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Background: The segmentation of prostates from transrectal ultrasound (TRUS) images is a critical 
step in the diagnosis and treatment of prostate cancer. Nevertheless, the manual segmentation performed 
by physicians is a time-consuming and laborious task. To address this challenge, there is a pressing need to 
develop computerized algorithms capable of autonomously segmenting prostates from TRUS images, which 
sets a direction and form for future development. However, automatic prostate segmentation in TRUS 
images has always been a challenging problem since prostates in TRUS images have ambiguous boundaries 
and inhomogeneous intensity distribution. Although many prostate segmentation methods have been 
proposed, they still need to be improved due to the lack of sensibility to edge information. Consequently, 
the objective of this study is to devise a highly effective prostate segmentation method that overcomes these 
limitations and achieves accurate segmentation of prostates in TRUS images.
Methods: A three-dimensional (3D) edge-aware attention generative adversarial network (3D EAGAN)-
based prostate segmentation method is proposed in this paper, which consists of an edge-aware segmentation 
network (EASNet) that performs the prostate segmentation and a discriminator network that distinguishes 
predicted prostates from real prostates. The proposed EASNet is composed of an encoder-decoder-based 
U-Net backbone network, a detail compensation module (DCM), four 3D spatial and channel attention 
modules (3D SCAM), an edge enhancement module (EEM), and a global feature extractor (GFE). The 
DCM is proposed to compensate for the loss of detailed information caused by the down-sampling process 
of the encoder. The features of the DCM are selectively enhanced by the 3D spatial and channel attention 
module. Furthermore, an EEM is proposed to guide shallow layers in the EASNet to focus on contour 
and edge information in prostates. Finally, features from shallow layers and hierarchical features from the 
decoder module are fused through the GFE to predict the segmentation prostates.
Results: The proposed method is evaluated on our TRUS image dataset and the open-source μRegPro 
dataset. Specifically, experimental results on two datasets show that the proposed method significantly 
improved the average segmentation Dice score from 85.33% to 90.06%, Jaccard score from 76.09% to 
84.11%, Hausdorff distance (HD) score from 8.59 to 4.58 mm, Precision score from 86.48% to 90.58%, and 
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Introduction

Background

Prostate cancer is one of the most commonly diagnosed 
cancers in men (1). Since early-stage prostate cancer can be 
effectively controlled, early detection and interventions are 
crucial to the diagnosis and treatment planning of prostate 
diseases (2). Conventionally, experienced physicians have 
manually segmented prostate imagery by visually inspecting 
transrectal ultrasound (TRUS) images, a process that is 
time-consuming and laborious, relying heavily on the 
doctor’s expertise. Hence, the development of computer 
algorithms capable of automatically performing accurate 
prostate segmentation from TRUS images is of significant 
value for improving medical practices, alleviating the 
workload of physicians, and enhancing the quality of patient 
care. With this context, accurate segmentation-the precise 
identification and isolation of prostate tissue boundaries 
through advanced techniques is particularly critical. 
Precise segmentation plays a vital role in the diagnosis, 
treatment planning (3), biopsy needle placement (4),  
and cryotherapy (5) of prostate cancer as it can enhance 
clinical outcomes and reduce unnecessary treatments and 
interventions due to inaccuracies.

Traditionally, prostate segmentation methods have relied 
on hand-crafted features (6-18), such as shape statistics, to 
differentiate between healthy tissue and cancerous areas. 
Yet, these manually extracted features are low-level semantic 
representations and often fail to accurately characterize 
the complexities of actual prostate tissues, inherently 
limiting their effectiveness and potentially leading to missed 
detection or misclassification of critical areas. The advent 
of deep convolutional neural networks (DCNN) (19-22) 
has revolutionized the field of semantic segmentation in 
recent years. These methods, powered by DCNN, can 
automatically learn and recognize complex patterns at 

the pixel level, which enables them to assign categories to 
each pixel with a high degree of precision. Long et al. (23)  
proposed the fully convolutional network (FCN)-based 
method for image segmentation tasks, which is an end-
to-end architecture to automatically classify images into 
different classes. Ronneberger et al. (24) proposed an 
encoder-decoder-based U-Net architecture for medical 
semantic segmentation, which utilizes the skip connection 
to integrate low-level features extracted by the encoder into 
the decoder. Inspired by these novel architectures, a large 
number of DCNN-based prostate segmentation methods 
(25-29) were proposed.

Although these methods achieved great improvements 
over traditional methods, further improvements are still 
lacking. Different from other semantic segmentation tasks 
(e.g., indoor scenes and street scenes), TRUS images 
have weak boundaries, low signal-to-noise ratio, and large 
differences in contrast and resolution. Specifically, TRUS 
images have ambiguous boundaries caused by poor contrast 
between the prostate and surrounding tissues. Hence, 
current methods that adopt semantic segmentation models 
(e.g., FCN and U-Net) to segment prostates would lack 
sensitivity to ambiguous boundaries and inhomogeneous 
intensity distribution of prostates. Therefore, it is quite 
challenging to accurately segment the boundary of 
prostates. 

In this paper, a novel three-dimensional (3D) edge-aware 
attention generative adversarial network (3D EAGAN)-
based prostate segmentation method is proposed. The 
proposed method consists of an edge-aware segmentation 
network (EASNet) and a discriminator network. The 
EASNet aims to produce prostate segmentation results and 
the discriminator is designed to distinguish the predicted 
prostates from the ground-truth prostates. The EASNet is 
composed of an encoder-decoder-based U-Net backbone 
network, a detail compensation module (DCM), four 3D 
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spatial and channel attention modules (3D SCAM), an edge 
enhancement module (EEM), and a global feature extractor 
(GFE). Since the down-sampling of the encoder in EASNet 
would cause information loss, the DCM is proposed to 
introduce rich detail contextual information to the encoder, 
which is pre-trained on a large-scale medical data set 
3DSeg-8 (30) to learn rich details and texture information. 
Since the DCM contains some irrelevant features with 
prostates, the 3D SCAM is proposed to selectively utilize 
the features that can reflect more prostate details from 
the channel and spatial dimensions. To further assist the 
EASNet in generating more accurate prostate margins, an 
EEM is proposed to guide shallow layers in the EASNet to 
focus on contour and edge information in prostates. Finally, 
the enhanced low-level features from the encoder and 
hierarchical features from the decoder are fused to the GFE 
to obtain the final segmentation results. In summary, this 
paper has the following main contributions:

(I)	 A novel framework 3D EAGAN for improving 
prostate segmentation is proposed, which adopts a 
DCM to learn rich detail information of prostates 
and an EEM to guide the network focus on edge 
information of prostates.

