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Fibroblast growth factor (FGF) and its receptor (FGFR) play crucial roles in gastric

cancer (GC). Long non-coding RNAs (lncRNAs) are defined as RNAmolecules of

around 200 nucleotides or more, which are not translated into proteins. As

well-known regulatory factors, lncRNAs are considered as biomarkers for

prognosis and treatment response in GC. It is of importance to identify FGF/

FGFR-related lncRNAs in GC. Here, some FGF/FGFR-related lncRNAs were

identified in GC based on the data from public databases, the Cancer Genome

Atlas (TCGA) and Gene Expression Omnibus (GEO). Then a four-lncRNAs

(FGF10-AS1, MIR2052HG, POU6F2-AS2, and DIRC1) risk score (RS) model

was established for predicting GC’s prognosis by using Cox analysis.

According to the median value of RS, GC patients were divided into low and

high RS group. Low RS group displayed high tumor mutation burden and

infiltration of immune cells, as well as more sensitivity to immunotherapy or

chemotherapy. High RS group showed high infiltration of stromal cells and

more oncogenic signatures. In addition, a comprehensive analysis was carried

out and found that high RS groupmay exhibit specific sensitivity to Panobinostat

(histone deacetylases inhibitor) and Tivantinib (MET inhibitor). In summary, our

study not only offers a novel personalized prognostication classification model

according to FGF/FGFR-related lncRNAs, but also provides a new strategy for

subclass-specific precision treatment in GC.
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Introduction

The development of precision medicine has greatly changed the outlook of many

patients with advanced gastric cancer (GC) in recent decades. Unfortunately, high

genomic heterogeneity becomes the major barrier to precision medicine in GC

(Pectasides et al., 2018). GC remains the third leading cause of cancer-related

death worldwide (Siegel et al., 2021). Therefore, improvement of our
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understanding to the molecular characteristic underlying GC

development is of great importance to its therapy and patients’

prognosis.

Fibroblast growth factor (FGF) and its receptor (FGFR)

belong to the tyrosine kinase receptor (RTK) family, which

include 22 ligands (FGF1-FGF14, FGF16-FGF23) and

5 receptors (FGFR1-4 and FGFRL1) (Zhou et al., 2020).

Several pre-clinical and clinical evidences have indicated that

some FGF/FGFR family members, such as FGFR1, FGFR2,

FGFR3, FGFR4, FGF7, FGF9, FGF10, and others, played

crucial roles in GC’s progression (Zhang et al., 2019).

Consequently, identifying the regulatory mechanism of FGF/

FGFR may conduce to understanding the molecular mechanism

underlying GC.

Long non-coding RNAs (lncRNAs) are defined as a group

of RNA molecules that can’t translate to proteins (Palazzo and

Koonin, 2018). LncRNAs are longer than 200 nucleotides and

could act in cis or in trans for exerting enhancer or silencer

regulation on gene expression (Palazzo and Koonin, 2018). A

growing body of studies revealed that lncRNAs could serve

as biomarkers for diagnosis, prognosis, and responses to

treatment of GC (Yuan et al., 2020). Here, a series of FGF/

FGFR-related lncRNAs with prognosis signature were

identified in GC. Then, these lncRNAs were used to

construct a risk score (RS) model and divide GC samples

into two groups (low RS group and high RS group).

The clinical, molecular and tumor microenviroment (TME)

characteristics were further investigated for the two

groups. Finally, a subclass-specific therapy strategy was also

identified.

Materials and methods

The overall analysis processes were shown in Figure 1.

Data sources and processes

RNA-sequencing cohort stomach adenocarcinoma

(STAD, 32 normal and 375 tumor samples) was

downloaded from the Cancer Genome Atlas (TCGA)

database (Cancer Genome Atlas Research Network, 2014).

The mRNAs and lncRNAs were annotated with annotation file

from GENCODE database (Frankish et al., 2021). The

pathology image data were also downloaded from TCGA

FIGURE 1
Analytic flowchart.
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database. Microarray cohort GSE62254 (300 tumor samples,

Asian Cancer Research Group, ACRG cohort) was obtained

from Gene Expression Omnibus (GEO) database and

annotated with GPL570 platform (Cristescu et al., 2015).

The clinical characteristics of these GC samples are shown

in Supplementary Table S1. Drug sensitivity data of human

cancer cell lines (CCLs) were downloaded from Cancer

Therapeutics Response Portal (CTRPv.2.0, released October

2015) and PRISM Repurposing dataset (19Q4, released

December 2019) (Rees et al., 2016; Corsello et al., 2020).

The area under the dose-response curve (AUC) values were

used to estimate drug sensitivity (AUC values in

CTRP v.2.0 range from 0 to 30, in PRISM range from 0 to

1). Before processing, drugs that were not available (NA) in

more than 20% of the samples were excluded, and the

remaining NA was imputed by the k-nearest neighbors

(KNN) algorithm. The gene expression data of CCLs were

obtained from Cancer Cell Line Encyclopedia (CCLE) project

(Ghandi et al., 2019).

