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A B S T R A C T

Vertebrates are hosts to numerous parasites, belonging to many different taxa. These parasites differ in trans-
mission, being through either direct contact, a faecal-oral route, ingestion of particular food items, vertical or
sexual transmission, or by a vector. Assessing the impact of diet on parasitism can be difficult because analysis of
faecal and stomach content are uncertain and labourious; and as with molecular methods, do not provide diet
information over a longer period of time. We here explored whether the analysis of stable isotopes in hair
provides insight into the impact of diet and the presence of parasites in the rodent Myodes glareolus. Twenty-one
animals were examined for parasites and their hair analysed for stable isotopes (C and N). A positive correlation
between δ15N and one species of intestinal parasite was observed in females. Furthermore, several ectoparasites
were negatively correlated with δ15N, indicating that infections are further associated with foraging habits (size
and layout of the home range, length and timing of foraging, interaction with other rodents, etc.) that set the
rodents in direct contact with infected hosts. Although a limited number of animals were included, it seemed that
the isotope values allowed for identification of the association between diet and parasite occurrence in this
rodent. We therefore propose that this method is useful in providing further insight into host biology, feeding
preferences and potential exposure to parasites species, contributing to the understanding of the complex re-
lationship between hosts and parasites.

1. Introduction

Complex living environments define the selective pressures for an-
imals and in turn shape their life history development by regulating
population size and distribution (Vaughan et al., 2011). Although our
insight into the relationship between parasites and hosts is steadily
growing, the complexity of multiple infections (polyparasitism) is still
not fully understood (Bordes and Morand, 2011) and nor is it quite
understood why some host species might harbour more parasites spe-
cies compared to others (Bordes and Morand, 2015). The nutritional
status plays an important role in the outcome of infections because
malnutrition will reduce the immune response due to a competition for
nutrients and energy between the parasite, host and host defences (Bush
et al., 2001). Hosts with better nutrition can better invest in immune
responses and thus nutrition profiles can determine parasite prevalence

(Neve et al., 2007).
Diet composition can be monitored through a number of methods;

they range from visual analyses of stomach content (Andreasen et al.,
2017), molecular analysis of faecal samples (Deagle et al., 2009), to
assessment of stable isotopes (Panarello and Fernández, 2002; Hobbie
et al., 2017; Reid and Koch, 2017). The latter can be used to trace the
transfer of energy and matter through the foodweb because heavy
isotopes accumulate at increasing trophic levels (Vaughan et al., 2011;
Galetti et al., 2016). Isotope analysis is often preferred because it en-
ables diet assessment over a substantial time period, for example cov-
ering the entire period of hair growth (Panarello and Fernández, 2002;
Hobbie et al., 2017). Hair stable isotope composition reflects the iso-
tope composition of the food eaten by the animal (Russo et al., 2017).
For example, analysis of C stable isotopes enables distinction between
consumed plants with different photosynthetic pathways (e.g. CAM, C3
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or C4 plants) (O'Leary, 1988) and thus carried over to the next trophic
level (Jensen et al., 2012). More importantly, it has been shown that
δ13C and δ15N values increase through the food chain i.e. is positively
correlated with ingestion of animal protein (Petzke et al., 2005; Roth
and Hobson, 2000), such that herbivorous animals in a C3-system often
have δ15N values of ca. 2‰ while (top) predators have values of ca. 6‰
(Ben-David and Flaherty, 2012). Several studies have investigated
trophic interactions by the analysis of stable isotope values and the
presence of parasites. Although this has been studied in birds (Robinson
et al., 2009) and mammals (rabbits: Boag et al., 1998; seals: Sinisalo
et al., 2006; Vega et al., 2018), the majority of research has focused on
aquatic environments and especially on fish (Johnson et al., 2004;
Bertrand et al., 2011; Locke et al., 2013; Nachev et al., 2017).

Rodentia and Chiroptera are known to be the mammalian orders
with the highest parasite diversity (Krasnov et al., 2006). The bank
vole, Myodes glareolus (formerly Clethrionomys glareolus, Schreber
1780), is a small member of the Cricetidae family that inhabits Paleartic
forests (Wilson and Reeder, 2005). M. glareolus has a particularly wide
and presumably plastic diet preferences (Sadowska et al., 2008), al-
though it is generally considered to be herbivorous with a high pre-
ference for woody plants (Watts, 1968).

