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Abstract: The electroencephalogram signal (EEG) often suffers from various artifacts and noises
that have physiological and non-physiological origins. Among these artifacts, eye blink, due to its
amplitude is considered to have the most influence on EEG analysis. In this paper, a low complexity
approach based on Stationary Wavelet Transform (SWT) and skewness is proposed to remove eye
blink artifacts from EEG signals. The proposed method is compared against Automatic Wavelet
Independent Components Analysis (AWICA) and Enhanced AWICA. Normalized Root Mean Square
Error (NRMSE), Peak Signal-to-Noise Ratio (PSNR), and correlation coefficient (ρ) between filtered
and pure EEG signals are utilized to quantify artifact removal performance. The proposed approach
shows smaller NRMSE, larger PSNR, and larger correlation coefficient values compared to the other
methods. Furthermore, the speed of execution of the proposed method is considerably faster than
other methods, which makes it more suitable for real-time processing.
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1. Introduction

Electroencephalographic (EEG) signals recorded from the scalp are extensively used in the
medical practice to analyze brain activity for the diagnosis, the management and the investigation of
neurological problems such as, but not limited to, epilepsy [1,2], neurodegenerative diseases [3,4] and
sleep disorders [5,6]. Another important application for scalp EEG can be found in Brain-Computer
Interface (BCI), which has made significant advances in neurorehabilitation and assistive technologies,
while also targeting the improvement of quality of life for disabled people [7].

EEG signals are often corrupted by non-cerebral signals originating from physiological and
non-physiological sources such as electrooculographic (EOG), electrocardiographic (ECG) and
electromyographic (EMG) signals, power line noise, electrode noise, etc. [8]. These sources distort the
EEG signal and may affect the final detection or classification results. Artifact removal is, therefore,
a critical and necessary step in EEG signal processing.

Amongst physiological artifacts, EOG is considered to have the most impact on the EEG signal
analysis, due to its high amplitude and overlapping frequency components. The cornea (positive)
and the retina (negative) of the human eye form an electrical dipole. Movements and blinks of
the eye modify this dipole and generate an electrical signal known as EOG, inducing strong ocular
artifacts in EEG recordings [9]. Eye blinks are characterized by low frequency components (<4 Hz)
with a high amplitude which have a symmetrical activity mainly located on the front lobe electrodes
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(Fp1, Fp2) with low propagation to other EEG channels. Eye movements are also identified as a low
frequency signal (<4 Hz) with lower amplitude but higher propagation to other electrode positions [10].
The occurrence of eye blinks is more frequent than eye movements, therefore, the elimination of eye
blinks from EEG has gained more attention than the elimination of eye movements.

There are five classes of algorithms that can be used to remove eye blink artifacts from EEG
signals: linear filters, parametric filters, blind source separation (BSS) methods, source decomposition
methods and combinations of different algorithms.

Linear filtering can be an effective method for the elimination of artifacts from a desired signal if
they do not overlap in the same frequency band [11].The linear filter cannot suppress the eye blink
artifacts from EEG signals without affecting the underlying cognitive brain process, e.g., language [12]
and decision making [13,14]. Therefore, developing methods able to eliminate eye blink contamination
from EEG data, especially in those cases where delta band is part of process, are mandatory. However,
it should be noted that the linear filter is the most common technique for removing the narrow band
artifacts, such as power line noises from biomedical signals.

Adaptive filters [15] are considered to be the most common technique for real time removal of
blink artifacts from EEG. They estimate a signal correlated with the blink artifact by using EOG as a
reference channel and then filter eye blinks from the recorded EEG. Despite the fast execution, these
methods require an extra channel, which increases system complexity for wearable applications, e.g.,
long-term epilepsy seizure monitoring [16] or mental stress assessment [17].

To overcome the problem of needing an extra channel, Wiener filter [18,19] was proposed for
artifact removal from EEG. The objective of this filter is to minimize mean square error (MSE) between
the desired signal and its estimation. In order to minimize the MSE, an estimation of the power spectral
densities (PSD) of the signal and artifact is performed. Although it does not require an extra channel
for EOG recording, initial calibration is necessary. In addition, the filter cannot be applied on-line.