Differential gene analysis

The limma package of R (version 4.1.0) was used to analyze

the differential expression of FGF/FGFR family between

normal and tumor tissues in STAD cohort (Ritchie et al.,

2015). In addition, the differential expressed lncRNAs

(DElncRNAs) were also calculated by limma package,

setting the threshold as |log2 (fold change) (logFC)| >
0.5 and adjust p value (adj.p.val) < 0.05.

Somatic mutation analysis

Tumor mutational data (maf file) of GC were

downloaded from TCGA database, and the mutations of

FGF/FGFR family and other pathway-related genes were

analyzed by the “maftools” package of R (Mayakonda et al.,

2018). Tumor mutation burden (TMB) of GC was

calculated by using “TCGAmutations” package of R (Ellrott

et al., 2018).

Construction and validation of long non-
coding RNA-based risk score

To construct a survival-related RS model, STAD cohort

was used as the training cohort and GC samples who have

complete follow-up information and follow up time over

30 days were included. At first, FGF/FGFR-related lncRNAs

were identified by using Pearson correlation analysis with the

cutoff values as followed: |r| > 0.4 and p < 0.001. Then,

lncRNAs with p < 0.1 measured by univariate Cox analysis

were selected for a further multivariate Cox analysis in STAD

cohort, and lncRNAs with p < 0.05 were considered as the hub

lncRNAs. The calculation formula for RS was showed as

followed:

RS � ∑Coef lncRNAs × ExplncRNAs

CoeflncRNAs means the regression coefficient of lncRNAs

calculated by multivariate Cox analysis. For the RNA-

sequencing data, ExplncRNAs represents log2 (count +1)

value of the involved lncRNA. For the micrroarray data,

ExplncRNAs indicates the raw value of the involved lncRNA

that was provided by GEO database. According to the

median value, patients were divided into low and high RS

groups. Kaplan-Meier survival analysis was achieved by the

“survival” package. Decision curve analysis (DCA) was

employed to test the efficacy of RS in both training cohort

(STAD) and validation cohort (ACRG) (Vickers and Elkin,

2006).

Gene set variation analysis

GSVA was applied to enrich oncogenic signature

(c6.all.v7.5.1. symbols) from Molecular Signatures Database

(MSigDB) using the clusterProfiler package (Subramanian

et al., 2005; Wu et al., 2021). The package of limma was

employed to analyze the differential pathways between low

and high RS group.

Gene set enrichment analysis

The fold change of each gene between low and high RS

group was firstly calculated by limma package, and genes were

input in descending order according to the logFC values.

GSEA was used to enrich gene set “c6.all.v7.5.1. symbols”

using the clusterProfiler package (Subramanian et al., 2005;

Wu et al., 2021). An adj. p.val less than 0.05 was considered as

a significantly enrichment.

Tumor microenviroment analysis

Estimate algorithm was used to calculate stromal, immune,

estimate score and tumor purity (Yoshihara et al., 2013).

MCPcounter, ssGSEA and CIBERSORT algorithm were

applied to measure the level of infiltration cells (Newman

et al., 2015; Becht et al., 2016; Chen et al., 2018). Cancer

immunity cycle included seven steps, and related gene sets

were acquired from the tracking tumor immune phenotype

(TIP) website and quantified using the ssGSEA algorithm (Xu

et al., 2018). The response to immunotherapy was predicted by
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Tumor Immune Dysfunction and Exclusion (TIDE) algorithm

(Jiang et al., 2018).

Connectivity map analysis

A standardized score ranging from −100 to 100 can be

calculated by CMap analysis for each perturbation. A negative

score means that an expression pattern of perturbation is

opposite to the disease expression pattern, prompting a

potential therapeutic value of this perturbation in this

disease. Accordingly, we firstly conducted differential

analysis between tumor and normal samples. Then, the top

150 upregulated and downregulated genes were submitted to

the CMap website, and the CMap score was calculated

(Subramanian et al., 2017).

Estimating drug sensitivity in stomach
adenocarcinoma cohort

The “pRRophetic” package of R was used to estimate the

sensitivity to chemotherapeutic drugs (Cisplatin, Docetaxel,

Doxorubicin, Etoposide, and Paclitaxel) and targeted drugs

(Pazopanib, Sunitinib, Gefitinib, and Erlotinib) in STAD

cohort (Geeleher et al., 2014).