The aim of this study is to assess the association between parasite
abundance and C and N stable isotopes in hair of M. glareolus. This
approach could potentially provide a simple method to study the im-
portance of a systematic diet preference in acquiring different parasites
in free-ranging rodents.

2. Material and methods

2.1. Sample collection

Female (n=13) and male (n=8) Myodes glareolus specimens were
captured in Kongelunden, Denmark (55°34′14.2″N, 12°35′12.7″E).
Trapping was conducted in two sampling rounds (September (S1) and
October (S2), 2014) with a total of 44 and 80 traps, respectively. Pairs
of Ugglan special and Ugglan lemming (Grahnab AB, Hillerstop,
Sweden) were placed approximately 10m distance apart in ca. 200 m
long transects. The traps were prebaited with oatflakes and apples for
48 h and were left overnight during trapping.

2.2. Parasitological examination

The bank voles were transported to the University of Copenhagen,
anesthetized by isoflourane inhalation and sacrificed by cervical dis-
location. Immediately following euthanasia each animal was sexed,
measured and weighed intact; then the liver and spleen were weighed
separately. Shortly after, the liver, spleen, stomach and intestines were
examined for helminths under a dissection stereomicroscope. The
thoracic area and subdermis were also examined. The coat, ears, nos-
trils and perianal region were inspected for ectoparasites. The con-
juctival sacs were rinsed with physiological saline solution and ex-
amined for nematodes. The recovered parasites were preserved in 70%
ethanol for morphological examination and DNA analysis. For micro-
scopic identification purposes, parasites were cleared in Amman's lac-
tophenol and examined under an optical microscope. Eight liver le-
sions/white spots were subjected to DNA extraction after
homogenization by bead-beating (FastPrep®-24, MP Biomedicals Inc.,
France). The samples were first mixed with magnetic beads (2mm in
diameter) and subsequently beaten six times for 60 s at 0.5m/s. The
homogenate was immediately subjected to DNA extraction using a
commercial kit (QIAmp DNA Stool Mini Kit®, Qiagen GmbH, Hilden,
Germany). For species-specific identification of Taeniid infection, a 267
base pair (bp) region of the mitochondrial small subunit ribosomal RNA
gene (ssu rRNA) was amplified using the previously described Cest3-
Cest5 primers (Trachsel et al., 2007). Resulting amplicons were se-
quenced on both directions using a commercial kit (ABI Prism Big Dye

Terminator v 3.1 Sequencing Kit, Applied Biosystems, Foster City, CA).
Establishing the consensus sequences was done using the software
MEGA6 (Tamura et al., 2013) and comparison to the available se-
quences in GenBank was done using the online BLASTn analysis
(http://blast.ncbi.nlm.nih.gov).

2.3. Isotope analysis

The animals were shaved and the hair collected. Hair samples were
then washed twice with 5ml isopropanol and left in a protected fume
hood at room temperature overnight. The hair was grinded to a fine
powder using a Retsch Ball mill (mixer mill MM 200; 10ml stainless
steel grinding jars; single 12mm stainless steel grinding balls) for
5min at 30 Hz. Pulverized hair (10mg) of each individual was sent to
the Stable Isotope Facility at UC Davis (University of California) for C
and N analyses. The samples were analysed using a PDZ Europa ANCA-
GSL elemental analyser interfaced to a PDZ Europa 20-20 isotope ratio
mass spectrometer (Sercon LTD., Cheshire, UK). For more details see
http://stableisotopefacility.ucdavis.edu.

2.4. Statistical analysis

A generalised linear model was used to examine the relationship
between isotope ratios (δ13C and δ15N, ‰) and body attributes (sex
(male, female), liver weight (g), spleen weight (g), body weight (g) and
body length (cm)) and sampling rounds (S1 and S2) (PROC GENMOD;
dist= normal, SAS 9.4, SAS Institute, Cary, NC, USA). The associations
were further examined for simple one-to-one correlations between
isotope ratios and each individual body attribute, to assess the risk of
confounding (PROC CORR).