In the absence of the reference artifact channel and prior knowledge of the collected EEG signal,
BSS based methods are considered as the most popular and effective techniques for elimination of
eye blinks from EEG signals [20]. The basis of those approaches is to find equivalent principal or
independent components to the input EEG channels and then perform processing in the transform
domain. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are the
most well known algorithms of BSS used for EEG denoising.

Berg et al. [9] investigated PCA for blink artifact elimination from EEG and concluded that its
performance is superior to the regression based method. The main drawback of PCA is, orthogonal
assumption between EEG and blink artifact, which is often incorrect. Some studies showed PCA
fails when the desired EEG signal and blink artifact have the resembling amplitude [21,22]. Many
researchers believe that EEG and blink artifact are independent rather than orthogonal [20,23,24],
therefore, ICA is applied instead of PCA.

Jung et al. [23] and Vigario [24] used ICA for removal of blink artifacts from EEG signals. One of
the drawbacks of ICA is that its effectiveness relies on statistical independence of EEG and blink sources,
and thus large amounts of data are required to achieve reliable results [11]. The other drawback is its
computational demands [15,18]. However, several studies have proposed the combination of BSS and
regression methods for real time denoising of EEG signals, e.g., Guarnieri et al [25] but the recording
of the artifact reference was mandatory. Therefore, alternative methods, which do not need an extra
channel for the artifact with the possibility of real time processing, are required.

In the last two decades, a wide range of source decomposition methods have been presented
for EEG denoising such as Empirical Mode Decomposition (EMD) [26,27], Variational Mode
Decomposition (VMD) [28] and Wavelet Transforms (WT) [29–32].

EMD is an appropriate tool for the analysis of nonlinear and nonstationary signals and has gained
attention for biomedical signal analysis. It decomposes the signal into a series of basis functions called
Intrinsic Mode Functions (IMF), and one residue. Little robustness to noise is the major limitation
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of EMD as its performance could be affected by white noise. To solve this problem, Ensemble EMD
(EEMD) [33] and VMD [28] algorithms were proposed.

The principle of the VMD is to decompose a signal into several Band Limited Intrinsic Mode
Functions (BLIMFs). Biswal et al. [28] applied VMD algorithm to remove blink artifacts from frontal
EEG electrodes and compared the performance of the proposed method to EMD and EEMD. VMD
outperformed the methods under comparison. The sensitivity of EMD to white noise was resolved by
VMD but the computational complexity was increased significantly.

WT has been applied for EEG signal denoising. The transformation is expressed as an inner
product of the signal with the time scaled and shifted versions of the wavelet (basis) function.
It decomposes the signal into sets of detail (high frequency) and approximation (low frequency)
coefficients. Among different WT algorithms, discrete wavelet transform (DWT) is used frequently
for artifact reduction in biomedical signals [34,35]. Nonetheless, stationary wavelet transform
(SWT) performed better for EOG reduction in EEG as it provided better temporal resolution [36].
Effective separation of the desired signal and the artifact components with SWT relies on the correct
determination of mother wavelet (basis function) and the level of decomposition.

Even though WT based methods are quite popular for EEG processing, the combinations of
WT and BSS techniques have also gained a lot of attention for EEG artifact reduction in recent
literature [37–40]. The most prominent example of these methods could be wavelet ICA (WICA)
algorithm, which was initially introduced by Azzerboni et al. [37] to remove ECG artifacts from
surface EMG. However, WICA was not automatic, as the selection of the wavelet components for
ICA processing was performed manually. Castellanos et al. [38] proposed wavelet enhanced ICA
to detect and eliminate EOG and ECG artifacts from EEG but only single EOG and ECG artifact
waveforms were used to evaluate the performance. Two automatic WICA based methods: Automatic
Wavelet Independent Components Analysis (AWICA) and Enhanced AWICA (EAWICA) have been
described in [39,40] to remove electrical shift, linear trend, temporal muscle, and eye blinks from
EEG signals. However, the performance of AWICA and EAWICA techniques is sensitive to five
parameters set before processing. Furthermore, those methods are computationally expensive due to
the implementation of ICA.