Statistical analysis

R software (v4.1.0, R Core Team, R Foundation for

Statistical Computing, Vienna, Austria) was employed for

statistical analysis. The student’s t-test or Mann Whitney

test was used to compare the difference between two RS

FIGURE 2
The expression andmutation of FGF/FGFR in GC. (A,B) The expression of FGF/FGFR familymembers in normal andGC tumor tissues was shown
in heatmap (A) and volcano plot (B). (C) The mutation rate of FGFs in GC. (D) The mutation rate of FGFRs in GC. FGF, fibroblast growth factor; FGFR,
fibroblast growth factor receptor; GC, gastric cancer.
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groups. Correlation analysis was achieved by Pearson

correlation analysis. Survival analysis was conducted by

using Kaplan-Meier methods and the statistical significance

of differences was determined by a log-rank test. If not

specified above, a two-tailed p < 0.05 was considered

statistically significant.

Results

Overall landscape of fibroblast growth
factor and its fibroblast growth factor
receptor in gastric cancer

FGF/FGFR family is comprised of 22 ligands and

5 receptors. Previous studies demonstrated the crucial roles

of FGF/FGFR played in GC (Zhang et al., 2019). To evaluate

the overall landscape of FGF/FGFR in GC, the expression

level and mutation rate of FGF/FGFR were firstly analyzed.

Results showed that FGF3, FGF4, FGF8, FGF17, FGF18,

FGF19, FGF20, FGF21, FGFR3, FGFR4, and FGFRL1 were

upregulated in GC, while FGF2, FGF10, FGF13, and FGF14

were downregulated (Figures 2A,B). Somatic mutation

analysis indicated that FGF13 had the highest mutation

rate of 4% in all ligands (Figure 2C). Among the receptors,

FGFR1, FGFR2, and FGFR4 shared the highest mutation

rate of 3% (Figure 2D). Next, the correlation between

these genes and GC patients’ survival was analyzed via

Kaplan-Meier Plotter online tool (Szász et al., 2016).

Besides FGF20 and FGF22, other FGF/FGFR family

members were significantly negative correlation with

GC patients’ prognosis (Supplementary Figure S1).

Accordingly, we and others indicated that FGF/FGFR

family played crucial roles in GC (Zhang et al., 2019; Zhou

et al., 2020).

Identification of fibroblast growth factor
and its receptor related long non-coding
RNAs and construction of a prognostic risk
score model

LncRNAs serve as a major modulation of gene expression.

To seek the potential mechanisms underlying the aberrant

FGF/FGFR in GC, FGF/FGFR related lncRNAs were identified

via the following processes. At first, 5,598 DElncRNAs

(408 downregulated and 5,190 upregulated lncRNAs) were

identified between normal and tumor tissues in STAD cohort,

among which 657 lncRNAs were also detected in ACRG

cohort (Supplementary Figures S2A,B). The correlation

between the FGF/FGFR family and these overlapped

lncRNAs were analyzed by using Pearson correlation

analysis (Supplementary Table S2). A total of 235 lncRNAs

(|r| > 0.4, p < 0.001) were selected as FGF/FGFR-related

lncRNAs in GC. Of note, all of these lncRNAs were positive

correlation with the expression of FGF or FGFR. In addition,

the location of these genes in chromosome was visualized by

using TBtools (Chen C et al., 2020). The results showed that

some members of FGF/FGFR family are in the neighbourhood

of these lncRNAs, such as FGF10-AS1 and FGF10, LINC01537

and FGF3 or FGF4, LBX-AS1 and FGF8, MIR497HG and

FGF11, etc. (Supplementary Figure S3). Taken together,

these lncRNAs may act potential regulation effects on the

expression of FGF/FGFR, and further investigations may help

us in understanding the mechanisms of aberrant FGF/FGFR

in GC.

LncRNAs were also considered as a potential prognosis

biomarker for GC (Yuan et al., 2020). Hence, a RS model for

predicting patients’ prognosis was established by using Cox

analysis. Firstly, univariate Cox analysis was employed to

screen lncRNAs with prognostic signature in GC, and

45 lncRNAs (p < 0.1) were selected for a multivariate

Cox analysis (Supplementary Table S3). Then, FGF10-

AS1, MIR2052HG, POU6F2-AS2, and DIRC1 were

identified as the hub lncRNAs and a RS formula was

established as followed: RS = 0.78 × ExpFGF10-AS1 +

0.87 × ExpMIR2052HG + 1.12 × ExpPOU6F2-AS2 + 1.15 ×

ExpDIRC1 (Supplementary Table S4). Subsequently,

survival analysis was used to investigate the correlation

between RS and GC’s prognosis. The results indicated a

significant prognostic difference between the low and high

RS group in STAD cohort when using overall survival (OS)