The prevalence rate (number of individuals infected/total number)
was calculated (PROC FREQ; with EXACT CI-estimation under the bi-
nomial distribution) and the range of intensity was given as minimum
and maximum parasite count. Mean abundance and intensity 95% bias-
corrected and accelerated (BCa) bootstrap confidence intervals were
calculated for each parasite species as suggested by Rózsa et al. (2000).
The confidence intervals were calculated using the web tool Quantita-
tive Parasitology, QPweb version 1.0.1.3 (Reiczigel et al., 2013), with
the number of bootstrap replications set to 10000. The correlation be-
tween parasite abundance was characterised by rank-correlation (PROC
CORR Spearman), in order to assess parasite interactions. This was done
only for parasite species with prevalence rates ≥10% to avoid poten-
tially weakly supported correlation (Bush et al., 1990).

Generalised linear models (PROC GENMOD, Dist= Poisson, log-
linkfunction; and controlling for data heterogeneity by the pscale-
function; SAS 9.4, SAS institute) were used for assessment of the asso-
ciation between the abundance for each parasite that occurred on more
than 5 hosts (n=13), the independent effect of body attributes (sex,
liver weight, spleen weight, body weight and body length), sampling
round and stable isotopes (C and N), in order to assess whether the
isotope values provided information beyond traditional simple mor-
phological proxies of body condition and immune response. The models
were reduced by stepwise exclusion of insignificant variables
(p > 0.05). Arguably, a comparison of parasite intensity – rather than
abundance would have been more appropriate for assessing the re-
lationship between parasite infection and other variables, since parasite
free individulas might never had been exposed. Similarly, a negative-
binomial distribution would have been more approapiate for some
parasites, but they were here assessed in identical models using parasite
abundance in order to include all individuals and thereby allow direct
comparisons.

Given the considerable biological differences between parasites, it
was expected that there would be no consistent association between
their parasite abundance and hosts diets as assessed from δ13C and
δ15N. To assess and illustrate such potential heterogenity, Pearsons
Correlation Coefficient (PROC CORR; SAS 9.4) was used to obtain
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information about the magnitude of association between isotope values
and parasite abundance in each sex. The average Correlation
Coefficient was calculated from parasites that occurred on at least five
individuals (n=13). The host's body measurements and isotope values
are expressed as the range, followed by mean and the S.E.M. in par-
enthesis.

3. Results

Rodent body length ranged from 8 to 11.2 (9.57 ± 0.19 cm) and
the body weight from 17.7 to 34.5 (23.23 ± 1.09 g). The liver and
spleen weighed 0.8 to 4.4 (1.65 ± 0.17 g) and 0.04 to 1.9
(0.38 ± 0.11 g), respectively. The values of δ13C and δ15N ranged from
−28.94 to −27.05 (−27.97 ± 0.11‰) and 4.34 to 6.88
(5.19 ± 0.13‰), respectively (Fig. 1). There were significant differ-
ences in δ15N and δ13C values between females and males; δ15N values
were also related to season (Table 1). There were no apparent corre-
lation between isotope ratio variation and body attributes (liver weight,
spleen weight, body weight and body length) in the generalised linear
models and nor in simpler one-to-one correlation analyses (8 analyses,
p > 0.22).

All voles had ectoparasites and 90% were infected with en-
doparasites. A total of 699 endoparasites and 2753 ectoparasites were
collected (Table 2). Ectoparasites such as Laelaps hilaris and Hyperlae-
laps microti were the most prevalent (95% CI: 76–99 and 90% CI: 69–98,
respectively) and Listrophorus brevipes had the highest mean abundance
(97.9 CI: 42.8–216) per host. Among the endoparasites, Heligmoso-
moides glareoli had the highest prevalence (52% CI: 29–74) and Rhab-
ditis orbitalis the highest mean intensity and abundance (97.5 CI:
16.3–213 and 27.8 CI: 4.48–79, respectively) per host.

