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Abstract: Brain-like intelligent decision-making is a prevailing trend in today’s world. However,
inspired by bionics and computer science, the linear neural network has become one of the main
means to realize human-like decision-making and control. This paper proposes a method for
classifying drivers’ driving behaviors based on the fuzzy algorithm and establish a brain-inspired
decision-making linear neural network. Firstly, different driver experimental data samples were
obtained through the driving simulator. Then, an objective fuzzy classification algorithm was
designed to distinguish different driving behaviors in terms of experimental data. In addition,
a brain-inspired linear neural network was established to realize human-like decision-making and
control. Finally, the accuracy of the proposed method was verified by training and testing. This
study extracts the driving characteristics of drivers through driving simulator tests, which provides a
driving behavior reference for the human-like decision-making of an intelligent vehicle.

Keywords: brain-inspired decision-making; fuzzy classification; linear neural network; human-like
automatic driving system

1. Introduction

Human-like decision-making for an intelligent vehicle plays a paramount role in the
development of brain-like intelligence [1]. However, existing studies mostly focus on
rule-based control strategies, which depend on tedious rules and known scenarios [2,3].
Therefore, how an intelligent vehicle can explore or make decisions in unknown and
complex environments that involve humans has become a hot topic at the intersection of
bionic engineering and artificial intelligence.

In previous studies, researchers divided driving activities into three spaces (involving
humans or driving machines): perception space, cognitive space, and physical space [4].
In the perception space, humans can obtain information from the surrounding environ-
ments through use of their sensory organs, such as eyes, ears, and hands. Homoplastically,
an intelligent vehicle, will obtain the information from the states and surrounding environ-
ments through sensors, such as cameras and radars. In the cognitive space, humans make
decisions using their minds, prior knowledge, and situational understanding. However,
compared with human decision-making processes, an intelligent vehicle will perform ac-
tions through rule-based control strategies and environmental information. In the physical
space, the traditional vehicle can be controlled by human limbs, but for an intelligent vehi-
cle, it will be controlled by electrical signals and mechanical structures based on dynamics
models. Thus, the human brain can accomplish learning and memory through cooperative
work with different regions; thus, realize driving activities [5]. Therefore, inspired by
human decision-making processes, brain-inspired mechanisms with computer technology
deconstruction have become the latest international trends.
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There are six functional areas in the human brain, which will be taken into considera-
tion, sensory memory area, working memory area, long-term memory area, computing
center area, emotion area, and personality area. In addition, through the understanding
of brain-like intelligence applied to an intelligent vehicle, the corresponding relations
between the working areas of the human brain and autonomous driving modules is shown
in Figure 1.
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Analyzing characteristic data during driver driving is a key piece of technology that
solves decision-making problems in intelligent vehicles. However, when imitating the
human-like decision-making process, characteristic data that involve moving vehicles
become a bond between the driver and vehicle. Driving behavioral characteristics refer
to drivers in their own factors, vehicle factors, environmental factors, and other factors,
under the combined influence of the actual traffic situation, which presents the correspond-
ing action and reflects the regularity of driver manipulation, to some degree, and can
be understood as the driver’s intrinsic attributes. In early studies, for example, Abdul
et al. [6] referenced the accelerator pedal and brake pressure as characteristic indexes for
driving behavior, and established a driver’s behavior model based on the cerebellar model
joint controller. By identifying the driver’s personality and subconscious, the internal
connection between the driver’s behavioral characteristics and the cerebellar unconscious
response were revealed. Liu et al. [7] built a driver action model based on the sequence of
internal mental states, in which each state corresponded to a driver’s personalized control
behavior pattern. By observing the current driver’s control behavior and comparing it with
the established action model, the next action the driver takes can be predicted. Quintero
et al. [8] established two models based on the back propagation (BP) neural network. One
was used to classify drivers and identify real-time road conditions; the other was used to
identify the state of the driver. Yingfan et al. [9] adopted different parameters and a combi-
nation for the driver’s braking intention recognition; the results showed the feasibility for
a multi-parameter comprehensive analysis. Changfu et al. [10,11] combined the double
hidden Markov model with a neural network model to discover the driver intention recog-
nition under complex conditions, and driving behavior prediction through real driving
simulator experiments. Zambrano-Martinez et al. [12] performed an experimental study
of the traffic distribution in the city of Valencia, Spain, characterizing the different streets
of the city in terms of vehicle load, with respect to travel time during rush hour traffic
conditions. Zeng et al. [13] provided a new way to describe driving pedal behavior after
decomposing it into a sequence of actions. By considering the vehicle and road information
as the inputs and the pedal action as the output, an input-output hidden Markov model
(IOHMM) was used to describe the pedal behavior. In summary, the conventional models
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lack consideration of driving styles, and a brain-inspired decision-making method has not
been widely researched until recently.

