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ABSTRACT: In this work, we calculate the partition functions
and thermodynamic quantities of molecular hydrogen isotopo-
logues using the rovibrational energy levels provided by the highly
accurate ab initio adiabatic potential energy functions recently
determined by Pachucki and Komasa (Pachucki, K.; Komasa, J. J.
Chem. Phys. 2014, 141, 224103). The partition functions are
calculated by including all bound energy levels of the
isotopologues, up to their dissociation limits, plus the quasi-
bound levels lying below the centrifugal potential barriers. For the
homonuclear isotopologues, H2, D2, and T2, we also determine the
partition functions and thermodynamic quantities of the normal
mixtures using the statistical treatment recently proposed by
Colonna et al. (Colonna, G.; D’Angola, A.; Capitelli, M. Int. J.
Hydrogen Energy 2012, 37, 9656) based on the definition of the partition function of the mixture, which avoids inconsistencies in the
values of the thermodynamic quantities depending directly on the internal partition function, in the high-temperature limit.

1. INTRODUCTION
There is no doubt that molecular hydrogen is one of the
chemicals of the moment. Not surprisingly, it is a key player in
the energy transition as an energy storage and transport vector,
and as an alternative fuel,1−5 and plays an important role in
atmospheric and interstellar chemistry.6−15 It is therefore
essential to accurately characterize their thermodynamic
properties, including all their isotopologues.16,17

For the main isotopologue H2, a good number of studies have
been carried out to determine partition functions and
thermodynamic quantities of both equilibrium and normal
hydrogen.18−33 The information available for the remaining
isotopologues is, however, much scarcer, not going beyond the
stable deuterated isotopologues HD and D2,

19,27,29,33 except for
the work by Le Roy et al.26 in which they reported the
thermodynamic quantities of all isotopologues, although no
partition functions.
In this work, we accurately calculate the partition functions

and thermodynamic quantities of the six isotopologues of
molecular hydrogen in the temperature range from 1 to 10000 K.
For this purpose, we use the adiabatic potentials of the
isotopologues recently determined by Pachucki and Komasa
using high-level ab initio methods.34,35 Pachucki and Komasa
also provided the rovibrational bound energy levels of all
isotopologues, up to their dissociation limits, which can be used
directly to obtain the partition functions as sums of the
exponential energy factors over all the levels. However, they did
not calculate the quasi-bound energy levels generated by the
centrifugal potential barriers of the isotopologues, whose

inclusion in the partition function sums may significantly
modify their values and those of the thermodynamic quantities
at high temperatures. Because of this, we recalculate the bound
energy levels of the Pachucki and Komasa adiabatic potentials
using an efficient variational method, and additionally estimate
the quasi-bound energy levels also variationally with the accuray
required to evaluate the partition functions and thermodynamic
quantities.
We have also determined the partition functions and

thermodynamic quantities of the normal mixtures of the
homonuclear isotopologues H2, D2, and T2, using the rigorous
statistical thermodynamic formulation recently developed by
Colonna et al.,30 which eliminates inconsistencies in the values
of thermodynamic quantities depending directly on the partition
functions, such as the entropy and the Gibbs free energy, when
compared to the equilibrium values at high temperatures.

2. THEORY

The total partition function of a polyatomic molecule can be
expressed as follows:36,37
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andQint.
(0)(T) is the internal partition function in which the energy

levels are relative to the ground state energy ε0. Assuming that
only the electronic ground state is populated, the internal
partition function can be written in the form
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where ge, gn, gv, and gJ are, respectively, the electronic, nuclear,
vibrational, and rotational degeneracy factors, v and J collectively
label the vibrational and rotational quantum numbers of the
molecule, and εv,J

(0) = εv,J − ε0.
For diatomic molecules with fundamental electronic state

X1Σ+ (heteronuclear) or X1Σg
+ (homonuclear), such as

molecular hydrogen H2 and its isotopologues, the vibrational
and rotational degeneracy factors are, respectively, gv = 1 and gJ =
2J + 1, and the internal partition function (3) becomes
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Moreover, the electronic degeneracy factor ge is equal to unity (ge
= 1), and the nuclear degeneracy factors are given by

∏= +
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i

i
1

2

(5)

where Ii are the nuclear spins.
For the homonuclear isotopologues of molecular hydrogen,

the coupling between rotational motion and nuclear spin must
be taken into account.36,37 The internal partition function then
splits as follows:
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where gn,e and gn,o are, respectively, the nuclear statistical weights
of the even and odd rotational levels, which are given by gn,e = (2I
+ 1)I and gn,o = (2I + 1)(I + 1) if the nuclei are Fermions (semi-
integer spin), and gn,e = (2I + 1)(I + 1) and gn,o = (2I + 1)I if the
nuclei are bosons (integer spin). The values of the nuclear spin
factors of the H2 isotopologues are included in Table 1. For the
H2 and T2 isotopologues (Fermions), the species with J even
form para-H2 and para-T2, and the species with J odd form
ortho-H2 and ortho-T2, while for the isotopologue D2 (Bosons),
the species with J even form ortho-D2 and the species with J odd
form para-D2.
From the partition functions, we can calculate the

thermodynamic quantities of the ideal gas by substituting eq 1
into the general statistical expressions for the thermodynamic
quantities. Thus, we obtain the following expressions for the
molar energy E(T), enthalpy H(T), heat capacity at constant
pressure CP(T), entropy S(T), and Gibbs free energy G(T), in
terms of the internal partition function Qint.

(0):
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where E0 = H0 = G0 = NAε0 is the molar energy of the gas at
absolute zero temperature.
To facilitate the evaluation of the thermodynamic quantities,

it is convenient to use the first and second moments of the
internal partition function, Qint.

(0)′ and Qint.
(0)″, respectively, which

are defined as follows38
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The expressions for the thermodynamic quantities as a function
of the moments are then
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Table 1. Nuclear Spin Properties of the H2 Isotopologues
a

Mb isotolopogue I1 I2 nuclear system gn
c gn,e

d gn,o
e

2 H2 1/2 1/2 Fermions 4 1 3
3 HD 1/2 1 6
4 HT 1/2 1/2 4
4 D2 1 1 Bosons 9 6 3
5 DT 1 1/2 6
6 T2 1/2 1/2 Fermions 4 1 3

aThe nuclear spin values are I(H) = 1/2, I(D) = 1, and I(T) = 1/2.
bMass number. c(2I1 + 1)(2I2 + 1), d(2I + 1)I (Fermions); (2I + 1)(I
+ 1) (bosons), e(2I + 1)(I + 1) (Fermions); (2I + 1)I (bosons),
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The interesting thing about the momentsQint.
(0)′ andQint.

(0)″ is that,
after using eq 4 for the internal partition function Qint.