as an endpoint, the low RS group (n = 168) had a longer

median OS time (mOS) than the high RS group (n = 169,

56.2 vs. 22.5 months, p = 0.0045; Figure 3A). Consistent

results were observed in the validation ACRG cohort, and

the high RS group (n = 150, mOS = 48.2 months) exhibited a

shorter mOS than the low RS group (n = 150, mOS not

reached, p = 0.046) (Figure 3B). Patients’ OS was

gradually decreased along with the increasing RS, and the

expression of each hub lncRNA was shown in the heatmap

(Supplementary Figure S4). Setting relapse-free survival

(RFS) as an endpoint, a significant difference was also

observed between the low and high RS group in STAD

cohort (p = 0.0014). Although there was no significant

RFS difference between the two groups in ACRG cohort,

it was still obvious that the low RS group was associated with

the tendency toward longer RFS time (median RFS time

mPFS 81.4 vs. 40.8 months, p = 0.19). Then, the respective

subclass and clinical information of cases in training and

validation cohorts were combined together. Based on the

combined data, significant difference between two RS

groups was also observed when comparing OS (p =

0.00058) or RFS (p = 0.0046; Figure 3C). These data

suggested that this RS model was significant association

with GC’s prognosis.
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FIGURE 3
Significant difference of clinical characteristics in the two RS groups. (A–C)Overall survival and relapse-free survival of low and high RS group in
STAD cohort (A), ACRG cohort (B), combined cohort (STAD+ACRG) (C). (D,E)Clinical characteristics of low and high RS group in STAD (D) and ACRG
cohort (E). Statistical significance of difference was determined using Chi-Square test or Fisher’s exact tests. (F,G) DCA of clinical characteristics in
STAD (F) and ACRG cohort (G). RS, risk score; STAD, stomach adenocarcinoma; ACRG, Asian Cancer Research Group; MSS, microsatellite
stability; MSI, microsatellite instability; DCA, decision curve analysis.
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Clinical characteristics of gastric cancer in
different risk score groups

At first, the association between RS and clinical

characteristics was analyzed in GC. RS was correlated with

high recurrence rate (p < 0.01), high MLH1 positive (p <
0.01), more microsatellite stability (MSS) (p < 0.0001), as well

as less EBV infection (p < 0.05; Figures 3D,E). We further

evaluated that wheather recurrence rate, MLH1 level,

microsatellite status and EBV infection performed a prognosis

significance in GC. The results showed that except EBV (p =

0.87), recurrence rate (p < 0.0001), MLH1 level (p = 0.0022) as

well microsatellite status (p = 0.016) were also significantly with

GC’s OS. Patients with recurrence (18.5 months vs. not reached),

MLH1 positive (50.3 months vs. not reached) and/or MSS

(65.0 months vs. not reached) had a shorter OS

FIGURE 4
Significant difference of molecular characteristics in the two RS groups. (A)Overview of the association between RS and oncogenic signatures
scored by GSVA. The correlation coefficient and significance are measured by using Pearson correlation analysis. (B) The result of GSEA shows high
RS-associated and low RS-associated oncogenic signatures. (C) Three representative GSEA enrichment plots. (D) Oncoprint of mutation status of
genes in several key pathways engaged in GC. Statistical significance of difference was analyzed using Chi-Square test or Fisher’s exact test. (E)
Percentage of mutations in different pathways between two RS groups. (F) TMB in the two RS groups. Chi-Square test was used to achieve statistical
analysis. RS, risk score; GSVA, Q14 gene set variation analysis; GSEA, gene set enrichment analysis.
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(Supplementary Figure S5). Decision curve analysis (DCA) is a

potent tool for estimating the efficacy of clinical model (Vickers

and Elkin, 2006). Hence, DCA was employed to compare the

prediction efficacy of this RS model and other clinical parameters

in GC. The results showed that RS performed well prediction

efficacy in both STAD and ACRG cohort, but unfortunately it

was still inferior to several clinical characteristics, such as stage,

recurrence, and therapy response (Figures 3F,G).

Molecular characteristics of gastric cancer
in different risk score groups

Next, the molecular characteristics was revealed between the

two RS groups in STAD cohort. GSVA was firstly performed

using expression profiles from tumor samples to calculate gene

set enrichment score. The high RS group was mainly associated

with KRAS-related oncogenic signature (Figure 4A;

Supplementary Table S5). GSEA of oncogenic signature

suggested that the upregulated genes in the high RS group

were enriched in KRAS, PTEN, TP53, and JAK2 related gene

sets (Figures 4B,C; Supplementary Table S6). Of note, most of

FGF/FGFR family members were upregulated in the high RS

group compared to the low RS group, while no significant

difference was observed in the expression of KRAS, HRAS,

and NRAS between two RS groups (Supplementary Figure S6).

These data demonstrated that the high RS group possessed more

deregulated oncogenic signatures, which may be due to the

aberrant FGF/FGFR in GC.

Gene mutations are also the important driving factors in GC.