The aim of this research is to propose an automatic low complexity algorithm based on SWT for
the filtering of eye blink contaminated EEG signals. The method requires only two parameters to be
specified before processing, mother wavelet and level of decomposition. Selection of mother wavelet
is based on the similarity of the desired signal and the mother wavelet; thus, determination of the
level of decomposition plays the most important role in automatic SWT (ASWT) denoising method.
In this paper, we propose to use the difference in skewness between two consecutive approximation
coefficients levels to stop the decomposition process of SWT automatically when it reaches the eye
blink artifact components.

The remainder of this paper is organized as follows: Section 2 describes and explains the proposed
method and performance evaluation, Section 3 describes the data, and results are presented in Section 4.
Finally, further discussion on the achieved results and concluding notes are given in Sections 5 and 6.

2. Artifact Removal Methods

2.1. Proposed ASWT Method

SWT passes a signal through high-pass and low-pass filters to decompose it into high and low
frequency components, called detail and approximation coefficients respectively. The main advantage
of SWT is overcoming translation-invariance of DWT which is achieved by removing downsamplers
and upsamplers. As a result, the coefficients of SWT contain the same number of the samples as the
original signal.

Two parameters are required to be determined before conventional SWT processing: the mother
wavelet and the number of decomposition levels. The selection of the mother wavelet is generally
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based on similarities between the mother wavelet and the desired signal. Daubechies wavelet ‘db4’
is commonly used as the mother wavelet for biomedical signal processing [37–40] as its morphology
resembles eye blink signal. The spectrum of eye blink artifact varies between 0.01 to 3 Hz [10,38–40].
Therefore, it is expected to increase the power of the frequencies in the lower end of the EEG spectrum,
and as a result, the eye blink components lie in the last several levels of the SWT.

One of the goals of this paper is to introduce a criterion for stopping the SWT decomposition when
it reaches the eye blink components. Since blinking is a low frequency phenomenon, it is expected to
appear in approximation coefficients of SWT. Hence, the proposed criterion should be enforced on
those coefficients. The presence of eye blinks may be indicated by a higher absolute value of skewness
as it has a considerably larger amplitude compared to uncontaminated EEG signal [41,42]. Figure 1
illustrates the examples of the signals and their histograms for pure EEG, blink artifact and blink
contaminated EEG signal.
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Figure 1. Examples of signals and histograms for: clean EEG (a), blink artifact (b) and contaminated
EEG (c). S is the skewness value.

Skewness, S, for a sample of N values of the signal ’x’ is defined as follows [43]:

S =

1
N ∑N

i=1 (xi − x)3√
1

N − 1 ∑N
i=1 (xi − x)3

2 , (1)

where x is the mean of the sample.
For automatic stoppage of SWT when it reaches the blink artifact components, we have applied

a criterion based on the absolute difference of the absolute skewness values of two consecutive
approximation coefficients levels. The block diagram of the proposed algorithm is shown in Figure 2.

The proposed criterion is defined as absolute difference of absolute skewness values of two
consecutive approximation coefficients in SWT domain, which is expressed as follows:

δ =
∣∣|Sj| − |Sj−1|

∣∣, (2)

where S is the skewness and j is the level of decomposition of SWT. If δ > T , we can assume that SWT
has reached the blink components. The approach to extract and remove eye blink components from
the contaminated EEG is presented as follows:
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Figure 2. The block diagram of the proposed method.

1. Apply j level SWT to EEG signal contaminated with eye blinks, z(n), and extract the
approximation aj−1(k)and aj(k) coefficients, where j = 2, 3, ..., J (wavelet domain).

2. Compute the absolute difference of absolute skewness values of aj−1(k) and aj(k) as δ.
3. If δ >T, inverse SWT (ISWT) of aj−1(k) in order to get aj−1(n) which is considered as the eye

blink artifact. Subtract aj−1(n) from the contaminated EEG signal z(n) to obtain the filtered EEG
signal. Otherwise, go back to step 1 and proceed to j = j + 1.

In this paper, six T values ranging from 0.05 to 0.3 with a step of 0.05 have been applied.
The optimal value of T was selected based on lowest mean±std of error between pure and filtered
EEG signals.