This study aims to develop a mapping relationship between vehicle motion states and
vehicle control outputs, and, at the same time, driving styles are taken into consideration.
The main contributions of this study are as follows:

(1) The experimental data of different driving samples were obtained through the driving
simulator and the characteristic parameters were extracted and analyzed.

(2) An objective fuzzy classification algorithm based on safety and efficiency was de-
signed to distinguish different driving behaviors, in terms of experimental data.

(3) A brain-inspired linear neural network was established to realize human-like decision-
making and control; accuracy was verified by training and testing.

The remainder of this paper is organized as follows: Section 2 is Related Works,
which provides detailed information on our experimental methods, experimental data,
and theoretical basis. Section 3 is Description and Analysis of Characteristic Data, which
provides the analysis of characteristic data with driving simulator tests. Section 4 is
the Design of Fuzzy Classification Algorithm, which provides the design methodology
and algorithmic architecture. Section 5 is the Linear Neural Network for Brain-Inspired
Decision-Making, which provides the algorithm construction process and simulation
results. Section 6 is Conclusions and Future Works, which provides the conclusions of our
study, and conceptions we should ensue further. The final section is Discussions, which
provides some current deficiencies and limitations.

2. Related Works

In order to reduce the cost and consumption of resources (e.g., humans, material, and
financial resources generated by the real vehicle test), the driving simulator experiment
not only saved costs, but also improved safety and controllability. We used the driving
simulator with PanoSim to establish simulated driving scenarios, which provided experi-
mental data through the modular program with real-time acquisition. According to the
driving scenarios presented by PanoSim, and the current driving condition of the vehicle,
the state of the vehicle could be changed by the driver, who controlled the steering wheel,
accelerator pedal, or brake pedal. Then, a Simulink model was prepared for receiving the
signals from the angle sensor, torque sensor, and speed sensor. In addition, these data were
recorded through the module of “To Workspace” based on MATLAB. Finally, the vehicle
motion states and driving environment were presented on screen, as shown in Figure 2.
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In our related works, we recruited 100 driving samples that included different genders,
ages, occupations, and driving years, from schools and society. However, based on these
driver samples, the significant differences emerged through experiments. At first, in order
to eliminate the strangeness, we instructed participants to try to use the driving simulator
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because most of participants were unfamiliar with the machine. Then, after two rounds
of testing, which took about 20 min, they did a formal test, which took about 10 min. In
a formal test, the velocity, acceleration/deceleration, relative distance, acceleration pedal
opening degree, and brake master cylinder pressure are collected based on the same driving
conditions with different driver samples.

Considering our goal in this study, we mainly focused on car-following driving
conditions that took place on a straight road with different driver samples. Here, we
compare the mean square error values among 100 driver samples, because the mean
square error is usually represented as the degree of dispersion of a dataset. A large mean
square error means that most values in the dataset have a large difference from their mean
value, while a small mean square error means that most values in the dataset are close
to the population mean value. Furthermore, we calculate the mean value of the square
error mean in order to distinguish different types of driver samples. In this way, it is not
appropriate to use all of data in the following algorithm design. Thus, if we divide these
driver samples into three parts, based on the mean square error, then we can fit out three
curves, representing an aggressive driver, a general driver, and a steady driver, without
consideration of gender. The initial 100 driver samples were prepared for the different
styles; however, these three curves, after fitting for the three driving types, were prepared
for typicality. In this way, we can draw conclusions through these curves, which are shown
in Figure 3.
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We chose 100 driver samples for the experimental data collection, as mentioned
previously. From the samples, we chose three who were professional drivers (and who
had 10 years of driving experience) to be passenger evaluators. These three drivers were
prepared for the occupant evaluations because of their specialties. Moreover, considering
the general passenger vehicle, there were three seats available—except for the driver’s seat.
The questionnaire for occupant evaluation is shown in Table 1.
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Table 1. The questionnaire for occupant evaluation.