(II)	 Since prostates in TRUS images have ambiguous 
boundaries, an EEM is introduced to further 
guide shallow layers in the encoder to focus on the 
prostate edges without adding extra computation 
cost during the inference process.

(III)	 A 3D spatial and channel attention module is 
proposed to adaptively enhance the features 
that can reflect prostate details by considering 
interdependencies among channel and spatial 
dimensions.

Related work

Traditional prostate segmentation methods
According to  the  way of  feature  extract ion,  the 
segmentation method can be divided into hand-crafted-
based prostate segmentation methods and deep learning-
based ones. Traditional hand-crafted-based prostate 
segmentation methods utilize carefully designed hand-
crafted features to detect the shape and edge of prostates. 
The shape statistics belong to the mainstream of traditional 
segmentation methods. Ladak et al. (6) proposed a semi-
automatic segmentation method based on 2D ultrasound 
images, which first utilized shape statistics to detect 
prostates. To detect the edge of prostates, Pathak et al. (7)  

developed an edge detection algorithm to depict the 
prostate edges. Shen et al. (8) employed Gabor filter sets to 
characterize prostate boundaries and reconstructed Gabor 
features to guide deformable segmentation. Yan et al. (9)  
learned the shape statistical information of the local domain 
to segment prostates. Santiago et al. (10) employed an 
active shape model (ASM) to improve the robustness in 
the presence of outliers. Although these methods have 
achieved more promising segmentation performance than 
traditional manual segmentation methods, these methods 
are performed on 2D TRUS images, which would lack the 
correlation between different image slices and 3D image 
context. 

To effectively enhance the correlation between different 
TRUS image slices and 3D image context, many 3D 
prostate segmentation methods were proposed. Ghanei 
et al. (11) proposed a 3D deformable surface model to 
segment ultrasound images. Wang et al. (12) proposed 
two semi-automatic segmentation methods by using 2D 
ultrasound images to achieve 3D prostate. Hu et al. (13) 
employed a semi-automatic segmentation by using an 
efficient deformable mesh. Gong et al. (14) used deformable 
models for the automatic segmentation of prostates. Qiu 
et al. (15) proposed a novel globally optimized method to 
segment 3D prostate images. Previously methods utilized 
shape information of prostates to enhance the segmentation 
performance, but the shape of prostates varies greatly, which 
would lose the specificity of individual cases and lead to a 
decrease in prediction accuracy. Different from these shape 
statistics-based methods, many other prostate segmentation 
methods treat the segmentation task as a classification task. 
Ghose et al. (16) applied the principal component analysis 
and random forest classification in machine learning to 
implement prostate segmentation. Zhan et al. (17) proposed 
a deformable model for automatic prostate segmentation by 
shape and texture statistics. To augment training samples, 
Yang et al. (18) proposed a 3D TRUS image segmentation 
method for the prostate based on a patch-based feature 
learning framework. Although these hand-crafted-based 
methods have achieved promising prediction accuracy, 
the hand-crafted features are shallow and not capable 
of obtaining high-level semantic information in images, 
resulting in the lack of prostate boundary information.

Deep learning-based prostate segmentation methods
Recently, deep learning technology (19-24) has achieved 
great success in various image processing tasks, including 
image classification, image enhancement, and semantic 
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segmentation. Benefiting from features automatically 
learned by convolutional neural networks (CNNs), many 
deep learning-based prostate segmentation methods have 
been proposed. Ghavami et al. (25) employed a U-Net-based 
method for automatic prostate segmentation, which replaces 
the convolutional layers in the original U-Net with residual 
network unit blocks to enhance the feature representation 
ability. To solve the problem of information loss in 
traditional shape models, Yang et al. (26) used the recurrent 
neural network to learn the shape prior information of 
prostates. Wang et al. (27) proposed a 3D deep neural 
network-based prostate segmentation method, which first 
utilized the 3D feature pyramid network (FPN) to extract 
multi-level features. Then, an attention mechanism was 
proposed to adapt and fuse different features and pay 
attention to the prostate region. Lei et al. (28) employed the 
V-Net-based backbone network to extract primary features, 
and the 3D supervision mechanism was integrated into the 
network training to speed up the network convergence. 
Pellicer-Valero et al. (29) proposed a Densenet-resnet-based 
3D prostate segmentation method. In addition, to improve 
the robustness of the network, some techniques, e.g., deep 
supervision, checkpoint ensembling, and neural resolution 
enhancement, are also integrated into the network training 
process. 

Currently, generative adversarial networks (GANs) 
have made impressive progress in many computer vision 
tasks (31,32). Generally, GAN is composed of two parts: 
a generator network G and a discriminator network D. G 
aims to generate more real samples and D is designed to 
distinguish the real samples from the generated samples 
by G. The training stage of G and D is to optimize the 
minimax game by using the objective function,

( ) ( )( ) ( )( )( )~ ~ min max , log log 1
data yx P y PG D

F D G E D x E D G y  = + −    	 [1]

where G denotes the generator network; D denotes the 
discriminator network; Py represents the distribution of the 
noise; Pdata represents the distribution of real data. To further 
enhance the prostate segmentation performance, methods 
(33,34) adopted the GAN for the prostate segmentation 
task. Dong et al. (33) utilized the adversarial training 
strategy for the prostate segmentation task. The generator 
is composed of a set of U-Nets and the discriminator is the 
FCN. Wang et al. (34) employed the GAN to automatically 
segment prostates, which consists of a Densenet-based 
generator and a multi-scale discriminator.