Hence, we focused on the mutation status of genes involved in

major pathways in GC, including KRAS pathway, TP53/cell cycle

pathway, ERBB pathway, NOTCH pathway, PI3K/mTOR

pathway, WNT pathway and TGF-β pathway, as shown in the

FIGURE 5
Different immune microenvironment in the two RS groups. (A) The heatmap shows the frequency of tumor microenvironment infiltrating cells
and immune score between the two RS groups (student’s t-test or Mann Whitney test). (B) The representative slide images of tumor in the two RS
groups. (C) The heatmap shows TIDE score between the two RS groups (student’s t-test or Mann Whitney test). (D) The response rate to
immunotherapy between the two RS groups (Chi-Square test). (E) The mRNA expression of immune checkpoint genes in the two RS groups.
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. RS, risk score; TIDE, Tumor Immune Dysfunction and Exclusion.
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waterfall plot (Figure 4D). Statistical results uncovered that

patients in the high RS group had more frequent mutations in

TP53/cell cycle pathway than those in the low RS group (60.95%

vs. 46.43%, p < 0.05). The low RS group showed a higher

percentage of mutations in KRAS pathway (27.98% vs.

17.75%, p < 0.05), ERBB pathway (28.57% vs. 17.75%, p <
0.05), NOTCH pathway (33.93% vs. 23.08%, p < 0.05), PI3K/

mTOR pathway (42.26% vs. 16.57%, p < 0.0001), WNT pathway

(32.74% vs. 17.75%, p < 0.01) and TGF-β pathway (27.38% vs.

13.02%, p < 0.01) compared to the high RS group (Figure 4E).

The total TMB was also assessed between two risk groups, and

results showed that the low RS group had a higher TMB than the

high RS group (p < 0.01; Figure 4F).

The differences of tumor
microenviroment in the two risk score
groups

Moreover, the TME characteristics were investigated

between the two RS groups. To this end, the TME score was

determined by using estimate algorithm. The results showed that

the low RS group had a higher immune score than the high RS

group (576.4 vs. 362.0, p < 0.05; Figure 5A). Immune cells and

stromal cells are the major constituent cells in TME. The

infiltration of immune cells and stromal cells was next

analyzed in GC. The results showed that the low RS group

had higher abundance of immune cells, including activated

CD4 T-cells (p < 0.01), activated CD8 T-cells (p < 0.0001),

activated dendritic cells (DCs, p < 0.05), CD56 bright natural

killer cells (NK cells, p < 0.001), effector memory CD8 T-cells

(p < 0.001), immature B cell (p < 0.05), NK cells (p < 0.05), type

17 T help cells (Th17 cells, p < 0.001), than high RS group

(Figure 5A). CIBERSORT algorithm also showed higher

infiltration of immune cells (e.g., CD8 T-cells, activated NK

cells, T-cells follicular helper) in the low RS group rather than

in high RS group. MCP counter algorithm indicated that the high

RS group had higher infiltration of stromal cells, including

fibroblasts (p < 0.05) and endothelial cells (p < 0.0001),

compared to the low RS group (Figure 5A). Pathology images

showed that more lymphocytes infiltrated into tumor in low RS

samples (Figure 5B). TIDE algorithm was further used to

estimate T-cell function and exclusion score (Jiang et al.,

2018). Although results showed no significant differences of

dysfunction score between two groups, the high RS group had

a higher exclusion score than the low RS group (p < 0.0001),

accounting for the lower T-cell infiltration in the former (Figures

5C,D). Taken together, the TME of low RS tumor was

characterized by enriched immune cells, while high RS tumor

by more stromal cells.

Cancer immunity cycle is considered as the most

important pathway for immune cells’ works, which

included seven steps: 1) Release of cancer cell antigens, 2)

cancer antigen presentation, 3) priming and activation, 4)

trafficking of T-cells to tumors, 5) infiltration of T-cells into

tumors, 6) recognition of cancer cells by T-cells, and 7) killing

of cancer cells (Xu et al., 2018). The score of these seven steps

was calculated by ssGSEA algorithm. The results showed that

these pathways were active in the low RS group, especially step

2–7 (Figure 5A), indicating that these GC patients may have a

more active immune microenvironment. TIDE algorithm

could be used to predict pateints’ response to

immunotherapy. The results showed that the low RS group

had a higher response rate to immunotherapy than the high RS

group did (48.21% vs. 27.33%, p < 0.001; Figure 5D). Then, we

analyzed the expression of immune checkpoint genes in tumor

samples. Results suggested that the low RS group had a higher

expression of eleven immune checkpoint genes, including

CD274 (PD-L1) and PDCD1 (PD-1) than the high RS group

(Figure 5E). In addition, the low RS group possessed a higher

level of TMB (Figure 4F). These observations may explain the

better response to immunotherapy of the low RS group.