No. Questions Answer Evaluation

1 Push your back when making an acceleration? Yes A little No

Aggressive
General
Steady

2 Do you nod your head when braking? Yes A little No
3 Is the speed changing rapidly? Yes A little No
4 What is the average speed during car-following? Fast A little Slow

5 What is the relative distance between vehicles
during car-following? Large A little small

6 How about the relative distance between the
vehicles after braking? Large A little small

Using the above method, we can obtain three passenger evaluator results for each
driver sample. If the results of the three evaluators are consistent, the evaluation result
should be regarded as the final passenger evaluator result. If one is inconsistent with the
others, the majority of the evaluation results will be regarded as the final evaluation results
of the passenger evaluators. If the results of the three evaluations are not consistent, the
experimental test will be conducted again.

Our research group also conducted experimental studies in the early stages. For
example, Tianjun et al. [14] designed a decision-making method for vehicle longitudinal
automatic driving based on reinforcing Q-learning, providing a driving behavior reference
for the human-like vehicle control of an intelligent vehicle. Moreover, they designed an
automatic braking system, considering driver-braking characteristics, providing a dataset
for different driver-braking behaviors [15]. Therefore, we have a research basis for the
conducted experiments and design Algorithms based on driver classification.

3. Description and Analysis of Characteristics Data

In our studies, 100 driver samples were prepared for experimental testing by a driving
simulator. However, not all of the data were representative. In order to provide a better
illustration on the different types of driving behaviors, gender was simultaneously taken
into consideration. The traditional classification method based on characteristic mean value
is regarded as a relatively crude method, which cannot be used as a judgment basis for
detailed divisions of driving styles. Therefore, in this part, the driver samples were divided
into six driving types, according to the previous classification method, by considering
gender; then, through the analysis of data for different driving types after fitting, some key
parameters were calculated to provide a better illustration for different types of driving
behaviors.

Car-following, which is the most common driving condition, played an important
role in both the simulated driving test and real driving test. There are three key parameters
in the process of car-following: velocity (Vcurrent), longitudinal acceleration (a), and relative
distance (Drelative) [16,17]. The experimental results are shown in Figure 4.

Figure 4a shows that aggressive type and male general type tend to speed up quickly,
while the female general type and steady type tend to speed up slowly. At the same time,
during the deceleration process, the aggressive type and male general type tend to slow
down faster, while the female general type and steady type tend to slow down slower.
Figure 4b shows that the acceleration range of the aggressive type and male general type are
large during the car-following process, which can lead to an obvious feeling of pushback
when accelerating, and an obvious feeling of “nod-head” when decelerating. However, the
female general type and steady type have a narrow acceleration range. Figure 4c shows
that the relative distance after braking for the male aggressive type and female steady type
are about 3.9 m, which, for the female aggressive type and male general type are about
5.1 m, and for the female general type and male steady type are about 2.3 m. An obvious
difference existed in different genders with the same driving types.
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Thus, in order to reflect the different driving behaviors in the car-following process, by
analyzing the above data, further information can be obtained from these results, such as
the maximum of longitudinal acceleration (amax), the minimum of longitudinal deceleration
(amin), the average absolute value of acceleration (a), the absolute variance of acceleration
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(σa), the expected distance between two vehicles (dsafe), and the safety distance after braking
(demergency), as shown in Table 2.

Table 2. An experimental data analysis table of driving behavioral characteristics.

Male Female

Aggressive General Steady Aggressive General Steady

amax (m/s2) 3.9 2.9 2.1 3.6 2.3 1.6

amin (m/s2) −4.4 −4.4 −2.2 −5.1 −2.6 −2.7

a (m/s2) 1.5813 1.4917 1.2167 1.5382 1.2061 1.1398

σa 2.7891 2.1443 0.7315 2.8296 0.8912 0.5946

dsafe (m) 10 30 60 10 30 60

demergency (m) 3.3 4.5 2.4 4.6 2.3 3.2

In Table 2, a represents the average absolute value of acceleration, the calculation
method is shown in Equation (1); σa represents the absolute variance of acceleration; the
calculation method is shown in Equation (2); dsafe represents the expected distance between
two vehicles, which can be obtained from the data in Figure 3e; demergency represents the
safety distance after braking, which can be obtained from the data in Figure 4c.