Methods

Due to ambiguous boundaries and inhomogeneous intensity 
distribution of prostates in TRUS images, segmenting 
prostates from TRUS images is still a challenging task. To 
effectively segment prostates from TRUS images, a 3D 
EAGAN-based prostate segmentation method is proposed 
in this paper. The architecture of the proposed 3D EAGAN 
is shown in Figure 1, it consists of two parts: an edge-
aware segmentation network and a discriminator network. 
The edge-aware segmentation network aims to segment 
more accurate prostates to fool the discriminator, and the 
discriminator network is expected to distinguish predicted 
prostates from real prostates. Then, the edge-aware 
segmentation network and the discriminator network are 
described in detail.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of the Western 
University. Participants provided informed consent before 
taking part in the study.

Edge-aware segmentation network

The network architecture of the proposed edge-aware 
segmentation network is shown in Figure 1, which is 
composed of an encoder-decoder-based U-Net, a DCM, 
four 3D SCAM, an EEM, and a GFE. For the input TRUS 
image I, the encoder decoder-based U-Net is first used to 
extract primary features from the input. To compensate for 
the loss of detail information during the U-Net forward 
propagation, the input TRUS image I is also fed to the 
DCM to introduce rich local detail information to the 
encoder module. This process is shown as follows:

( ) { }  , 1, 2,3, 4i UE G I i= ∈ 	 [2]

( ) { }  , 1, 2,3, 4i DCMSQ G I i= ∈ 	 [3]

where I represents the input TRUS image, GU() and GDCM() 
represent the U-Net and DCM respectively, Ei and SQi 
(i∈{1,2,3,4}) represent the multi-level features extracted by 
the U-Net and the DCM respectively.

To reduce the computational complexity, 1×1×1 
convolutional layers Sq-i (i∈{1,2,3,4}) are adopted to the 
output of the DCM to squeeze the channel dimensions. 
Then, the extracted detail information is refined by the 
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3D SCAM, and feature maps from the encoder module 
and 3D SCAM at each resolution stage are fused through 
concatenation operation. This process is shown as follows:

( )( ) { }'  , 1, 2,3, 4i SCAM iSQ G Conv SQ i= ∈ 	 [4]

{ }'  , 1, 2,3, 4i i iQ E SQ i= ⊗ ∈ 	 [5]

where Conv() represents the convolution layer with the 
kernel size of 1×1×1, GSCAM() represents the 3D SCAM, ⊗ 
represents the concatenation operation, { }( )1,2,3,4iQ i∈  
represents the multi-level features after fusion. In addition, 
an EEM is utilized to guide the shallow layers in the 
encoder to focus on contour and edge information. The 
working mechanism of the EEM is shown as follows:

( )'
1 1EEME G E= 	 [6]

where GEEM() represents the EEM. Finally, the GFE is used 

to integrate hierarchical features from the decoder and 
shallow layers from the encoder to generate more realistic 
prostates. Finally, a GFE is used to fuse hierarchical features 
from the decoder and shallow features from the encoder 
to generate more realistic prostate images. This process is 
shown as follows:

( )1 21 0, , ,GFEO G E F F F= 	 [7]

where E1 represents the shallow features of the encoder 
part, Fi (i∈{0,1,2}) represents the hierarchical features of the 
decoder, and GGFE() represents the GFE. 

Encoder-decoder-based U-Net

Since the U-Net structure (24) has shown strong feature 
representation ability in the image segmentation task, 
the encoder-decoder-based U-Net structure is adopted 
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as the backbone network. The encoder module aims to 
extract low-level and high-level semantic features from 
TRUS images, while the decoder module is designed 
to progressively combine contextual information from 
different levels to generate the output segmentation.

More specifically, the encoder module is composed 
of four Conv-BN-ReLU (CBR) modules and three 
max-pooling layers. Each CBR module consists of two 
groups of 3×3×3 convolutional layers followed by a batch 
normalization (BN) layer and a ReLU activation. Max 
pooling layers are applied to gradually down-sample 
the resolutions of feature maps to half to reduce the 
computational complexity and improve the inference speed 
of the network. The decoder module consists of three CBR 
modules and three up-sampling layers. The up-sampling 
layers are used to gradually recover the resolutions of 
feature maps to match the resolutions of the input image.

DCM

Due to the requirement of fast inference and low resource 
consumption, the U-Net structure utilizes the down-
sampling operation in the encoder to progressively decrease 
the resolutions of the input images. However, the down-
sampling operation would cause the loss of detailed 
contextual information. Since prostates in TRUS images 
have ambiguous boundaries, the loss of detailed contextual 
information would inevitably cause the degradation of 
segmentation ability.

Hence, the transfer learning-based DCM is proposed, 
and it is built on a ResNet-34 (35) pre-trained on the large-
scale medical dataset 3DSeg-8 (30). The network-based 
transfer learning technique aims to solve the problem of 
limited training data (36). Its underlying assumption is that 
the internal layers of a CNN are not specific to a particular 
task, e.g., the shallow layers from an image classification 
CNN are sensitive to the detail information (e.g., edge and 
texture features). Specifically, the network-based transfer 
learning technique usually pre-trains a network on the 
source task Ts, and features learned from the source task are 
transferred to the target task Ts to enhance the robustness 
of the network. The architecture of the DCM is shown in 
Figure 1. First, the ResNet-34 is trained on the 3DSeg-8 
to learn the features of different organs. Then, the internal 
layers Res-i (i∈{1,2,3,4}) of the pre-trained ResNet-34 are 
transferred to the prostate segmentation task to learn more 
abundant detailed contextual information.

3D spatial and channel attention module

Recently, attention mechanisms have been widely used in 
many computer vision tasks, which can effectively boost the 
performance of DCNNs. In medical segmentation tasks, 
many methods have applied attention mechanisms to make 
the network focus on target regions. Since the features 
extracted from DCM contain rich detailed information, but 
also include some non-prostate features. To further enhance 
and refine more important features, attention mechanisms 
are introduced to adaptive filter out non-prostate 
features and focus on important features by exploring the 
relationship of features between the spatial and channel 
dimensions. The architecture of the proposed 3D SCAM is 
shown in Figure 2, and it is composed of a spatial attention 
module and a channel attention module. 

