.ox.ac.uk/fsl). Preprocessing steps included: discarding the first 5 volumes,
motion correction using MCFLIRT77, non-brain removal using BET (Brain
Extraction Tool)78, spatial smoothing with 5 mm FWHM Gaussian Kernel, rigid-
body registration, high pass filter cutoff = 100.0 s, and single-session ICA with
automatic dimensionality estimation. After preprocessing, FIX (FMRIB’s ICA-
based X-noiseifier)79 was applied to remove the noise components and the lesion-
driven artefacts, independently, for each subject, see Supplementary Fig. S10.
Specifically, FSLeyes package in Melodic mode was used to manually classify the
single-subject Independent Components (ICs) into “good” for signal, “bad” for
noise or lesion-driven artefacts and “unknown” for ambiguous components. Each
component was classified by looking at the spatial map, the time series, and the
temporal power spectrum80,81. Finally, FIX was applied by using the default
parameters to obtain a cleaned version of the functional data.

FSL tools were used to obtain the blood-oxygen-level-dependent (BOLD) time
series of the 214 cortical and subcortical brain regions (without the cerebellum, see
more details in Supplementary Table S9) in each individual’s native EPI space,
defined according to a resting-state atlas36. Specifically, the cleaned functional data
previously obtained were co-registered to the T1-weighted structural image by
using FLIRT82. Then, the T1-weighted image was co-registered to the standard
MNI space by using FLIRT (12 DOF) and FNIRT82,83. The resulting
transformations were concatenated and inverted and applied to warp the resting-
state atlas from MNI space to the cleaned functional data. To ensure the
preservation of the labels, a nearest-neighbour interpolation method was used.
Then, the BOLD time series for each of the 214 brain regions were extracted for
each subject in their native space by using fslmaths to obtain a binary mask of each
brain region, and fslmeants to obtain the time series of each binary mask.

The grand average of the functional connectivity matrix, FC, was constructed
using Matlab 2017 (The MathWorks Inc.) to compute the pairwise Pearson
correlation between all 214 brain regions, applying Fisher’s transform to the
r-values to get the z-values for the final 214 × 214 functional connectivity matrices.

Structural connectivity. A whole-brain structural connectivity (SC) matrix was
computed for each subject from the DOC dataset, using two-step process as
described in previous studies84–86. Similar to the procedure used for analyzing the
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resting-state fMRI data, we used the resting-state atlas to create a structural con-
nectivity in each individual’s diffusion native space. First, DICOM images were
converted to Neuroimaging Informatics Technology Initiative (NIfTI) format using
dcm2nii (www.nitrc.org/projects/dcm2nii). The b0 image in DTI native space was
co-registered to the T1-weighted structural image by using FLIRT82. The T1-
weighted structural image was co-register to the standard space by using FLIRT
and FNIRT82,83. The resulting transformations were inverted and applied to warp
the resting-state atlas from MNI space to the native MRI diffusion space by
applying a nearest-neighbour interpolation algorithm. Second, analysis of diffusion
images was performed using the processing pipeline of the FMRIB’s Diffusion
Toolbox (FDT) in FMRIB’s Software Library (www.fmrib.ox.ac.uk/fsl). The non-
brain tissues were extracted by applying the Brain Extraction Tool (BET)78, the
eddy current distortions and head motion were corrected using eddy correct tool87,
and the gradient matrix was reoriented to correct for subject motion88. Then,
Crossing Fibres were modelled using the default BEDPOSTX parameters and the
probability of multi-fibre orientations were calculated to improve the sensitivity of
non-dominant fibre populations89,90. Then, Probabilistic Tractography was per-
formed in native MRI diffusion space using the default settings of
PROBTRACKX89,90. For each brain region, the connectivity probability to each of
the other 213 brain regions was computed. The resulting matrix was then sym-
metrized by computing their transpose matrix and averaging both matrices,
therefore Cjk= Ckj. Finally, to obtain the structural probability matrix, the value of
the probability pairs of brain regions was divided by its corresponding number of
generated tracts. To summarize, for each participant, a 214 × 214 symmetric
weighted network was constructed and normalized by the total number of fibres in
the whole network; thus, the structural connectivity matrix (SC) represents the
density of links of the anatomical organization of the brain.