2.2. Methods Under Comparison

The performance of the proposed algorithm is compared with AWICA and EAWICA algorithms
which are available from the authors upon request. There are five parameters required to be set before
processing for those algorithms. Optimal settings were set as described in [40].

2.3. Performance Evaluation

Normalized root mean square error (NRMSE), peak signal-to-noise ratio (PSNR) and correlation
coefficient (ρ) between pure and filtered EEG signals are the principal performance measures in time
domain. NRMSE and PSNR evaluate the magnitude distortion and ρ investigates phase distortion of
the filtered EEG signals, respectively. NRMSE is defined as follows:

NRMSE =

√
1
N ∑N

i=1 (x(n)− x1(n))
2

maxx(n) −minx(n)
× 100, (3)

where x(n) is pure EEG signal and x1(n) is filtered EEG signal.
PSNR is the peak error measurement which is expressed in decibels [40]:

PSNR = 20 ∗ log10

 maxx(n)√
1
N ∑N

i=1 (x(n)− x1(n))
2

. (4)

Correlation coefficient is a value between 0 to 1 which is expressed as:

ρ =
cov(x(n), x1(n))

σx(n)σx1(n)
, (5)
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where cov is covariance and σ is variance.
The algorithms have been executed on a computer with 3.2 GHz core i7 CPU, 16 GB RAM and

with widely used computing software MATLAB R2018a (Mathworks Inc., Natick, MA, USA).

3. EEG Data Description

3.1. Simulated EEG signals

Twenty four EEG signals from the CHB-MIT Scalp EEG database [44,45] (sampling rate
Fs = 256 Hz) have been selected to develop the proposed algorithm. We manually cut out 10 s
long artifact-free EEG epochs, and in this way, we were able to collect pure EEG signals. 30 EEG signals
collected during mental arithmetic tasks (EEG-MAT) (Fs = 500 Hz) [44,46] have been selected to test
the performance of the proposed algorithm. EEG-MAT database had already been filtered and the
data was clean. To generate simulated EEG signals contaminated with eye blinks, 54 real eyeblink
signals from the BCI experiment for motor imagery movement of the left and right hand [47], and the
BCI Competition 2008 (Graz Data Sets 2a) [48] have been used. The eye blink signals were band-pass
filtered between 0.1 and 3 Hz and resampled to 256 and 500 Hz. Simulated EEG signals contaminated
with eye blinks were then generated by an additive model of clean EEG and blink signals. The additive
model is described as follows:

z(n) = x(n) + ar(n), (6)

where z(n) is the EEG signal contaminated with eye blink artifact, x(n) is the pure EEG and r(n) is the
eye blink artifact. Since propagation of blink artifact is not equal in different EEG electrodes, the term
’a’ with four different values is applied to put emphasis on this fact that eye blink magnitude is not
equally distributed for all EEG electrodes [49]. Therefore, the developing set of the algorithm includes
a total of 24 × 4 = 96 and test set contains 30 × 4 = 120 of simulated signals. Figure 3 demonstrates
examples of pure EEG, eye blink artifact, and blink contaminated EEG signals with different values of
a for CHB-MIT database.
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Figure 3. Examples of simulated data from CHB-MIT database: x(n)—pure EEG, r(n)—eye blink
artifact, z1(n)—contaminated EEG with a = 0.75, z2(n)—a = 1.0, z3(n)—a = 1.5, and z4(n)—a = 2.0.

3.2. Real EEG Signals

In order to assess the performance of the proposed method on real EEG signals contaminated
with eye blinks, 8 EEG signals from the BCI experiment for motor imagery movement of the left and
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right hand ( f s = 512 Hz) [47] and 8 EEG signals from the BCI Competition 2008 (Graz Data Sets 2a)
( f s = 250 Hz) [48] with length of 60 s have been used. Each signal was divided into 6 windows of
10 s and then the denoising methods were applied. An eye blink reference channel was recorded
simultaneously to EEG data for both databases. All raw EEG signals were band pass filtered between
0.01 to 40 Hz and then the algorithms were performed to denoise the EEG signals.