Specifically, the squeezed feature maps Ni from Res-i 
(i∈{1,2,3,4}) in DCM are fed into the 3D SCAM. Given 
the input feature maps Ni∈RH×W×D×C (i∈{1,2,3,4}), they are 
first fed into the spatial attention module and the channel 
attention module to generate the weight scores, respectively. 
The spatial attention module consists of a convolutional 
layer with a kernel size of 7×7×7 and a Sigmoid layer. The 
7×7×7 convolutional layer is used to calculate the spatial 
weight scores Ws from input feature maps Ni. Then, the 
Sigmoid layer is adapted to constrain the weight scores Ws 
to be between [0, 1] to obtain Ws

’. Finally, the calculated 
spatial weight scores Ws

’ are multiplied by the input 
feature maps Ni to obtain the adaptive feature maps Ni

s. 
The working mechanism of the spatial attention module is 
shown as follows,

( ) { }
( )

{ }

1

'

'

, 1, 2,3, 4

, 1, 2,3,4

s i

s s

s
i s i

W Conv N i

W W

N W N i

α

 = ∈
 =


= × ∈

	 [8]

where Conv1() denotes the convolutional layer with kernel 
size 7×7×7. α() denotes the Sigmoid layer. × denotes the 
element-wise multiply. For the channel attention module, 
it consists of a global max pooling (GMP) layer, a global 
average pooling (GAP) layer, a fully connected (FC) layer, 
and a Sigmoid layer. Given the input feature maps Ni, the 
GMP and GAP layers are first used to squeeze the features 
maps to the Ni

’∈RH×W×D×1 along the channel dimensions. 
Then, the feature maps Ni

’ are fed into the FC layer to 
calculate the channel weight scores Wc. The Sigmoid layer 
is adapted to constrain the Wc to be between [0, 1] to obtain 
Wc

’. Finally, the input feature maps Ni are calculated with 
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the channel weight scores Wc
’ to obtain the adaptive feature 

maps Ni
c. The working mechanism of the channel attention 

module is shown as follows,

( ) ( ) { }
( )

{ }

'

'

, 1, 2,3, 4

, 1, 2,3, 4

c i i

c c

s
i c i

W GMP N GAP N i

W W

N W N i

α

 = ⊗ ∈
 =


= × ∈

	 [9]

where GMP() and GAP() denote the GMP layer and GAP 
layer, respectively. ⊗ denotes the concatenation operation. 
α() denotes the Sigmoid layer. × denotes the element-wise 
multiply. Finally, feature maps Ni

s and Ni
c (i∈{1,2,3,4}) are 

fused through the element-wise addition operation. This 
process can be described as,

{ }, 1, 2,3, 4s c
i i iF N N i= + ∈ 	 [10]

where + denotes the element-wise addition operation.

Edge generation guidance of low-level features

Since prostates in TRUS images have ambiguous structure 
boundaries, current methods fail to accurately predict the 
structure boundary of prostates. To enhance the sensitivity 
to edge details, an EEM is proposed to guide shallow layers 
in the encoder module to focus on the edge details of 
prostates.

To accurately obtain the ground-truth edge maps of 
prostates, two ways are tested to obtain the edge maps 
by using the Canny algorithm (37). First, edge maps are 

obtained from TRUS images. Second, edge maps are 
obtained from the ground-truth semantic segmentation 
prostate images. To intuitively show the difference between 
the edge maps calculated from TRUS images and the 
ground-truth semantic segmentation prostate images, the 
visualization of the different edge maps is shown in Figure 3.  
It can be observed that edge maps directly achieved from 
TRUS images contain useless information. On the contrary, 
edge maps obtained from the ground-truth semantic 
segmentation prostate images can accurately reflect the 
edge of prostates. Hence, the ground-truth edge maps are 
generated from the ground-truth semantic segmentation 
prostate images by using the Canny algorithm.

With the generated ground-truth edge maps, the EEM 
is used to guide the low-level layers in the encoder module 
to focus on learning the prostate boundary. The EEM 
is composed of a 3×3×3 convolutional layer for feature 
extraction and a 1×1×1 convolutional layer to reduce the 
channel dimension. Finally, the learned edge features are 
fused with the hierarchical features in the decoder module 
for the final prediction.

GFE

To obtain more accurate segmentation performance and 
achieve a precise prostate edge, a GFE is proposed. The 
architecture of the proposed GFE is shown in Figure 4. 
Specifically, multi-layer features Fi (i∈{0,1,2}) are first 
fused through the concatenation operation. The 1×1×1 
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convolutional layers are adopted to decrease the number 
of the channel dimensions, which aims to reduce the 
computational complexity. Then, four 7×7×7 convolutional 
blocks are designed to build a density connection between 
feature maps and per-pixel classifier, which enhances the 
capability to handle different shapes and sizes. Motivated 
by previous work (38), to enhance the sensitively to edge 
information, low-layer features E1, which are enhanced 
by the EEM, are also introduced to the GFE. To further 
help the network select more important features, a spatial 
attention structure is adopted, which is similar to the spatial 
attention module in the 3D SCAM. In the spatial attention 
structure, the 3×3×3 convolutional block is utilized for the 
feature extraction and the Sigmoid operation is used to 
constrain the value of the weight scores to be between [0, 
1]. The weight scores calculated by the spatial attention 
structure are multiplied by the fused features to obtain the 
selective features. Finally, two 3×3×3 convolutional blocks 
are used for the final feature extraction and the 1×1×1 
convolutional layer aims to map the channel dimensions to 
match the channel of predicted prostates.

The discrimination network

The discriminator of the traditional GAN utilizes the whole 

image as input to conduct the discrimination, which only 
outputs one value to determine whether the generated 
image is real or false. Different from mapping the whole 
image to one value, PatchGAN (39) extracts features from 
the input image, and then maps the input image into the 
N×N matrix by the full convolution structure. Benefiting 
from the PatchGAN structure, it can effectively enhance 
the attention to each area of the image. Hence, to achieve 
a better discriminative effect, PatchGAN is adopted as the 
discriminator network of the proposed 3D EAGAN.