Spearman's rank correlation coefficient (rs) showed that the
common parasite species had significant correlations with up to 3 other
species of parasites (Table 3), which did not indicate widespread

interactions between parasites.
The Generalised Linear Model of parasite abundance (Table 4)

showed that the load of only one parasite was correlated with host sex.
Seasonal variation was indicated for several ectoparasites (Cte-
nophtalmus agyrtes, Myocoptes japonensis, L. brevipes and H. microti) and
one endoparasite (H. glareoli). Rodent's body weight was correlated
with Trichuris sp., Dermacarus hypudaei, Radfordia lemnina and L. hilaris;
body size was correlated with ectoparasites D. hypudaei and L. brevipes
(negative and positive, respectively). The nematode R. orbitalis, as well
as the mites M. japonensis and L. brevipes were significantly correlated
with liver weight. Spleen weight was found positively correlated with
R. orbitalis and negatively with D. hypudaei and R. lemnina. Three spe-
cies of ectoparasites (Trichoecious tenax, R. lemnina and L. brevipes) and
one endoparasite (H. glareoli) were correlated to either δ13C or δ15N.
Notably, the parasite with the largest range in intensity showed clear
effect of δ15N and sampling round (Fig. 2).

The association between isotopes and parasite abundance included
both positive and negative associations, indicating that the correlations
across parasites are quite variable. For simple one-to-one correlation
between endoparasites and δ13C and δ15N the average Pearsons
Correlation Coefficients ranged from −0.20 to 0.34 (0.08 ± 0.16) and
0.01 to 0.39 (0.06 ± 0.17) respectively. For ectoparasites it ranged
from −0.04 to 0.36 (−0.07 ± 0.10) for δ13C and −0.001 to 0.43
(−0.10 ± 0.11) for δ15N. The average Pearsons Correlation
Coefficient for correlations between δ15N and endoparasites were po-
sitive for both males and females, but not significantly (Fig. 3). There
was no consistent correlation for δ13C (Fig. 3). Here females with lower
δ13C levels had negative correlations, while males with higher δ13C
levels had positive correlations.

4. Discussion

The average of the δ13C values (−27.97 ± 0.11‰) indicates that
the rodents fed mainly on C3 plants (O'Leary, 1988), while the range
indicates that they all ingested food items at a higher trophic level.
Large ranges in isotope levels have been found in other rodent species
(Baltensperger et al., 2015) and have also been previously found in M.
glareolus (Balciauskas et al., 2016). The variation in the isotope values
between sexes might indicate differences in foraging habits in this
species. Moreover, values of δ15N related to sampling round indicate a
seasonal change in diet (Fig. 1), but there was no apparent correlation
to other host attributes such as body weight and length. This suggests
that the isotope ratios carry added information on the individual hosts.

It should be noted that there were positive correlations between
some ectoparasites (M. japonensis with C. agyrtes and T. tenax), but most
of the correlations between members of this group were negative
(Table 3). Negative correlations between ectoparasite species could
indicate competition or interference due to their shared distribution on
the host's body. A negative correlation was also present between the
intestinal helminths H. glareoli and Paranoplocephala omphalodes.

From the 13 species of parasites analysed under the generalised
linear model (Table 4), four were significantly correlated with δ13C or
δ15N. The results indicate that the abundance of the endoparasite H.
glareoli is higher in rodents foraging in a higher trophic level and the

Fig. 1. The relationship between δ13C and δ15N values for the 21 Myodes
glareolus sampled from Kongelunden Denmark in September (S1) and October
(S2). The rodents present great variation in isotope values.

Table 1
Significant association between δ13C and δ15N values and body attributes (sex, liver weight, spleen weight, body weight and body length) and sampling round (S1 or
S2) in 21 Myodes glareolus. Insignificant variables (p < 0.05) were step-wise removed.

Parameter Estimate SE Wald 95% Conf. Limits Wald Chi-Sq Pr > ChiSq AIC

δ15N Intercept 5.79 0.15 5.50 6.09 1462.89 < .0001 24.8
S1 vs S2 −0.56 0.19 −0.93 −0.20 9.07 0.0026
Females vs. Males −0.58 0.19 −0.96 −0.21 9.30 0.0023

δ13C Intercept −27.62 0.14 −27.90 −27.34 38040.70 < .0001 23.1
Females vs. Males −0.57 0.18 −0.92 −0.22 9.99 0.0016
Scale 0.40 0.00 0.40 0.40
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abundance of the ectoparasites T. tenax, R. lemnina and L. brevipes is
higher in rodents feeding on a lower trophic level. The positive corre-
lation found between H. glareoli with sex, sample round and δ15N in-
dicate that this nematode is present in a higher number in females with
a Nitrogen enriched diet in September (S1). Female-biased parasitism
has been previously reported in bank voles (Grzybek et al., 2015), and
as in our study, foraging habits of females were related to the exposure
to an endoparasite.