a = (|a1|+|a2|+ · · ·+|an|)/n (1)

σa =
∣∣∣[(a1 −M)2 + (a2 −M)2 + · · ·+ (an −M)2]/n

∣∣∣,
M = (|a1|+|a2|+ · · ·+|an|)/n

(2)

4. Design of Fuzzy Classification Algorithm

According to the fuzzy theory [18,19], driving behavioral characteristics are not an
absolute concept, or “black or white” in the traditional sense, but they have a mutual
connection with each other. In order to achieve a more accurate classification through
the experimental data, we established two key indicators corresponding to characteristic
parameters: safety indicator and efficiency indicator.

In this study, we assume that the driving behaviors are aggressive and steady for the
following reasons: on the one hand, we described the driving behaviors for different drivers
by mainly focusing on the average driving speed; thus, it was easy to divide drivers into
two groups depending on average speed. On the other hand, in terms of the probability
calculation, it is convenient for the calculation when only considering two types of driving
behaviors. According to the naive Bayesian model, the problem with driving behavioral
classification is transformed into a probabilistic problem. There are two types of driver
samples: one is an aggressive driver, denoted as C1, the other is a steady driver, denoted as
C2. Thus, if the driver sample is denoted as x, then the probability represents the driver
sample (x) belongs to an aggressive driver (C1) can be expressed as P(x|C1)P(C1). However,
the probability that the driver sample (x) belongs to a steady driver (C2) can be expressed
as P(x|C2)P(C2). In this way, the total probability can be calculated in Equation (3):

P(x|C1)P(C1) + P(x|C2)P(C2) = 1 (3)

After the transformation, the probability that the driver sample (x) belongs to an
aggressive driver (C1) can be expressed as Equation (4):

P(x|C1)P(C1) =
1

1 + P(x|C2)P(C2)
P(x|C1)P(C1)

(4)
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If z = ln P(x|C1)P(C1)
P(x|C2)P(C2)

and P(x|C1)P(C1) = σ(z) , then the Equation (4) will be rewritten
as Equation (5):

σ(z) =
1

1 + e−z (5)

The traditional sigmoid function is shown in Equation (6) and Figure 5.

f (x) =
1

1 + e
x−A
−B

or f (x) = 1− 1

1 + e
x−A
−B

(6)

where x represents the variable, A represents the value of x when f (x) = 0.5, B represents
the trend of gain, which can be calculated with detailed information.
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Figure 5. The traditional sigmoid function.

The sigmoid function, which operates on the neurons of the neural network, maps
the input of the neuron to the output. It can be imagined as the firing rate of a neuron,
where the high slope in the middle is the sensitive area of the neuron, and the gentle slope
on both sides is the inhibitory area of the neuron. Mathematically, the sigmoid function
has a large signal gain for the central region and a small signal gain for the two sides,
which has a good effect on the signal feature space mapping. From the perspective of
neuroscience, the central region is similar to the excited state of neurons, and the bilateral
region is similar to the inhibited state of neurons. Therefore, in terms of neural network
learning, the key features can be pushed to the central region, and the non-key features to
the bilateral regions.

Furthermore, the tangential equation f (u) at the point of (A, 0.5) can be calculated in
Equation (7) and Figure 6.

f (u) =
u− A

4B
+ 0.5 (7)
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As shown in Figure 6, we can see that the tangent intersects with f (x) = 0 and f (x) = 1.
Thus, it may produce two points of intersection, the x-coordinates are A − 2B and A + 2B.
Moreover, combined with Equation (6), if x = A − 2B, then f (x) = 0.12; if x = A + 2B, then
f (x) = 0.88. The detailed calculation process is shown as follows:

If f (x) = 1

1+e
x−A
−B

and x = A − 2B,

Then f (x) = 1

1+e
A−2B−A
−B

= 1

1+e
−2B
−B

= 1
1+e2 ≈ 1

1+7.3891 ≈ 0.12;

Else if f (x) = 1

1+e
x−A
−B

and x = A + 2B,

Then f (x) = 1

1+e
A+2B−A
−B

= 1

1+e
2B
−B

= 1
1+e−2 ≈ 1

1+0.1353 ≈ 0.88.