The loss function

In deep learning tasks, the loss function plays a vital 
role in the neural network model training process. An 
elaborately designed loss function can effectively speed 
up the convergence of the model training and improve 
the prediction accuracy of the model. In the training 
process, the edge-aware segmentation network G and the 
discriminator network D are optimized by the minimax 
game. The objective function for training the edge-aware 
segmentation network is defined as:

( ) ( ) ( )( ) 22
  , ,r fminL D D x y l D x G x l  = − + −   

	 [11]

where G() denotes the edge-aware segmentation network 
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Figure 3 Visual comparisons of different ways to obtain edge maps. (A) TRUS image; (B) edge maps achieved from TRUS image; (C) edge 
maps achieved from the semantic segmentation of prostates. TRUS, transrectal ultrasound. 

Figure 4 The network architecture of the global feature extractor. BN, batch normalization; ReLU, rectified linear unit.
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and D() denotes the discriminator network. x and y denote 
input TRUS images and ground-truth labels, respectively. 
lr and lf represent the real label and fake matrix label 
with constant elements one and zero, respectively. The 
objective function for training the discriminator network is  
defined as:

( ) ( )( ) ( ) [ ]
2

, ˆ, ,t dice dice e emaxL G D x G x l l y G x l y yα β   = − + ∗ + ∗    [12]

where lt is the matrix with constant elements one. ye and 


ey  denote the predicted edge maps and ground-truth edge 
maps, respectively. ldice represents the Dice loss, which is 
widely used in medical image segmentation tasks. α and 
β represent the hyper-parameters that control the impact 
of the loss function. According to extensive experiments, 
when α and β are set to 1 and 0.5, respectively, the proposed 
method achieves the best prediction performance.

Results

In this section, the experimental setups are first introduced, 
including experimental environments and implementation 
tools, datasets, and evaluation metrics. Then, experiments 
are performed to compare the proposed method with other 
medical segmentation methods. Finally, the ablation study is 
conducted to verify the effectiveness of components in our 
method.

Experimental setups

Experimental environments and implement tools
The proposed method is programmed with Python 3.7 and 
implemented by PyTorch 1.2.0. To train the network, the 
training and testing process are performed on NVIDIA 
GeForce RTX 3090 GPU.

Implementation details
For the training stage, due to the limited GPU memory, 
input TRUS images are down-sampled with the size of 
88×112×112. For the proposed 3D EAGAN, both the 
edge-aware segmentation network and the discriminator 
network are trained using the Adam optimizer (40) with 
the parameters λ1=0.9, λ2=0.999, and the learning rate is 
initialized as 0.00001.

Dataset
To verify the effectiveness of the proposed method, the 
experiments have conducted on our dataset and open-

source dataset μRegPro (41). For our dataset, the TRUS 
images are obtained through a mechanically assisted biopsy 
system used by collaborating radiologists (CRs) (42) of 
Western University. The TRUS image dataset consists of 
56 patients. We acquired one 3D TRUS image from each 
patient. These 3D TRUS images are acquired with an end-
firing 5–9 MHz TRUS transducer probe (Philips Medical 
Systems, Seattle, WA, USA). The 3D TRUS image contains 
350×448×448 voxels with a voxel size of 0.19×0.18×0.18 mm3. 
The data is processed using spatial and intensity distribution 
normalization. For the μRegPro dataset, we only choose the 
TRUS images as the training and validation samples.

Compared methods
To verify the effectiveness of the proposed method, seven 
state-of-the-art medical segmentation methods are used 
to conduct the experiments, including 3D FCN (23), 3D  
U-Net (24), Skip-Densenet (43), Deeplabv3+ (44), deep 
attentive features for three-dimensional prostate segmentation 
(DAF 3D) (27), Vox2Vox (45), and Chen et al. (46).

Evaluation metrics
As following previous work (25-29), five evaluation metrics 
are used to measure the segmentation performance of our 
proposed method, including Dice similarity coefficient 
(Dice), Jaccard index (Jaccard), Hausdorff distance (HD, in 
voxel), Precision, and Recall. 

The Dice is used to evaluate the similarity between 
predicted prostates and the ground truth ones,

( ) 2
,

P G
Dice P G

P G
∩

=
+

	 [13]

where P and G denote the predicted prostates and the 
ground-truth prostates. |·| represents the number of voxels. 
The value of Dice is in the range of [0, 1], the higher value 
denotes better segmentation performance.

The Jaccard is used to evaluate the similarity between 
predicted prostates and the ground truth ones,

( ),
P G

Jaccard P G
P G
∩

=
∪

	 [14]

where P and G denote the predicted prostates and the 
ground-truth prostates. |·| represents the number of voxels. 
The value of Dice is in the range of [0, 1], the higher value 
denotes better segmentation performance.

The HD is utilized to evaluate the distance between 
predicted prostates and the ground truth ones,
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= − 	 [16]
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where ||·|| represents the distance paradigm between 
predicted prostates and the ground truth ones. The lower 
value of HD represents better segmentation performance.

The Precision is used to evaluate the proportion of 
samples with a predicted value of one and a true value of 
one among all samples with a predicted value of one,

( ) ( )
( )

,
Area P G

precision P G
Area P

∩
= 	 [18]

where P and G denote the predicted prostates and the 
ground-truth prostates. The value of Precision is in the 
range of [0, 1], the higher value denotes better segmentation 
performance.

The Recall is used to evaluate the proportion of samples 
with a predicted value of one and a true value of one among 
all samples with a true value of one,

( ) ( )
( )

,
Area P G

Recall P G
Area G

∩
= 	 [19]

where P and G denote the predicted prostates and the 
ground-truth prostates. The value of Recall is in the range 
of [0, 1], the higher value denotes better segmentation 
performance.