Identifying subclass-specific treatment
strategies for gastric cancer

As abovementioned, two RS groups have different clinic,

molecule and TME characteristics, indicating that this model

had a preferable ability of classification for GC. Hence, we

hypothesized that this two groups may have different response

to distinct treatment. To prove this, we estimated the

sensitivity to several clinical drugs between the two RS

groups. Among chemotherapeutic drugs, the low RS cohort

displayed more sensitivity to Etoposide (p < 0.01) and

Paclitaxel (p < 0.01) than the high RS cohort did, and no

significant difference was observed in the estimation of

Cisplatin (p > 0.05), Docetaxel (p > 0.05) as well as

Doxorubicin (p > 0.05) (Supplementary Figure S7). Among

targeted drugs, the high RS cohort exhibited more sensitivity

to Pazopanib (p < 0.0001) compared to the low RS cohort, but

no significant difference in Sunitinib (p > 0.05), Gefitinib (p >
0.05) as well as Erlotinib (p > 0.05) (Supplementary Figure S7).

In addition, above data indicated that GC patients in the low

RS group had a higher response to immunotherapy than those

in the high RS group (Figure 5D). Accordingly,

immunotherapy or chemotherapy may be suitable for the

low RS cohort.

To identify subclass-specific agents for the high RS cohort,

the AUC values that were used to estimate drug sensitivity

(lower AUC means more sensitivity) were downloaded from

two large-scale datasets (CTRP and PRISM). In particular, the

data of 545 drugs and 824 CCLs were downloaded from CTRP,

and 1,419 drugs and 476 CCLs from PRISM (Supplementary

Tables S7,8). CTRP and PRISM dataset shared 151 drugs and

85 CCLs (Figures 6A,B). Two exclusion criteria were used to
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FIGURE 6
Comprehensive analysis of these candidate drugs. (A,B) Venn plot showed the drugs (A) and cell lines (B) included in PRISM and CTRP database.
(C,D) Volcano plot displayed the drugs’ differential AUC values between low and high RS groups in PRISM (C) and CTRP (D) database. (E) AUC values
of Homoharringtonine, Panobinostat, Tivantinib, Bruceantin, Dolastatin-10, and Tedizolid-phosphate between low and high RS groups. (F) AUC
values of Austocystin D, Niclosamide, Hyperforin, SCH-79797, SB-525334, and Linsitinib between low and high RS groups. (G) Chemical
structures of the twelve candidate drugs. (H) A comprehensive analysis of the twelve candidate drugs from clinical and experimental evidences, fold
change of drug targeted genes, as well as CMap score. *p < 0.05, **p < 0.01, ***p < 0.001. RS, riskscore; CTRP, Cancer Therapeutics Response Portal;
AUC, area under the dose-response curve; GC, gastric cancer; CMap, connectivity map; logFC, log2 (fold change).
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select the data from these two databases: Drugs with NA in

more than 20% of the samples were excluded; CCLs that have

no expression data in CCLE dataset were excluded. After

precondition, 405 drugs and 824 CCLs in CTRP, and

433 drugs and 476 CCLs in PRISM were retained.

Subsequently, using RS scored CCLs and divided them into

low and high RS group. Differential analysis of AUC values

between two groups was carried out. According to the cutoff

values for CTRP (logFC < -0.2, p < 0.05), six drugs, including

Austocystin D (natural product, inducer of DNA damage),

Niclosamide (STAT3 inhibitor), Hyperforin

(TRPC6 inhibitor), SCH-79797 (F2R inhibitor), SB-525334

(TGFBR1 inhibitor) and Linsitinib (IGF1R inhibitor) were

focused on; for PRISM (logFC < −0.02, p < 0.05), another six

drugs, including Homoharringtonine (RPL3 inhibitor),

Panobinostat (Histone deacetylases HDACs inhibitor),

Tivantinib (MET inhibitor), Bruceantin (protein synthesis

inhibitor), Dolastatin-10 (TUBB inhibitor) and Tedizolid-

phosphate (protein synthesis inhibitor) were selected

(Figures 6C–F). The chemical structure of these drugs were

displayed (Figure 6G). These candidate drugs may exhibit

outstanding effects against the high RS group. To further

identify potential drugs, a multiple-perspective investigation

was applied to comprehensively evaluate the therapeutic

potential of these twelve candidate compounds in GC

(Figure 6H). First, the clinical evidence of these compounds

in treating tumor was collected from FDA approved drug list

and ClinicalTrials website. Second, a comprehensive literature

retrieval was performed in PubMed to search the experimental

evidence of these compounds in treating GC. Third, logFC of

the mRNA expression of drugs’ targets between the high RS

tumor and normal tissue were calculated, and

logFC >1.0 indicated a greater potential target. Forth,

CMap analysis was employed to confirm the drugs that

yield gene expression patterns oppositional to the GC

expression patterns. Accordingly, two drugs, Panobinostat

and Tivantinib were identified as the potential drugs for

treating the high RS cohort.