Phase-interaction matrices. To evaluate the level of synchrony in brain activity,
the phase interaction between BOLD signals was evaluated. Therefore, a band-pass
filter within the narrowband of 0.04−0.07 Hz was applied in order to extract the
instantaneous phases ϕj(t) for each region j. This frequency band captures more
relevant information than other frequency bands in terms of brain function32. The
instantaneous phases, ϕj(t), were then estimated applying the Hilbert transform to
the filtered BOLD signals individually. The Hilbert transform derives the analytic
representation of a real-valued signal given by the BOLD time series31. The ana-
lytical signal, s(t), represents the narrowband BOLD signal in the time domain.
This analytical signal can be also described as a rotating vector with an instanta-
neous phase, ϕ(t), and an instantaneous amplitude, A(t), such that s(t)= A(t)
cos(ϕ(t)). The phase and the amplitude are given by the argument and the modulus,
respectively, of the complex signal z(t)= s(t)+ i ⋅H[s(t)], where i is the imaginary
unit and H[s(t)] is the Hilbert transform of s(t).

The synchronization between pairs of brain regions was characterized as the
difference between their instantaneous phases. At each time point, the phase
difference Pjk(t) between two regions j and k was calculated as

PjkðtÞ ¼ cos jϕjðtÞ � ϕkðtÞj
� �

: ð1Þ
Here, Pjk= 1 when the two regions are in phase (ϕj= ϕk), Pjk= 0 when they are

orthogonal and Pjk=− 1 when they are in anti-phase. At any time t, the phase-
interaction matrix P(t) represents the instantaneous phase synchrony among the
different ROIs. The time-averaged phase-interaction matrix, hPi ¼ ∑T

t¼1 PðtÞ=T ,
was bias-corrected by subtracting the expected phase-interactions phase-
randomized surrogates, designed to decorrelate the phases while preserving the
power spectrum of the original signals (see Surrogate Analysis section).

The instantaneous global level of synchrony of the whole network r(t) was
calculated as the average of the phase differences at each time point. Since P(t) is a
symmetric matrix, then:

rðtÞ ¼ 1
NðN � 1Þ ∑

N

j¼1
∑
N

k¼jþ1
PjkðtÞ: ð2Þ

Finally, the fluctuations of r(t) over time indicate the diversity of the observed
network phase interactions. The phase-interaction fluctuations, m, were thus
calculated as the standard deviation of r. When all the nodes of a network are
synchronized then r(t)= 1 for all t and thus m= 0. However, if the network
switches among synchronization states over time leading to fluctuations of r, then
m > 0, reflecting those fluctuations.

Surrogate analysis. For the phase surrogate analysis, first, the Fourier transform
(FT) of the signals was computed. The phase of the Fourier transform was sub-
stituted with uniformly distributed random numbers while preserving their mod-
ulus. Then, the inverse FT was applied to return to the time domain with the new
Fourier coefficients. This procedure effectively randomizes the phases of the signals
while preserving the same power spectra as the original time-courses. Specifically,
let xj(t) be the original BOLD time-course from the brain area j. The discrete
Fourier transform of xj is given by:

~xjðkÞ ¼ ∑
T

t¼1
xjðtÞe�i2πktT ð3Þ

where i is the imaginary unit and k goes from 1 to T (k = 1, ..., T). The phase

shuffled surrogate is given by:

xsurrj ðtÞ ¼ 1
T

∑
T

k¼1
j~xjðkÞje�ið2πktT þφr Þ ð4Þ

where φr is random variable uniformly distributed between −π and π. These
surrogates were used to rerun the analysis and extract a phase interaction matrix
used to correct the empirical matrices.