4. Results

Figure 4 shows the mean ± std of NRMSE between pure and filtered EEG signals per different
values of T for CHB-MIT database. As observed below, the T value of 0.15, has the lowest NRMSE.
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Figure 4. Mean ± std of NRMSEs per different T values.

Figure 5 shows an example of a decomposed contaminated EEG signal into approximation
coefficients from CHB-MIT database in SWT domain. According to the proposed method, inverse SWT
of a5(k) is considered as the eye blink artifact and is removed from the contaminated EEG.
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Figure 5. Examples of approximation coefficients and corresponding skewness values for a
contaminated EEG signal from CHB-MIT database in SWT domain.

Quantitative analysis, computation of NRMSE, PSNR and correlation coefficient between pure
and filtered EEG signals were solely performed for simulated data. For real EEG signals contaminated
with eye blinks, performances are evaluated visually. Figure 6 illustrates the box plots of NRMSE
and correlation coefficient values between pure and filtered EEG signals for different databases
and algorithms.
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Figure 6. Box plots of NRMSE and correlation coefficient between pure and filtered EEG for simulated
data by all methods: (a,b) are for CHB-MIT, (c,d) are for EEG-MAT databases.

Figure 7 shows examples of the contaminated, pure, and filtered EEG signals from both databases
with all methods.
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Figure 7. Examples of eye blink cancellation in simulated EEG signals from: EEG-MAT (a),
and CHB-MIT (b) databases: z(n)—contaminated EEG, r(n)—real eye blink artifact, x(n)—pure
EEG, x1(n)—filtered EEG by the proposed method, x2(n)—filtered EEG by the AWICA and
x3(n)—filtered EEG by the EAWICA.
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An example of Power Spectral Density (PSD) for the pure and the filtered EEG signals from both
databases are shown in Figure 8. As it may be observed, ASWT could preserve EEG components better
than methods under comparison.
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Figure 8. Examples of the PSDs for the pure and the filtered EEG signals by all methods for simulated
data using CHB-MIT (a) and EEG-MAT (b) databases.

Figure 9 shows PSNR curves as the function of NRMSE for the filtered EEG signals using all
methods. As it can be seen, the proposed method gives higher PSNR and lower NRMSE for most of
signals than methods under comparison.
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Figure 9. PSNR curves as the function of NRMSE for filtered EEG signals: CHB-MIT (a) and EEG-MAT
(b) databases. ASWT outperformed the other algorithms because in each subplot, the points associated
with the largest PSNR and the smallest NRMSE were achieved by ASWT.

Ten seconds fragments of the real and filtered EEG signals resulting from all methods are
illustrated in Figure 10. Considering that both EEGs and eye blinks were unknown in the original EEG
signals, NRMSE, PSNR, and correlation coefficient are not regarded as evaluation criteria of the artifact
removal, therefore we have to confine ourselves to visual assessment.

Computational time for the implementation of the algorithm is of great importance for on-line
applications. Table 1 shows the mean ± std of the computational time expressed in seconds for
different algorithms and databases per 20 times run.
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Figure 10. Examples of eye blink cancellation in real EEG signals from: BCI Competition 2008—Graz
Data Sets 2a (a), and BCI 2011 left/right motor imagery (b). z(n)—EEG contaminated with eye blink,
x1(n)—filtered EEG by the proposed method, x2(n)—filtered EEG by AWICA and x3(n)—filtered EEG
by EAWICA.

Table 1. Mean±STD of computational time for the implementation of the algorithms, expressed
in seconds.

Method AWICA EAWICA ASWT

Database

CHB-MIT 22.8 ± 4.5 s 18.5 ± 2.3 s 1.9 ± 0.24 s
EEG-MAT 78.8 ± 5.8 s 71.3 ± 6.3 s 2.8 ± 0.67 s

BCI Competition 46.8 ± 4.2 s 44.3 ± 5.2 s 1.8 ± 0.34 s
BCI motor imagery 105.3 ± 8.7 s 84.5 ± 6.4 s 2.7 ± 0.62 s

5. Discussion

Many approaches for eye blink artifact removal from EEG signals have been already described
in literature. The main drawbacks of such methods are the necessity of an extra eye blink channel
recording for those based on adaptive filter, the lack of performance of linear filtering when the target
signal and artifacts overlap in the same frequency band, the computational expensiveness of BSS
methods, and the manual setting of the level of decomposition for source decomposition methods.