Discussion

In this work, a set of FGF/FGFR-related lncRNAs were

identified. Based on Cox analysis, a four-lncRNA RS model

was established for clustering GC and predicting GC’s

prognosis. The low RS group performed a longer OS and

RFS, higher mutation rate and immune infiltration, while the

high RS group possessed enriched oncogenic signatures and

more stromal cell infiltration. We also put forward subclass-

specific treatment strategy for GC: Chemotherapy and

immunotherapy may be more suitable for the low RS

group, while targeted therapy (Panobinostat and

Tivantinib) for the high RS group.

Majority of studies confirm that the FGF/FGFR family have

achieved driving effects in the progression of GC (Zhang et al.,

2019; Zhou et al., 2020). We observed that compared to normal

tissues, some FGF/FGFR (e.g., FGFR3, FGFR4, FGF3, and FGF4)

were up-regulated in GC tissues, while some (e.g., FGF2 and

FGF10) were downregulated in GC tissues. However, almost all

of the members in FGF/FGFR family (besides FGF20 and FGF22)

were negative association with GC’s prognosis. For the

upregulated members, it is easy to understand their

association with prognosis in GC. For the downregulated or

no significantly changed members, although the overall level

of FGF/FGFR was lower than normal tissues, some tumor

tissues still expressed high level of FGF or FGFR. In the

cases with high FGF/FGFR expression, FGF/FGFR may also

exert driving function for cancer progression, resulting in

a worse prognosis than those with low FGF/FGFR expression.

Besides amplification, mutation was also the common

mechanism for FGF/FGFR’s cancer promoting effect (Katoh,

2019). Our study has also confirmed the occurrence of FGF/

FGFR mutations in GC, being consistent with previous studies

(Zhang et al., 2019), which was considered as a supplementary

mechanism for their driving role in GC.

Solid evidences confirmed the regulatory function of

lncRNAs in the gene expression (Statello et al., 2021). Several

studies demonstrated the regulatory function of lncRNAs

(NEAT1, GAS5, NORAD, and Linc00460) on some FGF/FGFR

(FGF1, FGF2, FGF7, and FGF21) (Wang et al., 2019; Zhu et al.,

2019; Chen H et al., 2020; Zhao et al., 2020), indicating that this

regulatory mode also takes effect on the expression of FGF/

FGFR. Here, a group of FGF/FGFR-related lncRNAs were

identified in GC, and their expressions were positive

correlation with some FGF/FGFR. In addition, these FGF/

FGFR-related lncRNAs also displayed the same expression

trend as some FGF/FGFR between normal and tumor tissues.

For instance, both FOXD2-AS1 and FGFR4 were upregulated

in GC, and their expressions were positively correlative. Previous

study indicated that lncRNAs can activate the expression of

adjacent genes in a transcript-independent fashion, e.g.,

enhancer-associated lncRNAs, promotion of genomic domains

comprising inter-loci interactions (it could cis-activate the

adjacent genes) (Tomita et al., 2015; Statello et al., 2021). The

location analysis showed that several FGF/FGFR family

members was adjacent to few FGF/FGFR-related lncRNAs,

indicating that these lncRNAs may also give play to a similar

regulatory effect on the expression of FGF/FGFR. Significantly,

more lncRNAs are nonadjacent to FGF or FGFR. We inferred

that these lncRNAs may work via an indirect regulation in GC,

such as the competing endogenous RNA (ceRNA) theory (Tay

et al., 2014). Actually, the correlation between FGF/FGFR-related

lncRNAs and FGF/FGFR was consistent with the association

between lncRNA and mRNA hypothesized by ceRNA theory.

Hence, although no direct data supported the regulation of these

lncRNAs on FGF/FGFR expression, insight into these FGF/
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FGFR-related lncRNAs will improve our understanding about

FGF/FGFR’s regulatory mechanism in GC, which deserve more

experimental works.

Based on FGF/FGFR-related lncRNAs, a four-lncRNA RS

model was established in STAD cohort. RS performed a negative

correlation with OS and RFS, and could serve as an outstanding

prognosis signature in both training and validation cohort. We next

analyzed the molecular characteristics in low and high RS groups.

Enrichment analysis showed that a great number of oncogenic

signatures were enriched in the high RS group, especially KRAS-

related gene set. KRAS mutation is a frequent oncogenic alteration

in a broad range of cancer types, including pancreatic cancer (>
80%), colorectal cancer (> 30%), lung cancer (> 30%),

cholangiocarcinoma (> 30%), as well as GC (< 10%) (Polom

et al., 2019; Timar and Kashofer, 2020). However, the mutation

events of KRAS and related pathway were significantly higher in the

low RS group than in the high RS group, being inconsistent with the

enriched KRAS-related gene set in the latter. Therefore, the

expression of wild-type KRAS was further analyzed, but no

significant difference was observed between the two RS groups.