The fuzzy classification algorithm for driving behavior is the premise of human-
like brain-inspired decision-making. In the process of designing the fuzzy classification
algorithm, according to the above theoretical basis and previous studies [20,21], safety and
efficiency are taken into consideration, and characteristic data will be used for analysis.

4.1. Safety Indicator

As shown in Figure 7, when a driver follows a vehicle, his brain mainly considers
whether there are obstacles ahead. If there is a target vehicle in front, and its speed is less
than the ego vehicle, then it becomes a typical condition, which needs to consider driving
safety. With the relative distance gradually decreasing, once the distance is less than the
safety distance, the vehicle will be in a relatively dangerous driving state, and a collision
accident may occur. If there is no target vehicle in front, or if its speed is faster than the
ego vehicle, the relative distance will be larger and larger, so there will be no collision
accident by default, and the consideration of safety can be put in second place, while the
consideration of efficiency can be put in first place.

According to the theory of the rigid body collision and vehicle kinematics, the relative
distance involved in the process of car-following can be divided based on the degree of
danger, as shown in Figure 8. The green part (Drelative > dsafe) means that when the actual
relative distance between two vehicles is larger than the safety distance, then the ego vehicle
is in a safe state. The yellow part (demergency < Drelative < dsafe) means that the actual relative
distance between two vehicles is smaller than the safety distance, but if the ego vehicle
brakes, then the collision will not happen. The red part (Drelative < demergency) means that the
actual relative distance between two vehicles is smaller than the danger distance, and then
the collision will happen. In the above process, the safety that we mainly considered is
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reflected in the yellow part—that is, the corresponding condition can be described as the
target vehicle being stationary or braking suddenly.
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Based on the above analysis, when the actual relative distance between two vehicles is
in the green part, the driving safety is the best. When the actual relative distance between
two vehicles is in the red part, the driving safety is the worst and there will be a collision.
Therefore, dsafe and demergency are selected as the high-gain and low-gain boundaries of the
sigmoid function. At the same time, by considering driving safety, we further calculate
the mean value of dsafe and demergency with general drivers, including a male driving type
and a female driving type. Combined with Equation (6), the value of A1 and B1 can be
calculated and the membership function for safety indicator (f (w)s) will be represented as
Equation (8):

f (w)s =
1

1 + e
x−A1
−B1

,
{

A1 = (dsa f e + demergency)/2
B1 = (dsa f e − demergency)/4

,
{

dsa f e = A1 + 2B1
demergency = A1 − 2B1

(8)

However, the detailed calculation process is shown as follows:

dsa f e = (dsa f e_male + dsa f e_ f emale)/2 = (30 + 30)/2 = 30
demergency = (demergency_male + demergency_ f emale)/2 = (4.5 + 2.3)/2 = 3.4 ≈ 3

Then, the value of A1 and B1 can be calculated based on above values, which are
shown as follows: {

A1 = (dsa f e + demergency)/2 = (30 + 3)/2 = 16.5
B1 = (dsa f e − demergency)/4 = (30− 3)/4 = 6.75
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In this way, Equation (8) can be represented as Equation (9):

f (w)s =
1

1 + e
x−16.5
−6.75

(9)

where w represents the relative distance.
Moreover, the larger the value of this function, the higher the safety will be and the

steadier the driving behavior will be. The smaller the value of this function, the worse the
safety will be and the more aggressive the driving behavior will be. However, the value
of f (w)s is continuous during the experimental calculation, so the mean value needs to be
further calculated to represent the average driving safety degree in the current driving
condition, which is calculated in Equation (10):

f (w)s = [ f (w)s1
+ f (w)s2

+ · · ·+ f (w)sn
]/n (10)

4.2. Efficiency Indicator

Drivers are always expected to arrive at the destination as fast as possible when the
human brain is not stimulated by a sense of danger, which is represented as the driving
efficiency. In an urban traffic environment, when the traffic light changes from red to green,
it means that all waiting vehicles can start to pass. At this time, the driver will accelerate as
fast as possible to complete the vehicle starting control. However, the actual situation is
not so. During the starting process, the vehicle will be restricted by the traffic environment,
such as speed limit or a narrow road in front. It will also be affected by the dynamic
characteristics of the vehicle itself. Finally, the driver cannot accelerate without considering
the limits and comprehensive effects of the traffic environment.