Comparison to state-of-the-art methods

To verify the effectiveness of the proposed method, the 
segmentation performance of the proposed method is 
quantitatively evaluated through comparisons to seven 
state-of-the-art segmentation methods. The experimental 
results on the proposed dataset are shown in Table 1. It can 
be observed that the proposed 3D EAGAN outperforms 
other methods on the used metrics. Specifically, 3D 
EAGAN achieves the mean Dice of 92.80%, Jaccard of 
87.01%, HD of 4.64 mm, Precision of 93.11%, and Recall 
of 92.42%, respectively. Compared with the traditional 
method of 3D FCN, our proposed method outperforms it 
by a large margin. The 3D FCN utilizes progressive down-
sampling to reduce the resolution of the input image, which 
would lead to the loss of detailed information and degrades 
the segmentation performance. The 3D U-Net utilizes skip 
connection layers to effectively combine different features 
of the encoder and the decoder, which makes it achieve 
better segmentation performance than 3D FCN. The 
proposed DCM can effectively introduce abundant detailed 
information to the encoder, which compensates for the 
loss of detailed information caused by the down-sampling 
process. Hence, our proposed method improves the 3D 
U-Net by 6.46%, 10.77%, 6.13 mm, 6.28%, and 7.23% 
on Dice, Jaccard, HD, Precision, and Recall, respectively. 
Compared with the DAF 3D, which also utilizes the 
attention mechanism to make the network focus on 
prostates, our proposed 3D EAGAN improves it for 2.88% 
on Dice, 5.26% on Jaccard, 1.84 mm on HD, 2.33% on 
Precision, 2.30% on Recall, respectively. The improvements 

Table 1 Quantitative results for prostate segmentation of different methods on the proposed dataset 

Method Dice (%) Jaccard (%) HD (mm) Precision (%) Recall (%)

3D FCN 84.12±3.02 72.46±2.40 11.96±5.89 86.49±2.68 84.08±2.87

Chen et al. 85.32±2.62 75.04±2.27 10.82±3.62 87.39±2.56 85.08±2.74

3D U-Net 86.34±2.07 76.24±2.64 10.77±4.05 86.83±3.22 85.19±2.11

Skip-Densenet 88.90±1.87 80.56±2.19 8.95±2.63 90.25±1.94 88.13±1.90

Deeplabv3+ 89.29±2.27 80.96±2.53 6.89±1.82 90.17±2.12 88.39±1.75

DAF 3D 89.92±1.75 81.75±2.67 6.48±1.61 90.78±1.27 90.12±1.58

Vox2Vox 90.32±1.57 82.76±1.99 7.23±2.20 91.04±1.17 91.34±1.46

3D EAGAN 92.80±0.75* 87.01±0.42* 4.64±0.69* 93.11±0.62* 92.42±1.00*

Data are presented as mean ± standard deviation. *, the best results. Dice, Dice similarity coefficient; HD, Hausdorff distance; 3D FCN, 
three-dimensional fully convolutional network; 3D, three-dimensional; DAF 3D, deep attentive features for three-dimensional prostate 
segmentation; 3D EAGAN, three-dimensional edge-aware attention generative adversarial network.
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benefit from the proposed 3D SCAM can not only focus 
on features in the spatial domain but also stress essential 
features in the channel domain. Compared with the GAN-
based Vox2Vox, our proposed 3D EAGAN improves it by 
2.48% on Dice, 4.25% on Jaccard, 2.59 mm on HD, 2.07% 
on Precision, and 1.08% on Recall, respectively. Benefiting 
from the proposed EEM, the proposed 3D EAGAN can 
pay attention to edge information, which leads to the 
improvement of segmentation performance.

 To further verify the effectiveness of the proposed 
method, the 2D slice visualization results of prostate 
segmented by different methods are shown in Figure 5. The 
first row of images is the prostate TRUS images of different 
samples, the second row of images is the real prostate label 
image, and the rest of the images are the visualization of 
the segmentation effect of different methods. For 3D FCN 
and Chen et al. methods, these methods use continuous 
downsampling to reduce the image resolution, which 
causes the loss of detailed information. Hence, the results 
of these methods have a large difference between the 
predicted prostate and the ground-truth one. For the Skip-
Densenet and Deeplabv3++ models, there is a substantial 
discrepancy between the segmentation results and the 
ground-truth ones, indicating a notable deficiency in their 
segmentation performance. The Vox2Vox method achieves 
better segmentation results than other methods, the reason 
is that it uses generative discriminator training to train the 
whole network. Different from these methods, the prostate 
images segmented by the proposed method are closer to the 
ground-truth ones.

In order to evaluate the statistical significance of the 
proposed method over other compared methods on all 
metrics, the paired t-tests are performed, and the P values 
are reported. The results are shown in Table 2. It can be 
observed from Table 2, it becomes evident that the null 
hypotheses for the first six comparing pairs on all metrics 
are not accepted at the 0.05 level, which means that the 
proposed method is better than these six comparing 
methods on all metrics. For the comparison between the 
proposed method and Vox2Vox, the P value on metric 
Recall is beyond the 0.05 level, which indicates the proposed 
method achieves similar performance with Vox2Vox on the 
Recall metric.

The experimental results on the μRegPro dataset are 
shown in Table 3. It can be observed that the proposed 
method achieves the best results on all metrics compared 
with other methods. Moreover, to evaluate the statistical 
significance of the proposed method over other compared 

methods on all metrics, the paired t-tests are performed, 
and the P values are reported in Table 4. It can be observed 
that the null hypotheses for the first six comparing pairs 
on all metrics are not accepted at the 0.05 level, which 
means that the proposed method is better than almost all 
methods on all metrics. For the comparison between the 
proposed method and Vox2Vox, the P values on metric HD 
and Precision are beyond the 0.05 level, which indicates 
the proposed method achieves similar performance with 
Vox2Vox on HD and Precision metrics.

In summary, the reasons for satisfactory segmentation 
results of the proposed method are: (I) the proposed EEM 
can effectively enhance the perception of shallow features 
for prostate edge information, thereby improving the 
network’s segmentation accuracy for prostates. (II) The 
proposed 3D SCAM enhances more important features in 
the spatial and channel dimensions through the attention 
mechanism, which makes the network pay more attention 
to the prostate region.

Ablation study

Ablation study on the proposed DCM 
As discussed before, the DCM is adopted in the edge-
aware segmentation network to introduce abundant detail 
information to the network. The ablation study experiments 
are conducted to verify the effectiveness of the DCM. The 
experimental results are shown in Table 5. The proposed 
method without using the DCM is denoted as “3D EAGAN 
w/o DCM”. On the contrary, “3D EAGAN w/ DCM” 
represents the DCM used in the proposed method. It can be 
observed that with the use of the DCM, the segmentation 
performance is significantly improved. 