Besides amplification andmutation, KRAS serves as a binary switch

in the signal transduction of most growth factor receptors including

FGFR, or tyrosine kinase receptor for HGF (MET) (Katoh, 2019;

Timar and Kashofer, 2020). Our data indicated that the most of

FGF/FGFR family members were significantly up-regulated in the

high RS group compared to the low RS group, which may explain

the enriched KRAS-related gene sets and other oncogenic signatures

in the high RS group. Of note, the expression of the four hub

lncRNAs (DIRC1, FGF10-AS1, MIR2052HG, and POU6F2-AS2)

also displayed a high level in the high RS group. A further

investigation about the association between FGF/FGFR and these

lncRNAs may throw light on the underlying mechanism of the

enriched oncogenic signatures in the high RS tumor.

TME was further estimated. By and large, more immune cells

enriched in low RS tumor, while more stromal cells in the high RS

tumor. Although more immune checkpoint genes upregulated in

the low RS group, it still performed an immune active status

compared to the high RS group. In addition, the high RS tumor

exhibited potent T-cell exclusion signature. Previous study

revealed that stromal cells (fibroblasts and endothelial cells)

prevent immune cell infiltrating to TME and inhibit their

functions, consequently shaping an immunosuppressive TME

(Motz et al., 2014; Denton et al., 2018). The enrichment

difference of stromal cells may lead to the different landscape

of TME in the low and high RS group. Moreover, TIDE algorithm

was used to predict patients’ response to immunotherapy. The

low RS group achieved a higher response rate to immunotherapy

than the high RS group did. Two points may be responsibility to

this prediction. For one thing, the low RS tumor had a high level

of PD-L1 and PD-1, which served as the major clinical targets for

immunotherapy currently. For another, low RS tumor displayed

a high level TMB that can be served as a prediction biomarker for

immunotherapy response (Samstein et al., 2019).

Next, the subclass-specific treatment was also put forward.

Besides immunotherapy, low RS cohort was also more sensitive

to chemotherapy, such as Etoposide and Paclitaxel.

Chemotherapy can enhance anti-tumor immune activity via

several mechanisms (increasing release of cancer antigens,

boosting antigen presentation, depletion of

immunosuppressive cells, etc.) (Zhu et al., 2021). Accordingly,

the combination of chemotherapy is a promising strategy to

increase the efficacy of immunotherapy. Clinical trial

CHECKMATE-649 and ATTRACTION-4 confirmed the

superior efficacy of the combined therapy in treating GC.

Accordingly, chemotherapy plus immunotherapy may be

suitable for low RS cohort. To identify subclass-specific agents

for the high RS cohort, a comprehensive analysis was carried out.

Panobinostat and Tivantinib, were identified as most promising

drugs for treating high RS cohort. Tivantinib achieves its activity

via targetingMET, a classical up-stream cascade of KRAS (Timar

and Kashofer, 2020), of which related gene set was enriched in

high RS group. Panobinostat inhibits specialized enzymes

(histone deacetylases, HDACs) that drive oncogenic pathways

via regulating chromatin remodeling (Ramaiah et al., 2021).

Experimental evidences indicated that Tivantinib and

Panobinostat exhibited outstanding anti-tumor activity in GC

(Kim et al., 2020; Lee et al., 2021). Taken together, Tivantinib and

Panobinostat are applicable for high RS tumor with enriched

oncogenic signatures. It is noteworthy that Tivantinib as a

monotherapy showed a modest efficacy against metastasis GC

in a phase II clinical trial (Kang et al., 2014), implying the

necessity of precision classification. Further development of

our RS model may promote the clinical application of these

two drugs in GC. In addition, multi-targeted RTK inhibitor

Pazopanib also exhibited superior sensitivity in the high RS

tumor, owing to its FGFR1 inhibition activity. These data

suggested that FGFR inhibitors may also achieved an

encouraging result in the high RS tumor.

Some limitations existed in our study. First, more

experimental evidences are necessary for confirming

lncRNAs’ regulatory effect on FGF/FGFR. Second, in vitro

and in vivo assays contribute to make clear the efficacy of these

candidate agents against GC. In addition, although

Panobinostat and Tivantinib have launched for clinical

treatment in multiple myeloma and liver cancer,

respectively, more clinical evidence are needed to testify our

subclass-specific therapy strategy in GC.

In conclusion, some FGF/FGFR-related lncRNAs were

identified in GC, and further investigation may improve our

understanding about regulatory mechanism of FGF/FGFR. We

established a four-lncRNA RS model and clustered GC samples

into two subclasses. The two subclasses have distinct molecular

characteristics and tumor immunophenotypes. We also put

forward subclass-specific therapy for the two cohorts. These

results have not only provided new insights into personalized

classification model with prognosis signature, but also thrown
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light on a corresponding precision treatment for tailored risk

stratification.
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