Another parasite significantly correlated with sample round and
isotope levels is L. brevipes. The results for this particular mite translates
into large sized rodents feeding mainly in a low Nitrogen enriched diet
present a high number of this mite, which further increases later in the
season (Fig. 2). A possible explanation for this correlation is that older
rodents, which have larger bodies, offer more host area for L. brevipes

and have different foraging habits than younger rodents.
It should be noted that while we found significant correlation for

three out of the six mite species present on more than 5 of the rodents,
the association across parasite groups were quite variable (Fig. 3). The
variable association can be due to the diversity of parasite biology and
the varying impact of other important factors, which clouds the impact
of diets and foraging habits.

Seasonal variation in the parasitic numbers can be related to abiotic
factors that allow better development of the parasite as well as to
changes in the bank vole's population. Such seasonal effects have al-
ready been documented for mites (Zhang et al., 2010) and for helminths
(Abu-Madi et al., 2000) and is usually explained by differences in en-
vironmental factors and increasing host densities that affect parasite
transmission. This could explain why H. glareoli, C. agyrtes and M.

Table 2
Parasite infracomunity structure of 21 Myodes glareolus collected in September and October.

Parasites Prevalence % (CI 95%) Range of intensity Mean intensity (CI 95%) Mean abundance (CI 95%) Infection site Transmission route

ENDOPARASITES
Nematodes
Heligmosomoides glareoli 52 (29–74) 1–24 4.18 (1.91–11.2) 2.19 (0.86–6.09) Intestine Faecal-Oral
Rhabditis orbitalis 28 (11–52) 2–275 97.5 (16.3–213) 27.9 (4.48–79) Eye Contact
Trichuris sp. 33 (14–56) 1–4 2 (1.29–2.86) 0.67 (0.29–1.24) Caecum Faecal-Oral
Trematodes
Corrigia vitta 19 (5–41) 3–14 8 (4.25–12.2) 1.52 (0.38–3.95) Pancreatic ducts I. H.
Cestodes
Paranoplocephala omphalodes 19 (2–35) 1–3 1.75 (1–2.5) 0.33 (0.05–0.76) Intestine I. H.
Hydatigena taeniaeformis 23 (8–47) 1–7 3 (1–5) 0.71 (1.43–1.9) Liver (cysts) Oral
ECTOPARASITES
Fleas
Ctenophtalmus agyrtes 57 (35–78) 1–10 2.58 (1.58–4.83) 1.48 (0.76–2.95) Body surface Contact
Megabothris walkeri 33 (13–53) 1–3 1.86 (1.14–2.43) 0.62 (0.24–1.1) Body surface Contact
Catallagia dacenkoi dacenkoi 4 (0–23) 1 1 (n/a) 0.05 (0–0.14) Body surface Contact
Hystricopsylla orientalis 4 (0–23) 1 1 (n/a) 0.05 (0–0.14) Body surface Contact
Mites
Ixodes ricinus 47 (25–70) 1–3 1.5 (1.1–1.9) 0.71 (0.38–1.1) Body surface Contact
Dermacarus hypudaei 33 (13–53) 1–14 3.43 (1.43–8.71) 1.14 (0.33–3.76) Body surface Contact
Myocoptes japonensis 61 (38–81) 1–27 5.15 (2.85–11.7) 3.19 (1.57–7.65) Body surface Contact
Trichoecious tenax 38 (18–61) 1–72 16.6 (2.88–42.1) 6.33 (1–18.7) Body surface Contact
Radfordia lemnina 42 (21–65) 1–17 3.89 (1.89–9.11) 1.67 (0.67–4.48) Body surface Contact
Listrophorus brevipes 80 (58–94) 1–768 121 (53.9–267) 97.9 (42.8–216) Body surface Contact
Laelaps hilaris 95 (76–99) 1–28 7.4 (5–11.3) 7.05 (4.62–10.9) Body surface Contact
Hyperlaelaps microti 90 (69–98) 1–29 11.2 (8.14–15.1) 10.1 (6.95–13.9) Body surface Contact
Cheyletidae 4 (0–23) 1 1 (n/a) 0.05 (0–0.14) Body surface Contact
Lice
Hoplopleura acanthopus 4 (0–23) 1 1 (n/a) 0.05 (0–0.14) Body surface Contact

Note: I.H. refers to the ingestion of an intermediate host; contact refers to direct contact between rodents.