(0) into their
definitions (12) and (13), we get the expressions
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which allows us to calculate the moments directly from the
rovibrational energies of the molecule.
Equation 6 for the internal partition function of homonuclear

isotopologues is interpreted as an equilibrium mixture of the
species with J even and J odd rotational quantum numbers, i.e.,
of the corresponding ortho and para species. And when the
populations of the J even and J odd species are frozen at their
equilibrium values at high temperatures, we have the so-called
normal mixture of the isotopologue.36,37 In principle, it seems
logical to calculate the thermodynamic functions of the normal
mixture as averages of the functions of the species with J even
and J odd, weighted with their corresponding nuclear statistical
factors. This method presents, however, some inconsistencies in
the thermodynamic quantities directly depending on the
internal partition function, such as the entropy and the Gibbs
free energy (eqs 10 and 11), which values for the normal and
equilibriummixtures do not match in the high temperature limit
as they should.18,24,26 Recently, Colonna et al.30 have solved this
problem on a rigorous basis by statistically deriving the
expression for the internal partition function of the normal,
nonequilibrium mixture of species with J even and J odd.
In the Colonna’s treatment,30 the total partition function of

the normal mixture is written as follows:

=Q T Q T Q T( ) ( ) ( )tot.
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trans. int.
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(21)

whereQint.
nor.(T) is the internal partition function of the mixture.39

It is then shown that Qint.
nor.(T) can be expressed in terms of the

rovibrational partition functions of the species with J even and J
odd, Qvr,e(T) and Qvr,o(T), in the form30
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and J odd species from these expressions, we write
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and εv,J;e
(0) = εv,J;e − ε0,0 and εv,J;o

(0) = εv,J;o − ε0,1. And by using eqs 25
and 26 into eq 22 for Qint.

nor.(T), we obtain
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Introducing now the internal partition functions of the species
with J even and J odd, separately, in the form
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we get the following expression for the internal partition
function of the normal mixture as a function of the internal
partition functions of the J even and J odd species,
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The expressions for the thermodynamic quantities of the normal
mixture are then obtained by substituting the internal partition
function of the normal mixtureQint.

nor.(T) into eqs 7−11. Thus, we
get for the energy of the normal mixture
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where E0
nor. = NAε0

nor., and it can be easily verified that this
expression is equal to the average of the energies of the J even
and J odd species given by
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weighted with the nuclear spin factors, i.e.,
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In an analogous way, the following expressions are obtained for
the remaining thermodynamic quantities of the normal
mixtures.
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where H0
nor. = G0

nor. = E0
nor., and all of them can be expressed as

averages of the quantities of the J even and J odd species,
weighted with the nuclear spin factors.
We should note that the same is not true when using as

internal partition functions of the J even and J odd species the
expressions directly extracted from the total partition function of
the mixture at equilibrium (eq 6), i.e.,
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which differ from eqs 31 and 32 in the nuclear spin factors. In
this case, for the thermodynamic quantities which do not
contain explicitly the internal partition function, but their
derivatives with respect to temperature, such as the energy, the
enthalpy, and the heat capacity, their values can still be written as
the weighted averages of the thermodynamic quantities of the J
even and J odd species. However, for the thermodynamic
quantities depending explicitly on the partition function, such as
the entropy and the Gibbs free energy, the resulting weighted
averages has to be corrected ad hoc by adding nuclear spin
dependent terms as follows
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for these quantities to converge to their equilibrium values at
high temperatures, as done by Le Roy et al. in his work.26

To thermodynamically characterize the system, it is also
convenient to introduce the enthalpy relative to the zero point,
or Helmholtz function, hcf(T), and the reduced Gibbs free
energy, or Gibbs enthalpy, gef(T), which are defined as
follows:27

= −hcf T H T H( ) ( ) 0 (46)

= −
−

gef T
G T H

T
( )

( ) 0
(47)

whereH0 is themolar enthalpy of the gas at the zero point energy
of the mixture at equilibrium, ε0,0, regardless of whether the
mixture is at equilibrium or normal, thus ensuring that the values
of hcf(T) and gef(T) for the normal mixture also converge to
their equilibrium values in the high temperature limit.

3. RESULTS AND DISCUSSION
3.1. Energy Levels. To calculate the partition functions of

the molecular hydrogen isotopologues, we need their rovibra-
tional energy levels. In this work, we have used the levels of the
ab initio adiabatic potentials recently determined by Pachucki
and Komasa.34,35 Pachoucki and Komasa calculated indeed the
bound energy levels of the potentials for all isotopologues up to
their dissociation limits, which are available in the Supporting
Information of ref 34, so they can be used directly to compute
the partition functions and thermodynamic quantities of the
isotopologues.
As discussed, however, by a number of authors,19,26,27,30 it is

convenient to include the quasi-bound rovibrational energy
levels in the partition functions, especially those lying between
the dissociation limit of the isotopologue and the maximum of
the centrifugal potential barrier generated by the effective
internuclear potential for values of J≠ 0.40 Accordingly, we have
recalculated variationally the bound energy levels of the
Pachucki and Komasa adiabatic potentials, and further
determined also variationally the quasi-bound energy levels.
The rovibrational energy levels of the H2 isotopologues are

obtained by solving the radial Schrödinger equation given by

μ
χ ε χ− ℏ + =

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑR
V R R R

2
d

d
( ) ( ) ( )

n
v J v J v J

2 2

2 eff. , , ,
(48)

where R is the internuclear distance, μn is the reduced mass of
the isotopologue nuclei, εv,J and χv,J(R) are, respectively, the
rovibrational energy levels and the radial eigenfunctions, and
Veff.(R) is the effective potential, which is given by the sum of the
adiabatic potential Vad.(R) and the centrifugal distortion term,
i.e.,
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μ
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J J
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2

2
(49)

The adiabatic potential is, in turn, given by the expression

ε
μ

= +V R V R
R

( ) ( )
( )

BO
a

n
ad.

(50)

where VBO(R) is the Born−Oppenheimer potential and εa(R) is
the adiabatic diagonal correction term. The expressions for
VBO(R) and εa(R) are described in detail by Pachucki and
Komasa in refs 34 and 35, and the potential subroutines to
calculate their values are available in the Supporting Information
of ref 41. In Table, 2 we give the nuclear and reduced masses

used for the isotopologues, extracted from CODATA-2018,42

from where all the physical constants and conversion factors
needed to perform the variational calculations were also taken.
In Table 3, we include as well the equilibrium distances Re and
dissociation energiesDe of the isotopologues, along with those of
the Born−Oppenheimer (BO) potential common to all of them
for comparative purposes.
As noted above, the centrifugal distortion term of the effective

potential generates a potential barrier in the attractive curve of
the potential function whose position, Rb, and height, Vb, vary as
a function of J, as shown in Figure 1 for the main isotopologue
H2. Also, the depth of the effective potential well, Vo, which
minimum is located at Ro, decreases as J increases until the well
and the barrier fade away for a given value of J, and the effective
potential becomes unbounded. By setting the zero energy at the
dissociation limit, the rovibrational bound energy levels are
those which satisfy Ev,J < 0, while the quasi-bound energy levels
are those lying between the dissociation limit and the maximum
of the barrier, i.e., those satisfying the condition 0 < Ev,J < Vb(J)
with their wave functions accumulating most of the probability
density in the potential well region. In order to determine the

quasi-bound levels, it is therefore necessary to have theRb andVb
parameters that characterize the centrifugal potential barriers
available. Table 4 gives the values of these parameters for the

effective potentials of H2 depicted in Figure 1, along with those
for the minima of these potentials. The minima and maxima of
the effective potentials of the six isotopologues of H2 for all
values of the rotational quantum number J are given in the
Supporting Information.
We have solved the radial Schrödinger equation (48) with the

HEG variational method,43,44 using the eigenfunctions of the
particle in a box as the basis functions set. After several
convergence tries, we decided to use a box with boundaries
[0.01, 22] Å, 300 basis functions to perform the variational
calculations, and 600 quadrature points to evaluate the matrix
elements of the effective potentials. This basis set guarantees

Table 2. Nuclear Masses of the Isotopologues (in ua) Taken
from CODATA-2018 and Used to Evaluate the Pachucki and
Komasa Adiabatic Potentials (mp = 1836.15267343 au, md =
3670.48296788 ua, mt = 5496.92153573 ua)

Ma isotopologue total mass reduced mass

2 H2 3672.30534686 918.076336715
3 HD 5506.63564131 1223.89922872
4 HT 7333.07420916 1376.39234045
4 D2 7340.96593576 1835.24148394
5 DT 9167.40450361 2200.87996169
6 T2 10993.8430715 2748.46076799

aMass number.