Therefore, the expected velocity of the ego vehicle will be represented as another
characteristic value for the proposed sigmoid function. In addition, the minimum of
the expected velocity can be obtained by the minimum deceleration, based on the time
headway (THW). On the contrary, the maximum expected velocity could be obtained by
the maximum acceleration, based on time headway (THW). At last, the minimum value
and the maximum value of the expected velocity are selected as the low-gain and high-gain
boundaries of the sigmoid function. The membership function for the efficiency indicator
(f (o)e) will be represented as Equation (11):

f (o)e =
1

1 + e
o−A1
−B1

,

 A1 = v0 +
THW

2 (
∣∣∣amax

∣∣∣−∣∣∣amin

∣∣∣)
B1 = THW

4 (
∣∣∣amax

∣∣∣+∣∣∣amin

∣∣∣) , THW = Drelative/Vcurrent (11)

where o represents the velocity; v0 represents the average velocity of general type. The
driving efficiency becomes the worst if the value is set as the minimum acceleration, while
it becomes the best if the value is set as the maximum acceleration.

In this way, Equation (11) can be represented as Equation (12):

f (o)e =
1

1 + e
o−[v0+3.67THW]

0.375THW

(12)

Moreover, the larger the value of this function, the better the efficiency is, which means
the more aggressive the driving behavior will be. The smaller the value of this function, the
worse the efficiency is, which means the steadier the driving behavior will be. However,
the function f (o)e is continuous during the experimental calculation, so the mean value
needs to be further calculated to represent the average driving efficiency degree in the
current driving condition, which is calculated in Equation (13):

f (o)e = [ f (o)e1
+ f (o)e2

+ · · ·+ f (o)en
]/n (13)
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4.3. Fuzzy Classification Algorithm

The fuzzy classification process is shown in Figure 9. The input of the fuzzy model
is the relative distance and velocity, and the output is an evaluation result with safety
and efficiency. Among them, there is a “Hidden layer” section between “The inputs”
section and “Membership functions” section, which provides two options: if the input is
the relative distance, then the hidden layer contains dsafe and demergency; if the input is the
velocity, then the hidden layer contains amax, amin and THW.
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In addition, the difference value between the safety evaluation result and efficiency
evaluation result is represented as σfi

, which can be calculated in Equation (14):

σfi
= f i(w)s − f i(o)e, i = 1, 2, · · · , 5, 6 (14)

Then, the mean value of σfi
for six driving types will be calculated in Equation (15):

σ f =
6

∑
i=1

[ f i(w)s − f i(o)e]/6 (15)

We can draw some conclusions that the larger the value of σfi
, the more obvious the

driving behavior will be, which can be boiled down to aggressive type or steady type. On
the contrary, the smaller the value of σfi

, the less obvious the driving behavior will be,
which can be boiled down to general type.

However, large or small are ambiguous concepts. We need to make a further classi-
fication by the comparison between σfi

and σ f : if σfi
< σ f , then the classification result

is general type; if σfi
> σ f , then the classification result is aggressive type or steady

type. Thus, we have to distinguish between aggressive type and steady type by the
weighting method.

We assume that the weighting coefficient α belongs to f i(w)s and the weighting
coefficient β belongs to f i(o)e, and α + β = 1. According to whether there is a target vehicle
in front and the movement of the target vehicle, the value of the weighting coefficients
are different:

(1) There is a target vehicle in front or the target vehicle is in an emergency driving
condition. The weighted value R+ based on composite indicators is calculated in
Equation (16):

R+ = α f i(w)s + β f i(o)e,
{

α = 0.6
β = 0.4

, (16)

Among them, we assume that α > β according to the past experience. If 0.12 < R+ < 0.5,
then the driving behavior belongs to aggressive type; if 0.5 < R+ < 0.88, then the driving
behavior belongs to steady type.
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(2) There is no target vehicle in front. The weighted value R− based on composite
indicators is calculated as shown in Equation (17):

R− = α f i(w)s + β f i(o)e,
{

α = 0.4
β = 0.6

(17)

Among them, we assume that α < β according to the past experience. If 0.12 < R−

< 0.5, then the driving behavior belongs to steady type; if 0.5 < R- < 0.88, then the driving
behavior belongs to aggressive type.