Integration. Integration refers to the capacity of the brain to maintain commu-
nication between different parts and subnetworks. Here, we employed a metric of
integration that assesses the connectivity out of the phase-interaction matrix,
scanning across different scales8,9,33,34. More precisely, the time-averaged phase-
interaction matrix, 〈P〉, is scanned through all possible thresholds ranging from 0
to 1. At each threshold, the matrix is binarised and the size of its largest connected
component is identified. Integration is then estimated as the integral of the size of
the largest connected component as a function of the threshold.

Segregation. Segregation refers to the breakdown of a system into functional
subcomponents. Quantitatively, segregation was estimated by the modularity index
Q91 of the time-averaged functional connectivity matrix 〈P〉, which is the metric
evaluating how good a community detection method in networks could separate
the network into modules. Therefore, we first binarized the matrix 〈P〉 by detecting
the pairs of regions with average phase interaction significantly (p < 0.01) larger
than expected in phase-randomized surrogates. Second, the Louvain algorithm was
employed to subdivide this matrix into modules. The Newman modularity Q of the
optimal partition was then considered as the measure of segregation35. Modularity
is a cost function that evaluates the quality of subdivisions of networks into
modules by targeting the maximization of the number edges within the modules
and thus the minimization of edges across them35. Thus, the modularity index on
the functional connectivity is a reasonable representation of the subdivision of the
brain’s activity into functional subdivisions.

Functional connectivity dynamics (FCD). We evaluated the presence of repeating
patterns of network states by calculating the recurrence of the phase-interaction
patterns. For this, we used the functional connectivity dynamics (FCD). This
measure is based on previous studies that defined the FCD for FC matrices cal-
culated in different time windows92. In our study, the duration of scans (10 min)
was divided into sliding windows of 30 time points, shifted in 2 s steps. For each
time window, centred at time t, the average phase-interaction matrix, 〈P(t)〉, was
calculated as

hPðtÞi ¼ 1
T

∑
jt�t0 j<15

Pðt0Þ; ð5Þ

where T is the total number of TRs. We then constructed the M ×M symmetric
matrix whose (t1, t2) entry was defined by the cosine similarity, Scos, between the
upper diagonal elements of two matrices 〈P〉(t1) and 〈P〉(t2), given as

Scosðt1; t2Þ ¼
p!ðt1Þ: p!ðt2Þ

j p!ðt1Þjj p!ðt2Þj
¼ cosðθÞ; ð6Þ

where p!ðt1Þ and p!ðt2Þ are the vectorized representations of matrices 〈P(t1)〉 and
〈P(t2)〉, respectively, and θ corresponds to the angle formed between the two

vectors, p!ðt1Þ and p!ðt2Þ. Finally, the FCD measures were given by the distribu-
tion of these cosine similarities for all pairs of time windows.

Whole-brain network model. The brain network model consists of N = 214
coupled brain regions derived from the Shen parcellation36. The global dynamics of
the brain network model used here results from the mutual interactions of local
node dynamics coupled through the underlying empirical anatomical structural
connectivity matrix Cjk

31. Local dynamics are simulated by the normal form of a
supercritical Hopf bifurcation, i.e., Stuart–Landau oscillator93,94, describing the
transition from noisy oscillations to sustained oscillations95, and is given, in the
complex plane, as

dz
dt

¼ ðaþ iωÞ � z� ðz� �zÞzþ βμðtÞ; ð7Þ

where⊙ is the Hadamard element-wise product, z= [z1, . . . , zN] are the complex-
valued state variables of each node, �z is the complex conjugate of z, a= [a1, . . . , aN]
and ω= [ω1, . . . , ωN] are the vectors containing the bifurcation parameters and
intrinsic frequencies of each node in the range of 0.04–0.07 Hz band, respectively,
and μ= [μ1, . . . , μN] is a Gaussian noise vector with standard deviation β = 0.02
based on previous studies31,37,65. The intrinsic frequencies were estimated from the
averaged peak frequency of the narrowband empirical BOLD signals of each brain
region. For aj < 0, the local dynamics present a stable spiral point, producing
damped or noisy oscillations in the absence or presence of noise, respectively
(Supplementary Fig. S2). For aj > 0, the spiral becomes unstable and a stable limit-
cycle oscillation appears, producing autonomous oscillations with frequency
2πfj= wj. The BOLD fluctuations were modelled by the real part of the state
variables, i.e., Real(zj).
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The whole-brain dynamics were obtained by coupling the local dynamics
through the Cjk matrix:

dzj
dt

¼ zj½ðaj þ iωjÞ � jzjj2� þ g ∑
N

k¼1
Cjkðzk � zjÞ þ βμjðtÞ; ð8Þ

where g represents a global coupling scaling the structural connectivity Cjk. The
matrix Cjk is scaled to a maximum value of 0.2 to prevent the full synchronization
of the model. Interactions were modelled using the common difference coupling,
which approximates the simplest (linear) part of a general coupling function96.

Homogeneous model: Fitting the global coupling g. To create a representative model
of BOLD activity in each brain state, we adjusted the model parameters (g and aj)
to fit the spatiotemporal BOLD dynamics for each brain state and each dataset. Our
first aim was to describe the global properties of the spatiotemporal dynamics of
each subject in each state, independently of the variations in the dynamics of local
nodes. For that reason, in this first approach to the model, all nodes were set to
aj= 0, called the homogeneous model. The global coupling parameter g was
obtained by fitting the simulated and empirical data. Specifically, for each value of
g, the model FCD was computed and compared with the empirical FCD using the
Kolmogorov-Smirnov (KS) distance between the simulated and empirical dis-
tribution of the FCD elements. The KS-distance quantifies the maximal difference
between the cumulative distribution functions of the two samples. Thus, the
optimal value of g was the one that minimized the KS distance.

Heterogeneous model: local optimization of the bifurcation parameters. To evaluate
the heterogeneous local dynamics on the network’s dynamics, we extended the
model to allow differences in bifurcation parameters aj for different ROIs. The g
parameter was the one estimated with the homogeneous model. The bifurcation
parameters were optimized based on the empirical power spectral density of the
BOLD signals in each node. Specifically, we fitted the proportion of power in the
0.04–0.07 Hz band with respect to the 0.04–0.25 Hz band (i.e. we removed the
smallest frequencies below 0.04 Hz and considered the whole spectrum up to the
Nyquist frequency which is 0.25Hz)31,37. For this, the BOLD signals were filtered in
the 0.04–0.25 Hz band and the power spectrum PSj(f) was calculated for each node j.
We then defined the proportion of power in the 0.04–0.07 Hz band as

pj ¼
R 0:07
0:04 PSjðf ÞdfR 0:25
0:04 PSjðf Þdf

ð9Þ

We updated the local bifurcation parameters by an iterative gradient descendent
strategy, i.e.:

anewj ¼ aoldj þ ηðpemp
j � psimj Þ; ð10Þ

until convergence. η was set to 0.1 and the updates of the aj values were done in
each optimization step in parallel.

Relation between the strength of a node and its dynamics. Finally, the relation
between local and network dynamics was studied. An effective bifurcation parameter

aeffj was defined which contains information of the local dynamics and local structure
given by its strength. This parameter permits to extract the relation between the
dynamics and structure of each node. Note that the effective bifurcation parameter
refers to the perturbed local dynamics including network effects (not to be confused
with effective connectivity). More specifically, in Eq. (8), we separated the part that
relates to the effective local dynamics and the part that relates to the interaction
between nodes. Noting that ∑N

k¼1 Cjkðzk � zjÞ ¼ ∑N
k¼1 Cjkzk � zj ∑

N
k¼1 Cjk , Eq. (8)

can be written as

dzj
dt

¼ aj � g ∑
N

k¼1
Cjk þ iωj

� �
zj � zjjzjj2 þ g ∑

N

k¼1
Cjkzk þ βμjðtÞ: ð11Þ

Taking aeffj ¼ aj � g∑N
k¼1 Cjk , we obtain

dzj
dt

¼ aeffj þ iωj

� �
zj � zjjzjj2 þ g ∑

N

k¼1
Cjkzk þ βμjðtÞ: ð12Þ

Note that, if aj is homogeneous across the network (aj= a for all j), aeffj is linearly

related to the nodal strength Sj ¼ ∑N
k¼1 Cjk .