Table 3
Output from Spearman's rank correlation test between parasite species with prevalence ≥10% in 21 Myodes glareolus.

H. g. R. o. T. sp. C. v. P. o. C. a. C. d. D. h. M. j. T. t. R. l. L. h.

Nematodes
H. glareoli (H. g.) 1.00
R. orbitalis (R. o.) −0.14
Trichuris sp. (T. sp.) −0.15 −0.03
Trematodes
C. vitta (C. v.) −0.1 0.3 0.49*
Cestodes
P. omphalodes (P. o.) −0.47* −0.03 0.17 0
Fleas
C. agyrtes (C. a.) 0.42 −0.37 −0.15 −0.12 −0.34
C. dacenkoi (C. d.) −0.21 −0.14 0.33 0.54* −0.11 −0.23
Mites
D. hypudaei (D. h.) −0.2 −0.05 −0.13 −0.16 0.15 −0.07 −0.15
M. japonensis (M. j.) 0.55* 0.15 −0.04 0.04 −0.33 0.56** −0.25 −0.13
T. tenax (T. t.) 0.19 0.54* 0.09 0.04 −0.19 −0.02 −0.17 −0.26 0.44*
R. lemnina (R. l.) 0.02 −0.08 0.58** 0.44* 0.04 0.15 0.29 −0.12 0.19 0.16
L. hilaris (L. h.) −0.55 0.10 0.21 0.21 0.49* −0.49* 0.11 0.21 −0.45* −0.09 −0.04
H. microti (H. m.) −0.31 0.25 −0.33 −0.15 0.23 −0.31 −0.13 −0.01 −0.41 −0.06 −0.55** 0.09

Note: An asterisk indicates the significance level (p < 0.05) and two asterisks (p < 0.01).
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japonensis were more abundant in September (S1) and L. brevipes and H.
microti in October (S2).

As stated previously, parasites and hosts have a complex association
and therefore differences in the host's characteristics and behaviour
have an impact on the exposure to parasites and similarly, parasite
characteristics will have an influence on the host (Krasnov et al., 2006).
Accordingly, in this study parasite abundance was found to be corre-
lated to host's traits such as body weight, size and also liver and spleen
weight. Although these traits have been previously found correlated to

parasitism (Cowan et al., 2009; Hayward et al., 2017), some studies
have not found enough evidence for these correlations (Schulte-
Hostedde and Elsasser, 2011; Sackett, 2018). In accordance with
Sackett (2018) we consider these associations challenging to explain in
detail, because of the complexity of the factors contributing to these
correlations, especially in free-ranging rodents.

The interpretation of the correlations between stable isotopes and
parasite infection must be considered with caution because a number of
relevant factors, such as the occurrence of other parasites were ex-
cluded from the analysis. Still, the method allowed the identification of
associations between parasitic occurrences and foraging habits of this
rodent. The advantages of this method are: the use of a model animal
with a broad diet, easy sample collection, assessment of diet and fora-
ging habits over a long period of time and the tracing of energy
transfers throughout the foodweb, - which has been previously studied
with stable isotopes (Panarello and Fernández, 2002; Vaughan et al.,
2011; Bovendrop et al., 2017; Russo et al., 2017). Additionally, this
method can provide an insight into host biology by capturing the dif-
ference in foraging habits of rodents and its association with potential
exposure to parasite species. Thus, it would contribute further to the
understanding of the complex relationship between hosts and parasites
(Bordes and Morand, 2015). We here noted that M. glareolus has a great
variation in foraging habits even within a small sample and that when a
comparable variation was found in mean parasite intensity then it re-
sulted in clear identification of relevant variables. Similar results may
be achieved for other parasites, but larger sample size is needed to show
clearer associations between the foraging habits and the intensity of
infection of less common parasites.

To conclude, this method allows for correlation of infection with
certain parasites to the bank vole's foraging habits, exposing the

Table 4
Output from analysis of parasite abundance in 21 Myodes glareolus that included the independent effects of body attributes (sex, liver weight, spleen weight, body
weight and body length), sampling round (S1 or S2) and hair δ13C and δ15N values. In all analyses, more than five individuals were infected with the given parasite.
Insignificant variables (p < 0.05) were step-wise removed.