Thus, compared with the conventional classification methods, the proposed fuzzy
algorithm based on intuitive parameters (such as relative distance and velocity) imitates
the brain-like classification process. Finally, we carried out experimental verification on
50 driver samples and the results are shown in Figure 10.
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There are two points to illustrate the experimental verification results:

(1) If the original classification result is the same as the proposed classification result,
then the final result for driving behavior can be obtained.

(2) If the original classification result is different from the proposed classification result,
then we will tend to the occupant’s evaluation result. In addition, if the proposed
classification result is the same as the occupant’s evaluation result, then the final result
for the driving behavior can be obtained. However, if the original classification result
is the same as the occupant’s evaluation result, then we will check our algorithm and
run the test again.

In this way, the consistency between the original classification result and the occu-
pant’s evaluation result is 78%. Homoplastically, the consistency between the proposed
classification result and the occupant’s evaluation result is 94%. Thus, the proposed human-
like fuzzy algorithm improves the accuracy of classification, which also provides a reference
for brain-inspired linear neural network decision-making.

5. Linear Neural Network for Brain-Inspired Decision-Making

Linear neural network consists of a single or multiple linear neurons. The differences
between linear neural network and perceptron are as follows: the transfer function of each
linear neuron is a linear function, so the output is an interval value (arbitrary value); the
transfer function of the perceptron is a symbolic function, so the output is −1 or 1. The
learning rules of the linear neural network adopt the least mean square (LMS) algorithm.
The basic idea of this learning rule is to find the best weight and threshold to minimize
the mean square error of output for each neuron. The main application fields of the linear
neural network are function-fitting, approximation, prediction, pattern recognition, and so
on [22].

By reviewing the cognitive decision-making mechanism of human beings, the brain-
inspired mechanism is mainly reflected in “end-to-end” inputs and outputs of neural
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networks. However, if a controller can provide the pedal opening degree directly through
the relative distance and velocity, then it will become a human-like controller, which is
similar to brain-like decision-making. Multiple outputs can be generated if the network
contains multiple neuronal nodes. This linear neural network is called the Madaline
network. Figure 11 shows the process of establishing a Madaline network based on linear
neural network.
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The shining point of the linear neural network is its LMS learning Algorithm, also
called “∆ rules”. The LMS Algorithm can only train a single-layer network, but this will
not have a great impact on its function. The objective of the linear neural network learning
is to find the appropriate weight (ω) to minimize the value of the mean square error (mse).
In order to find the minimum value, we need to use the method of derivative: just use mse
to find the partial derivative, with respect to ω, and then set the partial derivative equal to
zero to find the extreme value of mse, as shown in Equation (18).

mse =
1
Q

Q

∑
k=1

e2(k) (18)

where, mse represents the value of the mean square of errors; Q represents the total number
of samples; e(k) represents the error between the actual outputs and the expected outputs.

The second-order partial differential for the square of training error, with respect to the
network weight during the k cycle, is calculated in Equation (19). The second-order partial
differential for the square of training error, with respect to the threshold value during the k
cycle, is calculated in Equation (20):

∂e2(k)
∂ωij

= 2e(k)
∂e(k)
∂ωij

(19)

∂e2(k)
∂b

= 2e(k)
∂e(k)

∂b
(20)

where ωij represents the weight of the network; b represents the threshold value of
the network.

The first-order partial differential for the square of training error, with respect to the
network weight during the k cycle is calculated in Equation (21):

∂e(k)
∂ωij

=
∂e

∂ωij
{d(k)− [

R

∑
i=1

ωij pi(k) + b]} (21)

where d(k) represents the expected outputs; pi(k) represents the inputs. Then, we will obtain
Equation (22):

∂e(k)
∂ωij

= −pi(k),
∂e(k)

∂b
= −1 (22)
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According to the principle of negative gradient descent, the changes of network
weights and threshold values should be 2ηe(k)p(k) and 2ηe(k). Therefore, the network
weights and threshold values correction Algorithm is shown in Equation (23):{

ω(k + 1) = ω(k) + 2ηe(k)pT(k)
b(k + 1) = b(k) + 2ηe(k)

(23)

where η represents the learning rate. When the value of η is large, the training speed of the
network can be accelerated, but if the value of η is too large, the stability of the network
will be reduced and the training error will be increased. According to previous studies, the
value of η can be calculated based on the sum of the mean square values for input vectors,
as shown in Equation (24).