Table 3. Equilibrium Distances and Dissociation Energies of the H2 Isotopologues for the Pachucki and Komasa Adiabatic
Potentials34

Ma isotopologue Re (Å) De (cm
−1) Do (cm

−1) E0,0 (cm
−1)

2 H2 0.7416254 38298.019151 36118.363713 2179.655438
3 HD 0.7415744 38296.774032 36406.183972 1890.590060
4 HT 0.7415574 38296.360078 36512.608564 1783.751514
4 D2 0.7415233 38295.529669 36748.934662 1546.595007
5 DT 0.7415064 38295.115966 36881.884013 1413.231983
6 T2 0.7414894 38294.702346 37029.138896 1265.563450

BO 0.7414212 38293.040738

aMass number.

Figure 1. Effective adiabatic Pachucki and Komasa potentials of the H2
isotopologue, for the increasing values of the rotational quantum
number J = 0, 5, 10, 15, 20, 25, 30, 35, and 40.

Table 4.Minima andMaxima of the Effective Potentials of the
Main Isotopologue H2

J Ro (Å) Vo (cm
−1) Rb (Å) Vb (cm

−1)

0 0.7416254 −38298.019151 0.000000 0.000000
5 0.7583952 −36512.859489 4.061847 67.20030
10 0.8012586 −32108.601036 3.579876 226.9986
15 0.8667136 −25848.197588 3.190941 613.3744
20 0.9521347 −18553.181653 2.898881 1269.863
25 1.057507 −10909.635729 2.652182 2276.197
30 1.187589 −3439.9851650 2.422940 3739.023
35 1.360698 3428.2573833 2.180216 5829.746
39 1.610548 8120.2806688 1.890646 8226.017
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convergence in the first eight significant digits of the bound
energy levels of all isotopologues, similar to that obtained by
Pachucki and Komasa in their calculations.34 There are some
residual differences between our results and those by Pachucki
and Komasa, likely due to the slightly different values used for
the nuclear masses, physical constants and conversion factors.
Nevertheless, the values obtained in our calculations for the
ground states energies of the isotopologues, ε0,0, which directly
provide the chemical dissociation energies D0 = −ε0,0, agree in
the first six significant digits with those of Pachucki and Komasa.
The values of D0 are also given in Table 3, along with their
differences with the dissociation energiesDe, which provides the
zero point energies relative to the minima of the adiabatic
potentials. To check that the residual numerical differences
between our bound energy levels and those by Pachucki and
Komasa do not affect the determination of the partition
functions of the isotopologues, we have calculated them using
both sets of energy levels finding practically no differences.
As far as the quasi-bound energy levels are concerned, their

rigorous determination requires methods that guarantee the
fulfillment of the boundary conditions of these states, embedded
in the continuum of energy levels,45 and provide their half-lives
accounting for the predissociation of the molecule. Never-
theless, an easy way of estimating the quasi-bound levels consists
of leveling the centrifugal potential barriers beyond their
maxima, i.e., modifying the effective potentials so that Vef f.(R)
= Vb for R ≥ Rb. Thus, the effective potentials become bounded
potentials, with dissociation limits given by the maxima of the
centrifugal barriers, and the variational HEG method can be
additionally used to determine, in an approximate way, the
quasi-bound energy levels. This method is equivalent to
estimating the quasi-bound energy levels by extrapolation of
the Dunham series obtained by fitting the rovibrational spectral
lines of the molecules measured experimentally.18,27,30

The variational calculations performed for the main
isotopologue of H2 by smoothing the centrifugal potential
barriers give a total of 49 quasi-bound energy levels, to be added
to the 301 bound levels of the isotopologue, what represents
about 16% more energy levels in the calculation of the partition
function. For the remaining isotopologues, the ratios of quasi-
bound to bound levels are similar. Table 5 includes the numbers

of bound and quasi-bound levels, along with the total number of
levels for each isotopologue, which logically increase with the
mass of the isotopologue. The values of the quasi-bound energy
levels obtained for all isotopologues are given in the Supporting
Information.
3.2. Partition Functions. As already indicated above, a

great effort has been made to calculate the partition function of

the main isotopologue H2.
20−23,25,28−32 Most of these works

have been recently reviewed by Popovas and Jorgensen,31

making a systematic study of the different approaches that can be
used to calculate the partition functions, from the most
elementary one based on the harmonic oscillator-rigid rotator
model, to the most rigorous one consisting of summing the
Boltzmann factors over the rovibrational energy levels provided,
in their case, by empirical high-order Dunham expansions. The
partition functions of the H2 andHD isotopologues deposited in
the HITRAN database are also available,29,33 as calculated by
summation over the rovibrational energy levels also calculated
theoretically by Pachucki and co-workers, although coming from
earlier works by these authors46,47 than that used in the present
article.34 Let us see then first how these most recently
determined partition functions for theH2 andHD isotopologues
compare with ours.
In Table 6, we include the internal partition functions of the

main isotopologue H2 taken from the HITRAN database, those
calculated by Popovas and Jorgensen (PJ), and those obtained in
this work using the rovibrational bound energy levels of the
Pachucki and Komasa adiabatic potentials and adding the quasi-
bound levels. The HITRAN partition functions and the
Popovas−Jorgensen ones were calculated using only the
bound energy levels, so we have to compare them with our
partition functions calculated the same way.
As observed in Table 6, the HITRAN partition functions are

quite accurate at low temperatures, but increasingly differ from
our partition functions for temperatures higher than 1000 K,
reaching relative errors of 3% in the highest range of
temperatures, from 3000 to 6000 K, spanned by HITRAN
database. The partition functions calculated by Popovas and
Jorgensen using an accurate empirical Dunham expansion for
the rovibrational energies, compare, however, much better with
ours, providing values that practically reproduce our partition
functions up to 10000 K, with relative errors always below
0.030%.
Let us see now what happens when we include the quasi-

bound energy levels in the calculations. The resulting partition
functions thus obtained are included in the penultimate column
of Table 6. As observed, their values agree, in all the significant
digits given, with the partition functions calculated using solely
the bound levels up to 2000 K, and from here on, the partition
functions including the quasi-bound levels start to gradually
increase with respect to those containing only the bound levels,
as expected when adding more terms to the Boltzmann
summation, until reaching a deviation of about 20 absolute
units at the highest temperature of 10000 K, which represents a
relative error of 2.861%. The quasi-bound levels start to
noticeably modify the H2 partition functions at 2000−3000 K,
and their effect becomes more and more pronounced as the
temperature rises, becoming quite significant from 5000 to 6000
K onward.
Al for the HD isotopologue, we only have for comparison the

partition functions deposited in the HITRAN29,33 database.
Their values, along with ours extracted from the Pachucki and
Komasa potential, are shown in Table 7. Interestingly, for this
isotopologue the HITRAN partition function remains quite
accurate up to 6000 K, with relative errors that, although slowly
increasing, keep practically below 0.02% in that temperature
range. It seems to be that the ab initio rovibrational energy levels
used to calculate the HITRAN partition function of the
deuterated isotopologue HD were of better quality than those
used to calculate the HITRAN partition function of the main