In this paper, we described an automatic low complexity algorithm called ASWT method to
remove eye blink artifacts from EEG signal. The innovation of the method presented in this paper
resides in combining SWT based decomposition with skewness analysis for automatic selection of a
final wavelet decomposition level to extract and subtract eye blink components from the EEG signals.
The main assumption for selection of skewness based criteria is a pronounced asymmetry of amplitude
values of the EEG signal at the eye blinks dominated episodes.

The performance and implementation of the proposed method was compared against AWICA
and EAWICA algorithms [39,40] which were proposed for automatic artifact reduction from EEG
signals. The correlation coefficient, PSNR, and NRMSE have been computed as the criteria to evaluate
the performance of the proposed algorithms. The largest PSNR, and correlation coefficient, and the
smallest NRMSE, yield the best performance and are interpreted as optimum.
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In total, 216 simulated eye blink contaminated EEG signals from two databases have been
processed. Figure 6 shows the box plots of the correlation coefficient and NRMSE between pure and
filtered EEG signals of both simulated databases for all algorithms. It can be seen, in most of the
cases, ASWT outperforms the other algorithms. Indeed, in 52 out 216 simulated signals AWICA and
EAWICA performed better than ASWT. Examples of visual evaluation of eye blink filtering by all
algorithms and corresponding pure EEG signals for both databases are shown in Figure 7. Figure 8
shows the examples of the corresponding PSD for the pure and the filtered EEG signals for both
simulated databases. It could be observed that lesser attenuation and distortion of the filtered EEG was
achieved by ASWT. Moreover, PSNR curve as the function of NRMSE for both databases are shown
in Figure 9 (each PSNR was normalized with regard to the highest PSNR value and multiplied by
100) [40]. It is clear that ASWT performed superior for the majority of the simulated data. In order
to investigate the performance of the proposed method for real life EEG signals, 16 real eye blink
contaminated EEG signals from two databases have been used. Figure 10 demonstrates the examples
of the real noisy and filtered EEG signals for both databases. It might be seen that the proposed method
could eliminate eye blinks with lower distortion of EEG signals.

Computational complexity is another important factor for the usability of the artifact removal
approaches. The comparison of algorithms execution for different databases is shown in Table 1. For 96
simulated signals from CHB-MIT database with Fs = 256 Hz the proposed method was 12× faster
than AWICA and 10× faster than EAWICA. As the sampling frequency increases, the algorithms
require a longer time to be executed. ASWT was 27× and 25× faster than AWICA and EAWICA,
respectively, for 120 simulated signals from EEG-MAT database with Fs = 500 Hz. Additionally, as the
length of signals increased for real eye blinks contaminated EEG signals, execution of the AWICA and
EAWICA required a considerably longer time than ASWT. The computational time needed for the
algorithms under comparison was considerably higher than for the proposed method, thus, they can
not be applied for real-time processing.

AWICA and EAWICA methods require setting of five parameters before processing and
consequently, the performance of the algorithms relies on the accurate setting of these parameters.
More user-independency is the main advantage of the proposed method as only one parameter is
required to be set before denoising.

The major limitation of the current experiment is the absence of other sources of artifacts in
eye blink contaminated EEG signals, while in real life, EEG is contaminated with different artifacts
simultaneously. Future work will be devoted to the improvement of the algorithm (i) to detect the
eye blink contaminated epochs and filter only contaminated epochs, (ii) to account for other types of
artifacts EMG, ECG, and electrode noise.

6. Conclusions

Eye blinks are the most common artifacts distorting EEG signals. This research proposed a
low complexity approach based on stationary wavelet transform and skewness to suppress eye
blink artifacts from EEG signals. The performance of the proposed algorithm was compared with
AWICA and EAWICA methods by using four databases of EEG signals. Obtained results highlighted
(i) better or comparable denoising performance and (ii) faster execution of the proposed method.
More independence from the user is another advantage of the proposed method. AWICA and
EAWICA algorithms require five parameters to be specified before processing, whereas ASWT requires
only one parameter.
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