0 < η <
2

tr(R)
(24)

where tr(R) represents the trace of the autocorrelation matrix of the input vector.
Then, the linear neural network architecture is shown in Figure 12 and the training

steps for the proposed network are as follows:
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Figure 12. The architecture of the linear neural network.

(1) Define an input variable p(k), an expected output d(k), a weight ω and a threshold b;
(2) Initialize the weight ω and threshold b;
(3) Input multiple training samples;
(4) Train the network to make mse as small as possible through multiple iterations;
(5) Judge whether the algorithm converges or not;
(6) If not, adjust the weight, then recalculate and retrain it.

As mentioned previously, the inputs for the linear neural network are velocity and
relative distance, the outputs for the linear neural network are accelerator pedal opening
degree or brake pedal opening degree. Thus, through the experimental data with different
driving types, the accuracy of the proposed network will be verified by training and testing.
The training results are shown in Figure 13.
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Figure 13. The training results for the linear neural network: (a) the result for aggressive driving type; (b) the result for
general driving type; (c) the result for steady driving type.

As shown in Figure 13, the fitted curves for the deviations of the expected pedal
opening degree from the actual values are provided with the function F(T). In the Figure 13,
the abscissa axis represents the actual values of pedal opening degree and vertical axis
represents the expected values of pedal opening degree based on the linear neural network.
The dotted lines represent the expected fitted function “Y = T”, while the blue lines
represent the actual fitted function (F(T)), which can be calculated in Equation (25):

F(T) ≈ kT + b (25)

Among them, k represents the slope of the fitted curve; T represents the actual pedal
opening degree; b represents the bias of the fitted curve. In this way, if the value of k
is closer to 1, then it will be better fitting; if the value of b is closer to 0, then it will be
better for fitting. In addition, R is the certainty coefficient, which represents the degree of
approximation of the predicted value. The calculation for R is shown in Equation (26):

R =

√√√√1−
l

∑
i=1

(yi − ŷi)
2/

l

∑
i=1

(yi − yi)
2 (26)

where yi represents the original data; ŷi represents the predicted data; yi represents the
mean of the original data. Based on previous researches, if the value of R is closer to 1, then
the better the fitting will be. Furthermore, the values of k and b can be obtained from the
training network, which are shown as follows:

F(T) =


0.87T + 0.014, aggressive
0.98T + 0.003, general
0.85T + 0.072, steady

After training, we tested each driving type network with random data from the driver
samples; the results are shown in Figure 14.
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As mentioned previously, in the Figure 14, the abscissa axis represents the actual
values of the pedal opening degree and the vertical axis represents the expected values of
the pedal opening degree based on the linear neural network. The dotted lines represent
the expected fitted function “Y = T”, while the red lines represent the actual fitted function
(F(T)), which are the same with the results of training.

Finally, the value of mse will approach the best through 2000 iterations; the results are
shown in Figure 15.
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6. Conclusions and Future Works

In daily driving, the driver’s task is to reach the destination safely and efficiently. Thus,
different drivers may present different driving behaviors, while their decision-making
mechanisms are similar. According to previous studies, the driver will make a certain
action based on relative motion states between the target vehicle and the ego vehicle in
the field of view. That is to say that the velocity and relative distance jointly determine
the driver’s decision-making process. However, the driver’s classification and decision-
making were not integrated through conventional studies. Therefore, in order to imitate
human-like decision-making during car-following, a brain-inspired decision-making linear
neural network was designed to solve this issue. Our study mainly focuses on the following
aspects:

(1) The driving simulator was used to collect vehicle state data during car-following with
different driver samples.

(2) The proposed fuzzy algorithm can make more precise classifications based on charac-
teristic parameters by extracting and analyzing the experimental data from different
driving types.

(3) A brain-inspired linear neural network was established to realize human-like decision-
making and control, and its feasibility and accuracy were verified through the training
and testing with iteration.

In addition, the sample data size can be increased and the consistency of the out-
put based on the neural network can be improved. Therefore, we will conduct more
experiments for different driver samples, and optimize some key parameters in the fuzzy
algorithm and neural network in the future.

7. Discussions

In this study, some deficiencies and limitations existed. For example, the value of α
and β in Equations (16) and (17) were arbitrarily chosen. However, our data collection
were based on a driving simulator without the consideration of real vehicle tests.
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