Table 5. Increasing Number of Rovibrational Energy Levels
of the H2 Isotopologues Calculated Using the Pachucki and
Komasa Adiabatic Potentials Including the Quasi-Bound
Energy Levels

Ma isotopologue bound quasi-bound total

2 H2 301 49 350
3 HD 400 67 467
4 HT 449 78 527
4 D2 601 99 700
5 DT 720 118 838
6 T2 897 150 1047

aMass number.
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Table 6. Internal Partition Functions Qint.
(0)(T) of H2 Extracted from the HITRAN Database and Calculated by Popovas and

Jorgensen (PJ) from Dunham Expansions of the Rovibrational Energy Levels of Electronic States and by Summation over the
Rovibrational Energy Levels Extracted from the Adiabatic Pachoucki and Komasa Potentials Including Only the Bound Levels
(Present-bl) and Adding the Quasi-Bound Levels (Present-qbl)

T (K) HITRANa ΔQHITRAN
b PJc ΔQPJ

d present-ble present-qblf ΔQbl
g

10 1.000000 0.000 1.000000 0.000 1.000000 1.000000 0.000
50 1.297714 0.004 1.297887 0.018 1.297656 1.297656 0.000
100 2.667730 0.006 2.668230 0.025 2.667561 2.667561 0.000
150 4.079808 0.006 4.080472 0.022 4.079578 4.079578 0.000
200 5.361676 0.005 5.362463 0.020 5.361394 5.361394 0.000
250 6.575840 0.005 6.576747 0.019 6.575500 6.575500 0.000
300 7.766034 0.005 7.767062 0.018 7.765630 7.765630 0.000
400 10.13487 0.005 10.13613 0.018 10.13434 10.13434 0.000
500 12.51071 0.005 12.51218 0.017 12.51006 12.51006 0.000
600 14.89709 0.005 14.89894 0.016 14.89653 14.89653 0.000
700 17.29468 −0.002 17.29763 0.015 17.29496 17.29496 0.000
800 19.70520 −0.015 19.71113 0.015 19.70822 19.70822 0.000
900 22.13171 −0.042 22.14418 0.014 22.14104 22.14104 0.000
1000 24.57844 −0.086 24.60293 0.014 24.59958 24.59958 0.000
2000 51.36081 −1.331 52.05989 0.012 52.05356 52.05356 0.000
3000 85.63429 −2.516 87.85665 0.014 87.84444 87.84450 0.000
4000 130.4869 −2.989 134.5280 0.016 134.5068 134.5128 0.004
5000 187.9761 −3.072 193.9682 0.017 193.9345 194.0253 0.047
6000 259.7835 −3.030 267.9527 0.019 267.9022 268.4588 0.207
7000 357.7921 0.020 357.7197 359.7595 0.567
8000 463.9564 0.021 463.8571 469.2692 1.153
9000 585.9934 0.023 585.8590 597.4331 1.937
10000 722.6994 0.026 722.5085 743.7856 2.861

aReference 33. bΔQHITRAN = 100 × (QHITRAN − QPresent‑bl)/QPresent‑bl.
cReference 31. dΔQPJ = 100 × (QPJ − QPresent‑bl)/QPresent‑bl.

eIncluding only
the bound-levels (bl). fAdding the quasi-bound levels (qbl). gΔQbl = 100 × (Qqbl − QPresent‑bl)/QPresent‑qbl.

Table 7. Internal Partition Functions Qint.
(0)(T) of HD Extracted from the HITRAN Database and Calculated by Summation over

the Rovibrational Energy Levels Extracted from the Adiabatic Pachoucki and Komasa Potentials Including Only the Bound
Levels (Present-bl) and Adding the Quasi-Bound Levels (Present-qbl)

T (K) HITRANa ΔQHITRAN
b present-blc present-qbld ΔQbl

e

10 6.000048 0.000 6.000048 6.000048 0.000
50 7.394774 0.004 7.394503 7.394503 0.000
100 11.64890 0.006 11.64823 11.64823 0.000
150 16.22985 0.006 16.22882 16.22882 0.000
200 20.87753 0.007 20.87615 20.87615 0.000
250 25.55482 0.007 25.55309 25.55309 0.000
300 30.25068 0.007 30.24860 30.24860 0.000
400 39.68262 0.007 39.67983 39.67983 0.000
500 49.15955 0.007 49.15603 49.15603 0.000
600 58.68270 0.007 58.67846 58.67846 0.000
700 68.26512 0.007 68.26011 68.26011 0.000
800 77.93091 0.007 77.92509 77.92509 0.000
900 87.71234 0.008 87.70562 87.70562 0.000
1000 97.64579 0.008 97.63808 97.63808 0.000
2000 212.1631 0.011 212.1389 212.1389 0.000
3000 366.8685 0.015 366.8144 366.8147 0.000
4000 571.7602 0.017 571.6614 571.6867 0.004
5000 834.9470 0.019 834.7860 835.1725 0.046
6000 1164.354 0.021 1164.111 1166.506 0.205
7000 1565.636 1574.475 0.561
8000 2041.654 2065.242 1.142
9000 2590.297 2640.970 1.919
10000 3206.224 3299.722 2.833

aReference 33. bΔQHITRAN = 100 × (QHITRAN − QPresent‑bl)/QPresent‑bl.
cIncluding only the bound-levels (bl). dAdding the quasi-bound levels (qbl).

eΔQbl = 100 × (Qqbl − QPresent‑bl)/QPresent‑qbl.
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isotopologue H2.
46,47 When including the quasi-bound levels in

our calculations, again the HD partition functions start to
increase above those obtained using only the bound levels at
2000 K, and the differences grow until reaching about 93
absolute units at the highest temperature of 10000 K,
representing a relative error of 2.834% similar to that obtained
for the main isotopologue H2.
For the remaining isotopologues, HT, D2, DT, and T2, as far

as we know there are no prior partition functions to compare
with. In any case, the ab initio partition functions calculated for
them including the quasi-bound levels, whose values are given in
Table 8 along with those of the H2 and HD isotopologues, are
expected to be as accurate as the partition functions obtained for
these two isotopologues. For the remaining isotopologues HT,
D2, DT, and T2, the differences between the partition functions
calculated using only the bound energy levels and those
calculated adding the quasi-bound levels follow the same
pattern as that observed for the isotopologues H2 and HD; i.e.,
they become noticeable at 5000−6000 K and reach relative
errors of about 2.8% at 10000 K. The partition functions of all
isotopologues versus temperature up to 10000 K are depicted in
Figures 2 and 3 for a better visualization of them.
Let us finally consider the partition functions of the normal

mixtures of the homonuclear isotopologues H2, D2, and T2. For
the main isotopologue H2, we have to compare with the
empirical partition functions obtained by Popovas and
Jorgensen31 using only the bound levels, and those obtained
also empirically by Colonna et al.30 using the H2 spectroscopic
constants extracted from the NIST database48 to calculate the
rovibrational energy levels including the quasi-bound levels as
well. Both Popovas and Jorgensen, and Colonna et al. use also in
their calculations the rovibrational energy levels of the excited
electronic states of the H2 molecule, although the effect of them
starts to be important at 10000 K,31 which is the maximum
temperature considered in this work.