Linear stability analysis. In this section we studied the linear stability of the
whole-brain network. The model consists of 214 coupled brain regions, with local
Hopf dynamics, coupled through the connectivity matrix C. The dynamical system
presented in Eq. (8) and considering the coupling to the structural connectivity can
be written in vector form as

dz
dt

¼ ða� gSþ iωÞ � z� ðz� �zÞzþ gCzþ βμðtÞ; ð13Þ

where S= [S1, . . . , SN] is the vector containing the strength of each node, i.e.
Sj ¼ ∑N

k¼1 Cjk . The model parameters a and ω were estimated from the data, using
the heterogeneous model, and g, using the homogeneous model, for each experi-
mental condition.

We studied the linear stability of the fixed point z= 0, which is solution of
dz
dt ¼ 0. In the linearized system the quadratic terms (i.e., z� �z) are not taken into
account and the evolution of fluctuations δz around z= 0 can be approximated as

d
dt

δz ¼ Aδzþ βμðtÞ; ð14Þ

where A is the Jacobi matrix, given as A= diag(a− gS+ iω)+ gC, and diag(x) is
the diagonal matrix whose entries are the elements of the vector x.

Graph analysis of the structural connectivity. The network organization of the
SC matrices was investigated using measures of graph theory (GAlib: Graph
Analysis library in Python/Numpy, www.github.com/gorkazl/pyGAlib). We
focused only on the potential presence of hub regions and a rich-club to relate these
structural features to the observed dynamical properties of the brain regions. Given
a connectivity matrix C with entries Cjk indicating the weight of the link between
nodes j and k, the strength of a node (Sj) is defined as the sum of the connections it
makes: Sj ¼ ∑N

1 Cjk. A rich club is a supra-structure of a network happening when
(i) a network contains hubs and (ii) those hubs are densely interconnected with
each other, forming a cluster97. Identifying the presence of a rich-club typically
implies the evaluation of k-density, ρ(k), an iterative process which evaluates the
density ρðk0Þ of the remaining part of network after all nodes with degree k<k0 have
been removed97. Here, we employed the version of the metric adapted for weighted
networks, iterating from node strength S0 ¼ 0 to S0 ¼ Smax ¼ 10 in steps of ΔS=
0.2. At each iteration step, the average link weight ρðS0Þ between the nodes with
strength S>S0 was computed.

Statistical analysis. Statistical differences between levels of consciousness were
assessed using one-way repeated measures (rm) ANOVA followed by multiple
comparisons using False Discovery Rate (FDR) correction98. The threshold for
statistical significance was set to p-values < 0.05. Wilcoxon rank-sum test
(equivalent to a Mann–Whitney U test) was applied in order to find region-wise
differences between CNT and DOC patients in the strength of the SC. We cor-
rected for multiple comparisons by using the FDR correction, considering P < 0.05
as statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data can be requested to the Authors and examples of the phase-interaction matrices
of functional connectivity of different states of pharmacological and pathological states of
consciousness are available on the Knowledge Graph (Human Brain Project) https://
search.kg.ebrains.eu/instances/Dataset/775c7858-2305-4a56-8bd6-865c4ab5dd4f.

Code availability
The MATLAB code of the phase-synchronization measures and whole-brain models are
available on Github (https://github.com/decolab/Hopf_consciousness) and the python
codes of the structural connectivity analysis are available on (GAlib: Graph Analysis
library in Python/Numpy, https://github.com/gorkazl/pyGAlib).
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