To further verify the effectiveness of the DCM, feature 
maps are extracted from the encoder module in the edge-
aware segmentation network. The visualization of the 
feature maps is shown in Figure 6. It can be observed that 
with the use of the DCM, abundant detail information can 
be introduced to the encoder module, which can enhance 
the robustness of the proposed method, and it consists with 
experimental results in Table 1.

Ablation study on the proposed 3D spatial and channel 
attention module
The 3D spatial and channel attention module is added to 
the edge-aware segmentation network to selectively leverage 
the useful prostate features. To verify the effectiveness of 
the 3D spatial and channel attention module, it is compared 
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Figure 5 Visualization results of different methods on TRUS dataset. 3D FCN, three-dimensional fully convolutional network; DAF 3D, 
deep attentive features for three-dimensional prostate segmentation; TRUS, transrectal ultrasound.
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Table 2 P values from a paired t-test between the proposed method and other methods on our dataset 

Method Dice Jaccard HD Precision Recall

3D FCN 10−5 10−9 10−3 10−5 10−5

Chen et al. 10−5 10−12 10−4 10−5 10−7

3D U-Net 10−5 10−7 10−3 10−4 10−7

Skip-Densenet 0.02 10−5 10−3 10−3 10−4

Deeplabv3+ 0.02 10−5 0.01 10−3 10−4

DAF 3D 0.04 10−4 0.02 10−3 10−3

Vox2Vox 0.03 10−6 0.04 10−3 0.08

Dice, Dice similarity coefficient; Jaccard, Jaccard index; HD, Hausdorff distance; 3D FCN, three-dimensional fully convolutional network; 
3D, three-dimensional; DAF 3D, deep attentive features for three-dimensional prostate segmentation.

Table 3 Quantitative results for prostate segmentation of different methods on the μRegPro dataset 

Method Dice (%) Jaccard (%) HD (mm) Precision (%) Recall (%)

3D FCN 76.21±4.01 65.23±2.14 11.50±3.62 80.13±3.14 75.22±2.63

Chen et al. 80.21±2.04 69.42±2.51 10.07±3.82 77.24±3.06 82.82±2.81

3D U-Net 82.34±2.83 71.55±3.04 8.67±2.96 85.49±2.58 81.14±3.16

Skip-Densenet 83.02±3.16 74.22±2.82 7.34±3.11 86.25±2.66 82.50±3.22

Deeplabv3+ 85.23±3.53 75.48±3.11 7.61±3.53 86.63±3.04 83.26±3.52

DAF 3D 86.12±3.24 79.51±2.83 6.28±3.62 84.22±2.43 85.22±2.31

Vox2Vox 87.22±2.80 80.01±2.93 5.73±2.32 87.81±3.01 84.53±2.14

3D EAGAN 87.31±1.61* 81.21±1.77* 5.12±2.03* 88.04±2.06* 86.06±1.36*

Data are presented as mean ± standard deviation. *, the best results. Dice, Dice similarity coefficient; Jaccard, Jaccard index; HD, 
Hausdorff distance; 3D FCN, three-dimensional fully convolutional network; 3D, three-dimensional; DAF 3D, deep attentive features for 
three-dimensional prostate segmentation; 3D EAGAN, three-dimensional edge-aware attention generative adversarial network.

Table 4 P values from a paired t-test between the proposed method and other methods on the μRegPro dataset 

Method Dice Jaccard HD Precision Recall

3D FCN 10−9 10−8 10−5 10−5 10−6

Chen et al. 10−5 10−9 10−5 10−5 10−5

3D U-Net 10−4 10−7 10−4 10−4 10−5

Skip-Densenet 10−4 10−5 10−3 10−5 10−3

Deeplabv3+ 10−4 10−3 0.02 10−4 10−3

DAF 3D 10−3 0.03 0.01 10−5 0.03

Vox2Vox 0.03 0.02 0.06 0.09 10−4

Dice, Dice similarity coefficient; Jaccard, Jaccard index; HD, Hausdorff distance; 3D FCN, three-dimensional fully convolutional network; 
3D, three-dimensional; DAF 3D, deep attentive features for three-dimensional prostate segmentation.
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with the network without using the 3D spatial and channel 
attention module. The experimental results are shown in 
Table 6. “3D EAGAN w/o 3D SCAM” represents the 3D 
spatial and channel attention module removed from the 3D 
EAGAN. “3D EAGAN w/ 3D SCAM” is kept in the 3D 
EAGAN. It can be observed that the use of the 3D spatial 
and channel attention module can slightly improve the used 
metrics.

Ablation study on the proposed EEM
The EEM is utilized to guide the shallow layers of the edge-
aware segmentation network to focus on the contour and 
edge information of prostates. To verify the effectiveness of 
the EEM, ablation study experiments are performed. The 
experimental results are shown in Table 7. It can be observed 
that the use of the EEM can improve the performance of 
the 3D EAGAN.

Table 5 Evaluation of using the DCM

Method Dice (%) Jaccard (%) HD (mm) Precision (%) Recall (%)

3D EAGAN w/o DCM 91.08±1.51 83.64±1.72 5.46±0.93 90.43±1.62 91.79±1.45

3D EAGAN w/ DCM 92.80±0.75* 87.01±0.42* 4.64±0.69* 93.11±0.62* 92.42±1.00*

Data are presented as mean ± standard deviation. *, the best results. DCM, detail compensation module; Dice, Dice similarity coefficient; 
Jaccard, Jaccard index; HD, Hausdorff distance; 3D EAGAN, three-dimensional edge-aware attention generative adversarial network.

A B C

Figure 6 Visualization results of the feature maps extracted from the encoder module in the edge-aware segmentation network. (A) TRUS 
image; (B) EAGAN w/o DCM; (C) EAGAN w/ DCM. TRUS, transrectal ultrasound; EAGAN, edge-aware attention generative adversarial 
network; DCM, detail compensation module. 

Table 6 Evaluation of using the 3D spatial and channel attention module

Method Dice (%) Jaccard (%) HD (mm) Precision (%) Recall (%)

3D EAGAN w/o 3D SCAM 92.07±0.91 85.04±1.04 5.20±0.92 92.04±1.26 91.75±1.76

3D EAGAN w/ 3D SCAM 92.80±0.75* 87.01±0.42* 4.64±0.69* 93.11±0.62* 92.42±1.00*

Data are presented as mean ± standard deviation. *, the best results. 3D, three-dimensional; Dice, Dice similarity coefficient; Jaccard, 
Jaccard index; HD, Hausdorff distance; 3D EAGAN, three-dimensional edge-aware attention generative adversarial network; 3D SCAM, 
three-dimensional spatial and channel attention module.