In Table 9, we give the normal H2 isotopologue partition
functions calculated by Popovas and Jorgensen and by Colonna
et al., along with ours, and the corresponding relative errors. As
we see, the empirical partition functions of Popovas and
Jorgensen, agree very well with our ab initio partitions functions
up to the temperature limit of 10000 K, with differences similar
to those obtained for the equilibrium mixture of the ortho and
para species (see Table 6). On the other hand, the partition
functions by Colonna et al. agree well with ours up to ∼1000 K
and deviate more and more for higher temperatures until
reaching relative errors of about 1%. These discrepancies are
likely due to the lower accuracy of the empirical rovibrational
energy levels used by Colonna et al. to calculate the partition
functions, as opposed to the much more accurate Dunham
expansion employed by Popovas and Jorgensen.

Table 8. Internal Partition Functions Qint.
(0)(T) of H2 Isotopologues Calculated by Summation over the Rovibrational Energy

Levels of the Adiabatic Pachoucki and Komasa Potentials Including the Quasi-Bound States

T (K) Q(H2) Q(HD) Q(D2) Q(HT) Q(DT) Q(T2)

10 1.000000 6.000048 6.001655 4.000130 6.013645 1.028241
50 1.297656 7.394503 7.785411 5.240706 10.69046 4.020855
100 2.667561 11.64823 12.22288 8.508528 18.87590 7.647912
150 4.079578 16.22882 17.32794 11.95696 27.20476 11.12462
200 5.361394 20.87615 22.55454 15.44495 35.57670 14.60757
250 6.575500 25.55309 27.80967 18.95150 43.97439 18.09935
300 7.765630 30.24860 33.07993 22.47026 52.39246 21.59888
400 10.13434 39.67983 43.65698 29.53554 69.28503 28.62246
500 12.51006 49.15603 54.28503 36.63362 86.26924 35.69493
600 14.89653 58.67846 64.98552 43.76842 103.4027 42.85611
700 17.29496 68.26011 75.80039 50.95397 120.7792 50.16042
800 19.70822 77.92509 86.78502 58.21326 138.5100 57.66484
900 22.14104 87.70562 97.99920 65.57500 156.7055 65.42120
1000 24.59958 97.63808 109.5004 73.07000 175.4655 73.47327
2000 52.05356 212.1389 248.6920 160.6778 407.5017 175.6482
3000 87.84450 366.8147 445.3189 280.6550 741.1252 325.4635
4000 134.5128 571.6867 710.6683 440.4920 1194.645 530.7831
5000 194.0253 835.1725 1055.486 646.7182 1786.428 799.9507
6000 268.4588 1166.506 1492.032 906.6064 2537.708 1142.736
7000 359.7595 1574.475 2032.187 1227.146 3469.241 1568.769
8000 469.2692 2065.242 2684.470 1613.304 4596.107 2085.131
9000 597.4331 2640.970 3452.125 2066.918 5924.310 2694.758
10000 743.7856 3299.722 4332.882 2586.578 7450.282 3396.169

Figure 2. Internal partition functions of H2 (black), D2 (red), and T2
(blue) calculated by summation over the ab initio rovibrational energy
levels extracted from the adiabatic Pachoucki and Komasa potentials.
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The proven good quality of our ab initio partition functions for
normal H2 somehow guarantees the accuracy of the partition
functions of the normal D2 and T2 isotopologues extracted from
the Pachucki and Komasa adiabatic potentials. The ab initio
partition functions of the equilibrium and normal mixtures of the
three homonuclear isotopologues H2, D2, and T2 are given in
Table 10, and depicted respectively in Figures 4, 5, and 6 to
clearly appreciate their noticeable differences at low temper-
atures.
3.3. Thermodynamic Quantities. As far as the thermody-

namic quantities of the molecular hydrogen isotopologues are

concerned, we have focused, following the structure of the
JANAF database,27 on four of them, the heat capacity at constant
pressure CP(T), the entropy S(T), the enthalpy relative to the
zero point hcf(T) = H(T) − H0, and the reduced Gibbs free
energy gef(T) = −(G(T) − H0)/T, from which the rest of
thermodynamic quantities can be easily derived.26

For comparison purposes, we have the values of these
thermodynamic quantities for the main isotopologue H2
calculated empirically by Popovas and Jorgensen,31 the
thermodynamic quantities deposited in the JANAF database
for the H2, HD, and D2 isotopologues,

27 and the ab initio values
calculated by Le Roy et al.26 for the six isotopologues. We should
note that all these results are not directly comparable, since each
author employs a different convention to give the thermody-
namic quantities. Concretely, in the JANAF database,27 the
room temperature Tr = 298.15 K is used as the reference
temperature, instead of absolute zero, and the nuclear spin
factors are normalized to unity. Popovas and Jorgensen31 use
absolute zero as the reference temperature, and maintain the
normalization of the nuclear spin factors to unity. And Le Roy et
al.26 also use absolute zero as the reference temperature
employing the real values of the nuclear spin factors, which is
the form in which we give the thermodynamic quantities in this
work. Nevertheless, we transform our thermodynamic quantities
according to the conventions used by each author in order to
make the proper comparisons. The calculations by Popovas and
Jorgensen are made using only the bound energy levels, as
already noticed, while those by Le Roy and the JANAF database
incorporate the quasi-bound energy levels.
Let us start with the heat capacity CP(T), which is the

thermodynamics quantity most sensitive to the partition

Figure 3. Internal partition functions of HD (black), HT (red), and DT
(blue) calculated by summation over the ab initio rovibrational energy
levels extracted from the adiabatic Pachoucki and Komasa potentials.

Table 9. Internal Partition FunctionsQint.
(0)(T) of H2 for NormalMixtures Calculated by Colonna et al. and Popovas and Jorgensen

(PJ) and by Summation over the Rovibrational Energy Levels Extracted from the Adiabatic Pachoucki and Komasa Potentials
Including Only the Bound Levels (Present-bl) and Adding the Quasi-Bound Levels (Present-qbl)

T (K) PJa ΔQPJ
b Colonnac ΔQC

d present-bl present-qbl ΔQbl
e

10 9.118028 0.000 9.118080 0.001 9.118028 9.118028 0.000
50 9.118454 0.000 9.118480 0.000 9.118454 9.118454 0.000
100 9.190341 0.001 9.190280 0.000 9.190265 9.190265 0.000
150 9.536879 0.003 9.536560 −0.000 9.536586 9.536586 0.000
200 10.15881 0.005 10.15820 −0.001 10.15826 10.15826 0.000
250 10.96661 0.007 10.96576 −0.000 10.96581 10.96581 0.000
300 11.89362 0.009 11.89252 −0.001 11.89258 11.89258 0.000
400 13.95293 0.010 13.95140 −0.001 13.95148 13.95148 0.000
500 16.15726 0.011 16.15536 −0.001 16.15547 16.15547 0.000
600 18.43674 0.011 18.43460 −0.000 18.43466 18.43466 0.000
700 20.76334 0.011 20.76100 0.000 20.76099 20.76099 0.000
800 23.12641 0.011 23.12400 0.001 23.12384 23.12384 0.000
900 25.52382 0.011 25.52140 0.001 25.52103 25.52103 0.000
1000 27.95788 0.011 27.95560 0.003 27.95488 27.95488 0.000
2000 55.49603 0.011 55.50800 0.032 55.49009 55.49009 0.000
3000 91.68123 0.013 91.78800 0.129 91.66938 91.66945 0.000
4000 138.8967 0.015 139.4188 0.386 138.8758 138.8821 0.004
5000 198.9913 0.017 200.6188 0.788 198.9579 199.0510 0.047
6000 273.7228 0.018 277.3508 1.134 273.6725 274.2412 0.207
7000 364.3861 0.020 370.8300 1.211 364.3139 366.3912 0.567
8000 471.4296 0.021 481.2400 0.925 471.3304 476.8296 1.153
9000 594.3760 0.023 607.7880 0.298 594.2416 605.9811 1.937
10000 731.9970 0.026 748.9760 −0.581 731.8058 753.3560 2.861