Taxa (no of non-zero values) Parameter Estimate SE Wald 95% Conf. Limits Wald Chi-Sq Pr > ChiSq AIC

Heligmosomoides glareoli Intercept −24.81 4.42 −33.47 −16.15 31.50 < .0001 57.8
(11) S1 vs. S2 4.35 0.91 2.57 6.12 23.05 < .0001

d15N 4.06 0.65 2.78 5.33 38.85 < .0001
Female vs. males 2.08 0.68 0.75 3.42 9.30 0.0023

Rhabditis orbitalis Intercept −1.76 2.29 −6.25 2.72 0.59 0.4410 864.6
(6) Liver weight 40.68 18.13 5.15 76.22 5.04 0.0248

Spleen weight 57.18 23.66 10.81 103.56 5.84 0.0157
Trichuris sp. Intercept −5.25 1.74 −8.66 −1.85 9.17 0.0025 41.8
(7) Body weight 0.19 0.06 0.07 0.31 9.84 0.0017
Ctenophthalmus agyrtes Intercept −0.54 0.58 −1.67 0.60 0.87 0.3516 75.3
(12) S1 vs. S2 1.52 0.66 0.23 2.81 5.34 0.0208
Dermacarus hypudaei Intercept 9.15 4.34 0.65 17.66 4.45 0.0349 58.6
(7) Spleen weight −138.72 48.28 −233.35 −44.08 8.25 0.0041

Body weight 0.53 0.14 0.27 0.80 15.49 < .0001
Body length −2.19 0.72 −3.60 −0.78 9.30 0.0023

Myocoptes japonensis Intercept −2.77 1.85 −6.39 0.85 2.25 0.1335 129
(13) S1 vs. S2 2.02 0.90 0.25 3.79 4.98 0.0256

Liver weight 38.16 18.03 2.83 73.50 4.48 0.0343
Trichoecious tenax Intercept −103.05 32.89 −167.52 −38.58 9.82 0.0017 237.4
(8) d13C −3.70 1.15 −5.95 −1.45 10.39 0.0013
Radfordia lemnina Intercept 7.19 3.03 1.25 13.13 5.63 0.0177 56.8
(9) d15N −2.32 0.60 −3.49 −1.15 15.11 0.0001

Spleen weight −39.43 16.63 −72.02 −6.84 5.62 0.0177
Body weight 0.21 0.04 0.13 0.29 27.93 < .0001

Listrophorus brevis Intercept 14.76 3.75 7.42 22.11 15.52 < .0001 1475.1
(17) S1 vs. S2 −5.34 1.26 −7.81 −2.88 18.03 < .0001

d15N −2.32 0.52 −3.35 −1.30 19.66 < .0001
Liver weight −42.60 19.72 −81.24 −3.95 4.67 0.0308
Body weight 0.59 0.28 0.05 1.13 4.64 0.0312

Laelaps hilaris Intercept −0.24 0.88 −1.96 1.49 0.07 0.7890 164.8
(20) Body weight 0.09 0.03 0.02 0.16 7.15 0.0075
Hyperlaelaps microti Intercept 2.58 0.19 2.22 2.95 194.56 < .0001 194
(19) S1 vs. S2 −0.81 0.37 −1.54 −0.08 4.79 0.0286

Note: No significant correlation was observed for Megabothris walker (7) or Ixodes ricinus (10).

Fig. 2. The relationship between parasite intensity and δ15N values for the mite
Listrophorus brevipes in September (S1) and October (S2) samples of Myodes
glareolus. Note the log-scale for parasite abundance.
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expected links to differences in foraging habits. Here it is suggested
that, rodents with low Nitrogen in their diet presented more ectopar-
asites and in contrast, feeding at higher trophic levels was associated
with endoparasitic infection. Additional contributions to these asso-
ciations could arise from other mechanisms i.e., for ectoparasites it can
also indicate an energetic impact from lack of protein and from de-
creased grooming. While such uncertainties remain, this study proves
that the analysis of stable isotopes in hair of M. glareolus shows clear
association with the abundance of several parasites.
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