Table 7 Evaluation of using the EEM 

Method Dice (%) Jaccard (%) HD (mm) Precision (%) Recall (%)

3D EAGAN w/o EEM 91.62±0.88 84.46±1.28 5.12±0.63 91.21±1.43 92.03±0.90

3D EAGAN w/ EEM 92.80±0.75* 87.01±0.42* 4.64±0.69* 93.11±0.62* 92.42±1.00*

Data are presented as mean ± standard deviation. *, the best results. EEM, edge enhancement module; Dice, Dice similarity coefficient; 
Jaccard, Jaccard index; HD, Hausdorff distance; 3D EAGAN, three-dimensional edge-aware attention generative adversarial network. 
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To further verify the effectiveness of the EEM, the 
visualization of feature maps extracted from the shallow 
layers of the edge-aware segmentation network is shown in 
Figure 7. It can be observed that with the help of the EEM, 
the prostate edge is more distinctive than the surrounding 
features in feature maps. Hence, shallow layers of the edge-
aware segmentation network can pay attention to the edge 
of prostates.

Number of channel dimensions in the edge-aware 
segmentation network
In the proposed 3D EAGAN, 3D convolutional layers 
are adopted to extract prostates in the 3D spatial domain. 
However, 3D convolutional layers inevitably increase 
computational complexity. To balance the segmentation 
performance and computational complexity, ablation 
study experiments on the number of channel dimensions 
in the edge-aware segmentation network are conducted. 
The experimental results are shown in Table 8. Hence, 
the number of channel dimensions in the edge-aware 
segmentation network is limited to {16,32,64,128} according 
to the experimental results.

In summary, to statistically evaluate the performance 
of each component in the proposed method, the paired 
t-tests are performed, and the P values are reported. The 
results are shown in Tables 9 and 10. For the ablation study 

on the proposed DCM, 3D SCAM, and EEM, it can be 
observed that the null hypotheses on most metrics are not 
accepted at the 0.05 level, which means that the DCM, 3D 
SCAM, and EEM can effectively improve segmentation 
accuracy. For the ablation study on the number of channel 
dimensions in the edge-aware segmentation network, it can 
be observed that the null hypotheses for the comparison 
between {8,16,32,64} and {16,32,64,128} on all metrics are 
not accepted at the 0.05 level, which means the channel 
dimensions of {16,32,64,128} achieves better performance. 
But for the comparison between {16,32,64,128} and 
{32,64,128,256}, the P value on almost all metrics is beyond 
the 0.05 level, which means that the channel dimensions 
of {16,32,64,128} and {32,64,128,256} achieve the similar 
performance.

Discussion

This paper proposed a 3D EAGAN-based prostate 
segmentation method, which achieved good segmentation 
performance on two datasets. Since prostates in TRUS 
images may have missing and ambiguous boundaries, 
accurately segmenting prostates from TRUS images is 
still a challenging task. Many traditional segmentation 
methods utilize prior information to extract the boundary 
of prostates, which failed in accurately segmenting prostates 

A B C D

Figure 7 Visualization results of the feature maps extracted from the shallow layers of the edge-aware segmentation network. (A) is the input 
TRUS images; (B-D) are feature maps extracted from the shallow layers in the encoder module. TRUS, transrectal ultrasound.

Table 8 Evaluation of numbers of channel dimensions in the edge-aware segmentation network  

Method Dice (%) Jaccard (%) HD (mm) Precision (%) Recall (%) Params (MB)

{8,16,32,64} 90.48±0.89 84.33±0.79 8.11±0.83 89.48±0.69 88.34±1.28 73.92*

{16,32,64,128} 92.80±0.75* 87.01±0.42 4.64±0.69* 93.11±0.62* 92.42±1.00* 75.10

{32,64,128,256} 92.76±0.82 87.26±0.48* 4.71±0.57 93.21±0.66 92.40±0.87 78.77

Data are presented as mean ± standard deviation. *, the best results. Dice, Dice similarity coefficient; Jaccard, Jaccard index; HD, 
Hausdorff distance.
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due to the complex background of TRUS images. 
Recently, DCNN have proved great performance and 

robustness in many computer vision tasks, which utilize 
backpropagation algorithms to learn features automatically. 
To achieve higher segmentation performance, many deep 
CNN-based prostate segmentation methods have been 
proposed. Although these methods can achieve better 
performance than traditional prostate segmentation 
methods, it still lacks sensitivity to the boundary of 
prostates, which may cause inaccuracies in the edges of the 
segmentation results, see Figure 5. Hence, how to effectively 
and accurately segment the edge of the prostate has become 
a key issue to be addressed in this field. To address this 
issue and accurately segment the edges of the prostate, an 
EEM is proposed to guide shallow layers to pay attention 
to edge information prostates. Tables 1,3,7, and Figures 5,7 
all present that the proposed EEM can effectively improve 
the accuracy of prostate edge segmentation. Moreover, 

the DCM is proposed to introduce abundant detailed 
information to the network.

Although the proposed method achieves satisfactory 
performance results,  there is  st i l l  some room for 
improvement. Since actual implementation relies heavily on 
hardware performance, a more lightweight network (47) is 
very important for actual application scenarios. The edge-
aware segmentation network used for segmentation in this 
method has reached a network parameter of 75.1 MB. In 
the future, we will consider lightweighting the network to 
achieve better real-time effects.

Conclusions

In this paper, a 3D EAGAN-based prostate segmentation 
method is proposed, which consists of an edge-aware 
segmentation network and a discriminator network. In the 
edge-aware segmentation network, the DCM is proposed 
to introduce abundant detailed information to the network. 
In addition, an EEM is proposed to guide shallow layers to 
pay attention to edge information prostates. Experimental 
results demonstrate the proposed method has achieved 
satisfactory results in 3D TRUS image segmentation of 
prostates.
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