aReference 31. bΔQPJ = 100 × (QPJ − QPresent‑bl)/QPresent‑bl.
cReference 30. dΔQC = 100 × (QC − QPresent‑qbl)/QPresent‑qbl.

eΔQbl = 100 × (Qqbl −
QPresent‑bl)/QPresent‑qbl.
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function, since it depends on the second derivative of the
partition function (eq 9). In Table 11 we compare the heat
capacities obtained in this work for the main isotopologue H2
with those determined by Popovas and Jorgensen, those
deposited in the JANAF database, and the ones calculated by
Le Roy et al. The relative percentage errors of the heat capacity
values with respect to our values are given in parentheses in the
table.
As observed, there is a fairly good agreement between the heat

capacities obtained using these four methods up to 2000−3000
K, with relative errors that practically do not exceed 0.005% in
absolute value. For higher temperatures, deviations from our

results start to increase. The comparison is, logically, more
limited for the heat capacities of the JANAF database, since they
are given only up to 6000 K. These heat capacities are calculated
using relatively old spectroscopic data,27 so they are expectedly
to become more erroneous above 6000 K. As for the heat
capacities determined by Popovas and Jorgensen, and by Le
Roy, although the differences also increase with temperature,
especially those by Le Roy, their values continue to show a good
agreement with ours, with relative errors remaining below 0.2%
in the whole range of temperatures considered. On the other
hand, it is worth highlighting again the pronounced effect that
inclusion of quasi-bound energy levels has on the heat capacity

Table 10. Internal Partition Functions Qint.
(0)(T) of Homonuclear H2 Isotopologues for Equilibrium and Normal Mixtures

Calculated by Summation over the Rovibrational Energy Levels Computed from the Adiabatic Pachoucki and Komasa Potentials
Including the Quasi-Bound States

H2 D2 T2

T (K) equilibrium normal equilibrium normal equilibrium normal

10 1.000000 9.118028 6.001655 12.98025 1.028241 9.118029
50 1.297656 9.118454 7.785411 13.23124 4.020855 9.511511
100 2.667561 9.190265 12.22288 16.27621 7.647912 11.78405
150 4.079578 9.536586 17.32794 20.97764 11.12462 14.84067
200 5.361394 10.15826 22.55454 26.03105 14.60757 18.13234
250 6.575500 10.96581 27.80967 31.18904 18.09935 21.51611
300 7.765630 11.89258 33.07993 36.39735 21.59888 24.94683
400 10.13434 13.95148 43.65698 46.90105 28.62246 31.88930
500 12.51006 16.15547 54.28503 57.48879 35.69493 38.91858
600 14.89653 18.43466 64.98552 68.16622 42.85611 46.05797
700 17.29496 20.76099 75.80039 78.96949 50.16042 53.35595
800 19.70822 23.12384 86.78502 89.95167 57.66484 60.86675
900 22.14104 25.52103 97.99920 101.1714 65.42120 68.64041
1000 24.59958 27.95488 109.5004 112.6853 73.47327 76.71929
2000 52.05356 55.49009 248.6920 252.2827 175.6482 179.4863
3000 87.84450 91.66945 445.3189 449.5952 325.4635 330.1876
4000 134.5128 138.8821 710.6683 715.7805 530.7831 536.5508
5000 194.0253 199.0510 1055.486 1061.556 799.9507 806.8973
6000 268.4588 274.2421 1492.032 1499.179 1142.736 1151.000
7000 359.7595 366.3912 2032.187 2040.528 1568.769 1578.487
8000 469.2092 476.8296 2684.470 2694.108 2085.131 2096.429
9000 597.4331 605.9811 3452.125 3463.139 2694.758 2707.733
10000 743.7856 753.3560 4332.882 4345.319 3396.169 3410.883

Figure 4. Internal partition functions of equilibrium (red) and normal
(blue) H2 calculated by summation over the ab initio rovibrational
energy levels extracted from the adiabatic Pachoucki and Komasa
potentials.

Figure 5. Internal partition functions of equilibrium (red) and normal
(blue) D2 calculated by summation over the ab initio rovibrational
energy levels extracted from the adiabatic Pachoucki and Komasa
potentials.
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at high temperatures, for which, as seeing in Table 11, an
absolute difference between our values using only bound levels
and those including the quasi-bound levels of 2.4067 J−1 mol−1 is
observed at the highest temperature of 10000 K, representing a
relative error of −6.67%.
For the remaining thermodynamic quantities, the entropy

S(T), the relative enthalpy H(T) − H0, and the reduced Gibbs
free energy −(G(T) − H0)/T, which are less sensitive to the
partition function, the agreement between our results for H2 and
those by Popovas and Jorgenson, JANAF, and Le Roy et al. is
quite good, as shown in the corresponding tables included in the
Supporting Information.

For the rest of isotopologues, we have for comparison the
JANAF data for HD andD2, and the Le Roy et al. results for all of
them, HD, D2, HT, DT, and T2. In Table 12 we include the
values of the heat capacities for the isotopologuesHD andD2. As
observed, the heat capacities determined by Le Roy et al. for
these two isotopologues show deviations from our values similar
to those for the main isotopologue H2, while the heat capacities
provided by the JANAF database deteriorate more rapidly than
those of H2 as the temperature rises, especially for the HD
isotopologue.
In Table 13, we include the heat capacities CP for the six

isotopologues of molecular hydrogen obtained in this work
using the Pachucki and Komasa adiabatic potentials, which are

Figure 6. Internal partition functions of equilibrium (red) and normal
(blue) T2 calculated by summation over the ab initio rovibrational
energy levels extracted from the adiabatic Pachoucki and Komasa
potentials.

Table 11. Values of CP° (J K−1 mol−1) for the Main Isotoplogue H2 Calculated Using Different Methods Including Quasi-Bound
Levelsa

T (K) Popovas-Jorgensenb present-bl JANAFc Le Royd present-qbl

10 20.7870(0.000) 20.7870 20.7871(0.001) 20.7870
50 37.9699(−0.001) 37.9703 37.9704(0.000) 37.9703
100 28.1511(−0.009) 28.1535 28.154(0.000) 28.1532(−0.001) 28.1535
150 26.5557(−0.001) 26.5559 26.5561(0.001) 26.5559
200 27.4479(−0.002) 27.4475 27.447(−0.004) 27.4478(0.001) 27.4475
250 28.3449(0.001) 28.3446 28.344(−0.004) 28.3449(0.001) 28.3446
300 28.8489(−0.000) 28.8490 28.849(0.000) 28.8492(0.001) 28.8490
400 29.1809(−0.002) 29.1814 29.181(0.000) 29.1816(0.001) 29.1814
500 29.2593(−0.002) 29.2600 29.260(0.000) 29.2602(0.001) 29.2600
600 29.3261(−0.002) 29.3268 29.327(0.000) 29.3271(0.001) 29.3268
700 29.4397(−0.002) 29.4404 29.441(0.003) 29.4407(0.001) 29.4404
800 29.6227(−0.002) 29.6232 29.624(0.003) 29.6237(0.002) 29.6232
900 29.8799(−0.001) 29.8803 29.881(0.003) 29.8810(0.002) 29.8803
1000 30.2037(−0.001) 30.2039 30.205(0.003) 30.2048(0.003) 30.2039
2000 34.2780(0.003) 34.2769 34.280(0.009) 34.2784(0.004) 34.2769
3000 37.0772(0.003) 37.0761 37.087(0.024) 37.0791(0.004) 37.0778
4000 39.0432(0.001) 39.0428 39.116(0.051) 39.0946(−0.002) 39.0955
5000 40.5076(0.006) 40.5053 40.829(0.015) 40.8116(−0.027) 40.8225
6000 41.1560(−0.001) 41.1562 41.965(−0.133) 41.9900(−0.073) 42.0206
7000 40.7789(−0.009) 40.7825 42.2439(−0.123) 42.2961
8000 39.5528(−0.001) 39.5532 41.5222(−0.162) 41.5896
9000 37.8356(0.022) 37.8273 40.0827(−0.183) 40.1563
10000 35.9794(0.128) 35.9333 38.2676(−0.189) 38.3400

aRelative percentage errors with respect to present values are given in parentheses. bReference 31. cReference 27. dReference 26.

Figure 7. Heat capacities at constant pressure CP for the molecular
hydrogen isotopologues H2 (black), HD (red), D2 (blue), HT (dark
green), DT (yellow), and T2 (gray), calculated in this work.
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also plotted together in Figure 7 versus temperature to better
visualize them.
Let us finally consider the thermodynamic quantities of the

normal mixtures of the homonuclear isotopologues H2, D2, and
T2. As already indicated in Section 2, the Colonna et al.

treatment30 of normal mixtures ensures that the thermodynamic
quantities directly depending on the partition function match
the equilibrium values in the high-temperature limit. For
practical purposes, such a limit is reached at relatively low
temperatures for the three isotopologues, not higher than 300 K,

Table 12. Values of CP° (J K−1 mol−1) for the Isotopologues HD and D2 Calculated Using Different Methods Including Quasi-
Bound Levelsa

HD D2

T (K) JANAFb Le Royc present-cbl JANAF Le Roy present-cbl

10 20.7972(0.001) 20.7971 20.9559(0.001) 20.9557
50 29.9130(0.001) 29.9128 29.0290(0.001) 29.0288
100 29.288(0.007) 29.2866(0.001) 29.2864 30.317(−0.003) 30.3185(0.000) 30.3184
150 29.1963(0.001) 29.1961 29.4158(0.001) 29.4156
200 29.188(0.007) 29.1861(0.001) 29.1859 29.204(−0.003) 29.2056(0.001) 29.2054
250 29.1911(0.001) 29.1909 29.185(−0.003) 29.1859(0.000) 29.1858
300 29.202(0.003) 29.2012(0.001) 29.2010 29.195(−0.004) 29.1962(0.000) 29.1961
400 29.231(0.003) 29.2299(0.001) 29.2297 29.242(−0.007) 29.2440(0.001) 29.2438
500 29.283(0.003) 29.2826(0.001) 29.2824 29.366(−0.007) 29.3686(0.001) 29.3683
600 29.395(0.007) 29.3935(0.001) 29.3932 29.619(−0.010) 29.6221(0.001) 29.6217
700 29.594(0.007) 29.5928(0.002) 29.5923 30.008(−0.010) 30.0116(0.002) 30.0111
800 29.890(0.010) 29.8881(0.002) 29.8874 30.502(−0.010) 30.5060(0.002) 30.5054
900 30.269(0.010) 30.2668(0.003) 30.2659 31.057(−0.016) 31.0622(0.002) 31.0615
1000 30.708(0.010) 30.7058(0.003) 30.7048 31.636(−0.016) 31.6417(0.003) 31.6409
2000 35.050(0.029) 35.0414(0.004) 35.0400 35.975(−0.033) 35.9877(0.002) 35.9869
3000 37.625(0.080) 37.5958(0.003) 37.5946 38.156(−0.039) 38.1715(0.002) 38.1709
4000 39.513(0.198) 39.4357(0.002) 39.4348 39.785(−0.032) 39.7981(0.000) 39.7981
5000 41.185(0.329) 41.0486(−0.004) 41.0501 41.262(−0.073) 41.2884(−0.009) 41.2922
6000 42.339(0.398) 42.1623(−0.020) 42.1707 42.353(−0.196) 42.3233(−0.030) 42.3363
7000 42.3703(−0.044) 42.3891 42.4761(−0.060) 42.5017
8000 41.6122(−0.071) 41.6416 41.6789(−0.089) 41.7160
9000 40.1435(−0.093) 40.1809 40.1835(−0.111) 40.2283
10000 38.3057(−0.110) 38.3479 38.3283(−0.126) 38.3766

aRelative percentage errors with respect to present values are given in parentheses. bReference 27. cReference 26.

Table 13. Values of CP° (J K−1 mol−1) for the H2 Isotopologues Calculated Using the Rovibrational Energy Levels Extracted from
the Adiabatic Pachoucki and Komasa Potentials34,35 Including the Quasi-Bound Levels

T (K) H2 HD D2 HT DT T2

10 20.7870 20.7971 20.9557 20.8215 21.7578 28.1656
50 37.9703 29.9128 29.0288 29.8862 29.3383 26.5040
100 28.1535 29.2864 30.3184 29.2404 29.1632 28.7619
150 26.5559 29.1961 29.4156 29.1835 29.1582 29.1346
200 27.4475 29.1859 29.2054 29.1799 29.1671 29.1637
250 28.3446 29.1909 29.1858 29.1873 29.1797 29.1788
300 28.8490 29.2010 29.1961 29.1987 29.1959 29.2005
400 29.1814 29.2297 29.2438 29.2309 29.2651 29.3160
500 29.2600 29.2824 29.3683 29.2971 29.4513 29.6098
600 29.3268 29.3932 29.6217 29.4394 29.8004 30.0982
700 29.4404 29.5923 30.0111 29.6858 30.2937 30.7214
800 29.6232 29.8874 30.5054 30.0355 30.8785 31.4044
900 29.8803 30.2659 31.0615 30.4669 31.5019 32.0897
1000 30.2039 30.7048 31.6409 30.9511 32.1243 32.7427
2000 34.2769 35.0400 35.9869 35.3320 36.3526 36.7480
3000 37.0778 37.5946 38.1709 37.7793 38.3773 38.5918
4000 39.0955 39.4348 39.7981 39.5538 39.9250 40.0550
5000 40.8225 41.0501 41.2922 41.1353 41.3788 41.4675
6000 42.0206 42.1707 42.3363 42.2421 42.4036 42.4719
7000 42.2961 42.3891 42.5017 42.4569 42.5601 42.6171
8000 41.5896 41.6416 41.7160 41.7081 41.7697 41.8181
9000 40.1563 40.1809 40.2283 40.2447 40.2779 40.3182
10000 38.3400 38.3479 38.3766 38.4069 38.4219 38.4542
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in which range our values for the thermodynamic quantities of
the normal mixtures agree well with those obtained by Popovas
and Jorgensen31 and by Colonna et al.30 for the main
isotopologue H2, and with those by Le Roy et al.26 for the
three homonuclear isotopologues H2, D2, and T2.
In Table 14, we give the values of the four thermodynamic

quantities CP(T), S(T), H(T) − H0, and −(G(T) − H0)/T for
the normal and equilibrium mixtures of the main isotopologue
H2. In this table, we include a greater number of temperatures
below 300 K, where the differences between the normal and
equilibrium mixtures are more pronounced, and limit the
highest temperature to 600 K, at which the thermodynamic
quantities of both mixtures already coincide. The differences
between the four thermodynamic quantities of the normal and
equilibrium mixtures of H2 are clearly noticeable at the
temperatures below 300 K, as they are for the normal mixtures
of the other two homonuclear isotopologues D2 and T2, which
are shown in the tables containing their thermodynamic
quantities included in the Supporting Information, and in
Figures 8, 9, and 10 for the heat capacities CP of the three
homonuclear isotopologues.
Finally, for completeness, in Table 15 we give the enthalpies at

the reference temperature and the values of the thermodynamic
quantities of the molecular hydrogen isotopologues at the
standard temperature of 298.15 K.

4. CONCLUSIONS
In this work, we have calculated the partition functions and
thermodynamic quantities of the six isotopologues of molecular
hydrogen, H2, HD, HT, D2, DT, and T2, using the ro-vibrational
energy levels extracted from the adiabatic potentials recently
determined by Pachucki and Komasa employing high-level ab
initio methods.34 For this purpose, we have recalculated the
bound energy levels of the adiabatic potentials using the HEG
linear variation method and estimated the quasi-bound energy
levels lying below the centrifugal potential barriers by leveling
the barriers beyond their maxima. We have also determined the
partition functions and thermodynamic quantities of the normal

mixtures of the homonuclear isotopologues H2, D2, and T2 using
the thermodynamic-statistical method of Colonna et al.,30 which
eliminates inconsistencies in their values with respect to
equilibrium mixtures in the high-temperature limit.
The excellent agreement between the partition functions of

the main isotopologue H2 obtained using the rovibrational
energy levels of the ab inito adiabatic potentials and those
calculated by Popovas and Jorgensen31 using a highly accurate
empirical Dunham expansion, up to 10000 K, confirms the
accuracy of the partition functions ab initio calculated in this
work for theH2 isotopologue, which are certainly to be shared by
the partition functions determined for the remaining isotopo-
logues. Such agreement also extends to the partition functions
calculated for the normal mixtures of the homonuclear
isotopologues H2, D2, and T2. In addition, the inclusion of
quasi-bound energy levels in the calculation of the partition
functions of molecular hydrogen isotopologues is shown to

Table 14. Thermodynamic Quantities of the Main Isotopologue H2 for Equilibrium Mixtures and Normal Mixtures Calculated
Using the Method of Colonna et al.,30 Both Obtained Using the Rovibrational Energy Levels Extracted from the Adiabatic
Pachoucki and Komasa Potentials34,35 and Including Quasi-Bound Levels

CP° (J K−1 mol−1) S° (J K−1 mol−1) H° − H°(0) (kJ mol−1) −(G° − H°(0))/T (J K−1 mol−1)

T (K) normal equilibrium normal equilibrium normal equilibrium normal equilibrium

5 20.7862 20.7862 50.9972 32.6201 1.16704 0.103931 −182.411 11.8340
10 20.7862 20.7870 65.4051 47.0280 1.27097 0.207862 −61.6920 26.2418
20 20.7862 21.8622 79.8129 61.5772 1.47883 0.418252 5.87133 40.6646
30 20.7863 28.5310 88.2410 71.5194 1.68669 0.665722 32.0179 49.3287
40 20.7911 35.8890 94.2212 80.8268 1.89457 0.991049 46.8570 56.0505
50 20.8266 37.9703 98.8634 89.1594 2.10262 1.36485 56.8112 61.8623
60 20.9411 36.2456 102.669 95.9625 2.31137 1.73773 64.1464 67.0004
70 21.1742 33.5409 105.913 101.348 2.52184 2.08671 69.8868 71.5374
80 21.5365 31.1567 108.763 105.664 2.73529 2.40972 74.5717 75.5427
90 22.0102 29.3802 111.326 109.226 2.95294 2.71190 78.5154 79.0932
100 22.5620 28.1535 113.673 112.253 3.17575 2.99916 81.9153 82.2616
150 25.3835 26.5559 123.373 123.191 4.37675 4.34543 94.1946 94.2219
200 27.2684 27.4475 130.957 130.938 5.69721 5.69291 102.471 102.473
250 28.3225 28.3446 137.168 137.166 7.08978 7.08928 108.809 108.809
300 28.8465 28.8490 142.384 142.384 8.52066 8.52060 113.982 113.982
400 29.1813 29.1814 150.742 150.742 11.4265 11.4265 122.175 122.175
500 29.2600 29.2600 157.263 157.263 14.3492 14.3492 128.565 128.565
600 29.3268 29.3268 162.603 162.603 17.2783 17.2783 133.806 133.806

Figure 8. Heat capacities at constant pressure CP of equilibrium (red)
and normal (blue) H2 calculated by summation over the ab initio
rovibrational energy levels determined by Pachucki and Komasa.
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become increasingly important, and therefore necessary, for
temperatures higher than 5000−6000 K.
The above conclusions are further supported by the excellent

agreement between the ab initio thermodynamic functions
calculated using the Pachucky and Komasa adiabatic potentials
and those obtained empirically by Popovas and Jorgensen for
themain isotopologueH2, and theoretically by Le Roy et al.

26 for

the six isotopologues employing less elaborated ab initio
potential functions.
In the Supporting Information, we give the partition functions

and thermodynamic quantities of the six isotopologues of
molecular hydrogen calculated in this work in the range of
temperatures between 1 and 10000 K, in steps of 1 K, for them to
be useful in the study of chemical-physical phenomena in which
these isotopologues play an important and/or fundamental role.
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Table 15. Reference Zero-Point Enthalpies and ThermodynamicMagnitudes at 298.15 K forMolecular Hydrogen Isotopologues

H°(0)a CP° S° H° − H°(0) G° − H°(0) −(G° − H°(0))/T

H2 −432.072 28.8362 142.205 8.46724 −33.9313 113.806
H2(n) −431.008 28.8336 142.206 8.46730 −33.9313 113.806
HD −435.515 29.2006 158.700 8.50874 −38.8076 130.161
HT −436.788 29.1982 159.867 8.52885 −39.1354 131.261
D2 −439.615 29.1955 163.230 8.56910 −40.0978 134.489
D2(n) −439.377 29.1955 163.230 8.56910 −40.0978 134.489
DT −441.205 29.1952 169.890 8.58917 −42.0636 141.082
T2 −442.967 29.1995 164.855 8.60930 −40.5422 135.979
T2(n) −442.607 29.1995 164.855 8.60930 −40.5422 135.979

aH°(0) = E°(0) = G°(0).
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